

Time Allowed: 2 Hours

8.

9.

Booklet Serial No. : 226

[Maximum Marks: 100

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

TEST BOOKLET AP (ASH) PHYSICS 2016

All questions carry equal marks.

	INSTRUCTIONS
1.	Immediately after the commencement of the examination, you should check that test booklet
	does not have any unprinted or torn or missing pages or items, etc. If so, get it replaced
	by a complete test booklet.
2.	Write your Roll Number only in the box provided alongside.
	Do not write anything else on the Test Booklet
3.	This Test Booklet contains 100 items (questions). Each item comprises four responses
(79)	(answers). Choose only one response for each item which you consider the best.
4.	After the candidate has read each item in the Test Booklet and decided which of the given
50	responses is correct or the best, he has to mark the circle containing the letter of the
	selected response by blackening it completely with Black or Blue ball pen. In the following
	example, response "C" is so marked :
5.	Do the encoding carefully as given in the illustrations. While encoding your particulars
	or marking the answers on answer sheet, you should blacken the circle corresponding to
	the choice in full and no part of the circle should be left unfilled.
6.	You have to mark all your responses ONLY on the ANSWER SHEET separately given
	according to INSTRUCTIONS FOR CANDIDATES' already supplied to you. Responses marked
	on the Test Booklet or in any paper other than the answer sheet shall not be examined.
7.	All items carry equal marks. Attempt all items. Your total marks will depend only on
110511	the number of correct responses marked by you in the Answer Sheet. There will be no
	negative marking.
	17.5 PM 10.0 P

Before you proceed to mark responses in the Answer Sheet fill in the particulars in the

After you have completed the test, hand over the Answer Sheet only, to the Invigilator.

front portion of the Answer Sheet as per the instructions sent to you.

AP (ASH) PHYSICS 2016

Time Allowed: 2 Hours

[Maximum Marks : 100

Calculate the amount of work done (in Joules) by the force,

$$\vec{F} = (2xy + z^2)\hat{i} + x^2\hat{j} + 2xz\hat{k} \text{ Newton,}$$

in moving a particle from (0, 1, 2) m to (5, 2, 7) m.

(A) 295

(B) 315

(C) 426

(D) 512

A rectangular wave guide has dimensions 2.5 cm and 5.0 cm. Determine guide
 wavelength at a wavelength of 4.5 cm for dominant mode.

(A) 15 cm

(B) 10 cm

(C) 5 cm

(D) 2.5 cm

- 3. For the motions :
 - Motion of a body on an inclined plane under gravity.
 - (ii) A pendulum with variable length.
 - (iii) A particle moving on an ellipsoid under the influence of gravity.
 - (iv) Rolling disc.

Which of the following is correct for holonomic constraints?

(A) (i) and (ii)

(B) (i) and (iii)

(C) (ii) and (iii)

(D) (iii) and (iv)

AP (ASH) PHYSICS 2016

4. A bead slides on a smooth rod which is rotating about one end in a vertical plane with uniform angular velocity ω (as shown). Its equation of motion is:

(A)
$$\frac{1}{2}m\ddot{r} - mr\dot{\theta}^2 + mg\sin\theta = 0$$
 (B)
$$m\ddot{r} - mr\dot{\theta}^2 + mg\sin\theta = 0$$

(C)
$$\frac{3}{2}m\ddot{r} + mr\dot{\theta}^2 + mg\sin\theta = 0$$
 (D)
$$m\ddot{r} - mr\dot{\theta}^2 + mg\cos\theta = 0$$

5. The Hamiltonian corresponding to the Lagrangian $L = a\dot{x}^2 + b\dot{y}^2 - kxy$ is:

(A)
$$\frac{p_x^2}{2a} + \frac{p_y^2}{2b} + kxy$$
 (B) $\frac{p_x^2}{4a} + \frac{p_y^2}{4b} - kxy$

(C)
$$\frac{p_x^2}{4a} + \frac{p_y^2}{4b} + kxy$$
 (D) $\frac{(p_x^2 + p_y^2)}{4ab} + kxy$

The differential and total scattering cross-sections for the scattering of a particle
 by a rigid sphere of radius R are, respectively;

