arrow
arrow
arrow
Find the mean proportional between (4+√5) and (12-2√20).
Question

Find the mean proportional between (4+√5) and (12-2√20).

A.

39\sqrt{39}​​

B.

2752\sqrt{7 - \sqrt{5}}​​

C.

75\sqrt{7 - \sqrt{5}}​​

D.

27+52\sqrt{7 + \sqrt{5}}​​

Correct option is B

Given:
Find the mean proportional between (4 + √5) and (12 − 2√20).
Formula Used:
Mean Proportional between two numbers a and b = a×b \sqrt{a \times b}​​
Solution:
Let:
a=(4+5),b=(12220)a = (4 + \sqrt{5}), \quad b = (12 - 2\sqrt{20})​​
a×b=(4+5)(12220)\sqrt {a \times b} = \sqrt {(4 + \sqrt{5})(12 - 2\sqrt{20})} 
20=25\sqrt{20} = 2\sqrt{5} ​​
b=122×25=1245b = 12 - 2 \times 2\sqrt{5} = 12 - 4\sqrt{5} 
Mean Proportional=(4+5)(1245)\text{Mean Proportional} = \sqrt {(4 + \sqrt{5})(12 - 4\sqrt{5})}​​
Mean Proportional = 4×124×45+5×125×45\sqrt {4 \times 12 - 4 \times 4\sqrt{5} + \sqrt{5} \times 12 - \sqrt{5} \times 4\sqrt{5}}​​
Mean Proportional=48165+1254×5Mean Proportional=484520Mean Proportional=2845Mean Proportional=275\text{Mean Proportional}= \sqrt {48 - 16\sqrt{5} + 12\sqrt{5} - 4 \times 5}\\\text{Mean Proportional}= \sqrt {48 - 4\sqrt{5} - 20}\\\text{Mean Proportional}= \sqrt {28 - 4\sqrt{5}}\\\text{Mean Proportional} = 2\sqrt {7-\sqrt 5}​​



Free Tests

Free
Must Attempt

SSC MTS GA Section Test 01 (With New Interface)

languageIcon English
  • pdpQsnIcon25 Questions
  • pdpsheetsIcon75 Marks
  • timerIcon20 Mins
languageIcon English
Free
Must Attempt

SSC MTS PYP (30 Sep 2024 S1) (With New Interface)

languageIcon English
  • pdpQsnIcon90 Questions
  • pdpsheetsIcon270 Marks
  • timerIcon90 Mins
languageIcon English
Free
Must Attempt

SSC CHSL Tier-I 2025 Mock 01 (With New Interface)

languageIcon English
  • pdpQsnIcon100 Questions
  • pdpsheetsIcon200 Marks
  • timerIcon60 Mins
languageIcon English
test-prime-package

Access ‘SSC GD’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
249k+ students have already unlocked exclusive benefits with Test Prime!
Our Plans
Monthsup-arrow