(A)
$$\frac{R^2}{4}$$
, πR^2

(B)
$$\frac{\pi R^2}{2}$$
, πR^2

(C)
$$\pi R^2$$
, $\frac{R^2}{4}$

(D)
$$\frac{3R^2}{2}$$
, $\frac{R^2}{2}$

7. The moment of inertia tensor for the system of four point masses 1 gm, 2 gm, 3 gm and 4 gm, located at (1, 0, 0), (1, 1, 0), (1, 1, 1) and (1, 1, -1), respectively, is:

(A)
$$\begin{pmatrix} 1 & 16 & 1 \\ 1 & 1 & 17 \\ -9 & 19 & 1 \end{pmatrix}.$$

(B)
$$\begin{pmatrix} 19 & 16 & 1 \\ 16 & -9 & 1 \\ 1 & 1 & 17 \end{pmatrix}$$

(C)
$$\begin{pmatrix} -9 & 16 & 1 \\ 16 & 17 & 1 \\ 1 & 1 & 19 \end{pmatrix}$$

(D)
$$\begin{pmatrix} 16 & -9 & 1 \\ -9 & 17 & 1 \\ 1 & 1 & 19 \end{pmatrix}$$

- 8. The spectral line of λ = 5000 Å in the light coming from a distant star is observed at 5200 Å. Find the distance of the star. (Hubble constant = 3 × 10⁻¹⁸/s):
 - (A) 4×10^{24} m

(B) 5×10^{25} m

(C) 6 × 10²⁶ m

(D) 4×10^{27} m

AP (ASH) PHYSICS 2016

9. The rest mass of a particle of momentum p and kinetic energy T is given by :

(A)
$$\frac{p^2c^2 - T^2}{2Tc^2}$$

(B)
$$\frac{pc - T}{2Tc}$$

(C)
$$\frac{p^2c^2 - T^2}{3Tc^2}$$

$$(\mathbf{D}) \quad \frac{p^2c^2 - \mathbf{T}^2}{\mathbf{T}c^2}$$

10. If the power radiated by the sun is 3.8×10^{26} W, the value of Poynting vector at the surface of the sun is (Given, radius of sun = 7×10^8 m):

(A)
$$3.1 \times 10^{10} \text{ W/m}^2$$

(B)
$$4.6 \times 10^9 \text{ W/m}^2$$

(C)
$$3.6 \times 10^8 \text{ W/m}^2$$

(D)
$$6.2 \times 10^7 \text{ W/m}^2$$

11. Find the plasma frequency, if the average density of electrons in ionosphere is 6×10^{10} electrons/m³.

(A)
$$8.6 \times 10^6 \text{ Hz}$$

(B)
$$2.2 \times 10^6 \text{ Hz}$$

(C)
$$2.2 \times 10^7 \text{ Hz}$$

(D)
$$3.6 \times 10^7 \text{ Hz}$$

12.	For normal incidence of electromagnetic waves at the glass-air interface, the
	reflection and transmission coefficients are, respectively:
	(A) 0.04, 0.96 (B) 0.02, 0.09
	(C) 0.04, 0.76 (D) 0.96, 0.04
13.	A metallic sodium surface is kept at a distance of 1.0 m from a 100 W bulb,
	emitting light in all directions. Find the time needed by an electron in a
	sodium atom to receive energy of 1.0 eV. Assume that all the energy is absorbed
	by the top layer of the surface and all the energy given to sodium atom is
	taken by one electron :
	(A) 1.3 s (B) 0.82 s
	(C) 0.6 s (D) 0.4 s
14.	An X-ray tube passes 10.0 mA current if the voltage applied is 20 kV. How
	much power is radiated if the efficiency is 0.2% ?
	(A) 0.4 W (B) 0.6 W
	(C) 0.8 W (D) 1.1 W
AP (A	ASH) PHYSICS 2016 6

15.	How much electron energy is	required in an electron microscope to create
	the same resolving power as t	hat of a gamma ray microscope designed to
	0.1 gamma rays ?	
	(A) 0.002 MeV	(B) 0.005 MeV
	(C) 0.007 MeV	(D) 0.009 MeV
16.	An electron has a de Broglie	wavelength equal to that of a photon. If the
Fe .		
*	photon has an energy of 10	0 keV, what is the kinetic energy of the
	SCHOOL STORY AND	
	electron ?	
	(A) 10 ³ eV	(B) $3 \times 10^{3} \text{ eV}$
	(A) 10 ev	(1) 0 1 10 0
	(C) $6 \times 10^{3} \text{ eV}$	(D) 10 ⁴ eV
	Ments Section with and	
	Sherper Stocke Market Wil	
17.	For which of the following	cubes, the number of nearest neighbour
	(coordination number) is 8 ?	
	OWN TANKS IN CITE	(D) St11-
	(A) Diamond cube	(B) Simple cube
	(C) Body-centred cube	(D) Face-centred cube
	the second and a second	PROPERTY OF THE PROPERTY OF TH

18. Assuming that the lattice points of lattice parameter 'a' in a bcc structure are occupied by spherical atoms of radius r. Find the free volume per unit cell.

(A)
$$a^3 \left[1 - \frac{\pi\sqrt{3}}{8} \right]$$

(B)
$$\frac{2a^3}{3} \left[1 - \frac{\pi\sqrt{3}}{8} \right]$$

(C)
$$a^3 \left[1 - \frac{\pi}{8}\right]$$

$$(D) \quad \frac{1}{3}a^3 \left[1 - \frac{\pi}{8}\right]$$

- 19. In a tetragonal lattice, a = b = 0.25 nm and c = 0.18 nm. Find the spacing between (1 1 1) planes :
 - (A) 0.13 nm

(B) 0.29 nm

(C) 0.36 nm

- (D) 0.52 nm
- 20. The density, resistivity and atomic weight of copper are 8920 kg/m³,
 1.73 × 10⁻⁸ Ωm and 63.5, respectively. Find the average time of collision of the electrons obeying classical laws.
 - (A) 0.43×10^{-8} s

(B) $0.98 \times 10^{-10} \text{ s}$

(C) 1.21×10^{-12} s

(D) $2.43 \times 10^{-14} \text{ s}$

21. Evaluate the normalization constant, N, for the following wave function :

$$\psi(x) = Ne^{-ikx}; -a < x < a.$$

(A) 1

(B) √2a

(C) $\frac{1}{2a}$

(D) $\frac{1}{\sqrt{2a}}$

22. Calculate the energy difference between the n_x = n_y = n_z = 1 level and the next higher energy level for free electrons in a solid cube of side 10 mm.

(A) $2.69 \times 10^{-16} \text{ eV}$

(B) $1.13 \times 10^{-14} \text{ eV}$

(C) $3.12 \times 10^{-12} \text{ eV}$

(D) $5.16 \times 10^{-8} \text{ eV}$

23. An alloy of a metal is found to have a resistivity of 10⁻⁶ Ωm at 0°C. When it is heated to a temperature of 700°C, the resistivity increases by 8%. Find the resistivity of the alloy.

9

(A) $0.97 \times 10^{-6} \Omega m$

(B) $0.95 \times 10^{-5} \Omega m$

(C) $0.83 \times 10^{-7} \Omega m$

(D) $0.79 \times 10^{-4} \Omega m$

24. The variation of conductivity (σ) of a semiconductor with temperature (T) is given as :

$$\frac{1}{T}(K^{-1})$$

ln o

$$2.6 \times 10^{-3}$$

3.58

$$2.2 \times 10^{-3}$$

5.099

$$1.8 \times 10^{-3}$$

6.645

$$1.4 \times 10^{-3}$$

8.202

Find the band gap.

(Given : $k_B = 1.38 \times 10^{-23} \text{ J/K}$)

(A) 0.39 eV

(B) 0.42 eV

(C) 0.64 eV

(D) 0.96 eV

25. Find the diffusion coefficient of electrons of a silicon single crystal at 27°C if the mobility of electrons is 0.17 m²V⁻¹s⁻¹ at 27°C :

(A) $4.4 \times 10^{-3} \text{ m}^2\text{s}^{-1}$

(B) $3.2 \times 10^{-4} \text{ m}^2\text{s}^{-1}$

(C) $4.4 \times 10^{-4} \text{ m}^2\text{s}^{-1}$

(D) $1.9 \times 10^{-5} \text{ m}^2\text{s}^{-1}$

26.	An atom of exygen on being polarized produces a dipole moment of
	0.5×10^{-22} C-m. If the distance of the centre of negative charge cloud from
	the nucleus is 4.0×10^{-17} m, find the polarizability of the oxygen atom.
	(Given, $\epsilon_0 = 8.8 \times 10^{-12} \text{F/m}$)

(A)
$$3.6 \times 10^{-36} \text{ F m}^2$$

(C)
$$1.9 \times 10^{-45} \text{ F m}^2$$

(D)
$$4.9 \times 10^{-46} \text{ F m}^2$$

- •27. The exciting line in an experiment is 546 nm and the Stoke line is at 552 nm. Find the wavelength of anti-Stoke line :
 - (A) 5400 Å

(B) 5600 Å

(C) 5800 Å

- (D) 6000 Å
- 28. Before emerging from a cyclotron, deuterons describe a circle of radius 0.32 m. The frequency of the applied voltage is 10 MHz. Find the speed of the deuteron emerging from the cyclotron.
 - (A) 0.96×10^4 m/s

(B) 1.6×10^5 m/s

(C) 3.1 × 10⁶ m/s

(D) 2.0 × 10⁷ m/s

29. For stationary states, the wave function takes the form :

(A) $\psi(x, t) = e^{\alpha x} e^{-iEt/\hbar}$

(B) $\psi(x, t) = \psi(x)e^{-iEt/\hbar}$

(C) $\psi(x, t) = \psi(t)e^{-Ex/\hbar}$

(D) $\psi(x, t) = e^{-ax}e^{-Et/\hbar}$

30. The possible eigen values of the operator, $\hat{Q} = i \frac{d}{d\phi}$, are :

(A) all integers

- (B) positive integers only, excluding zero
- (C) all negative integers, including zero
- (D) none of the above
- 31. Suppose a spin-1/2 particle is in the state $=\frac{1}{\sqrt{6}}\binom{1+i}{2}$. What are the probabilities of getting $+\hbar/2$ and $-\hbar/2$, if you measure S_z ?

(A) 2/3, 1/3

(B) 1/3, 2/3

(C) 1/3, 1/3

(D) 2/3, 2/3

32. Lamb shift is of the order of :

(A) $\alpha^2 mc^2$

(B) $\alpha^4 mc^2$

(C) α5mc2

(D) $\alpha^4 m^2 c^2 / m_p$

AP (ASH) PHYSICS 2016

33.	Radius of a typical nucleus of	f mass ~ 200 is of the order of 0.6×10^{-14} n	1.
	Estimate the kinetic energy	of a nucleon inside the nucleus.	
	(A) 3.2 MeV	(B) 4.3 MeV	
2.2	(C) 5.9 MeV	(D) 7.0 MeV	
34.	Find the energy (in Joules) required to break $^{12}_{6}\mathrm{C}$ nucleus into thre	e
	α -particles. (Take $m_{\tilde{b}^2C}=12$	amu and $m_a = 4.0026$ amu):	
-	(A) 6.1 × 10 ⁻⁶	(B) 4.2 × 10 ⁻⁸	
1	(C) 3.9×10^{-10}	(D) 1.2 × 10 ⁻¹²	
35.	The volume, surface, Coulor	nb and asymmetry energies (in MeV) of 40C	a
	nucleus are, respectively :		
	(A) 620, -196, -80, 0	(B) 520, -178, -80, 0	
	(C) -620, -196, 80, 0	(D) -520, 178, -80, 0	
36.	According to the shell mode	l, the predicted spin of $^{61}_{28}\mathrm{Ni}_{33}$ is :	
	(A) 7/2	(B) 5/2	
	(C) 3/2	(D) 1/2	
AP(ASH) PHYSICS 2016	13 P.T.	0.

37.	A 0.01 mm thick ⁷ ₃ Li target	is bombarded with a beam of flux of 1	10 ¹³ particles/
	cm ² -s. As a result 10 ⁸ neu	trons/s are produced. Calculate the	
	for this reaction. (Given, d	lensity of lithium = 500 kg/m ³)	
	(A) 0.91 b	(B) 0.62 b	
	(C) 0.42 b	(D) 0.23 b	
38.	The ratio of radiation loss	es and ionization losses for 0.97 M	eV β-particles
	in ²⁰⁸ Pb is :		
	(A) 0.01	(B) 0.06 .	
	(C) 0.15	(D) 0.35	
39.	Half-thickness of an abso	rber of γ-rays is 5.0 mm. What is t	he percentage
	loss of intensity of thes	e γ-rays in travelling 20 mm thi	ckness of the
	absorber ?		
	(A) 5.32%	(B) 6.25%	
	(C) 7.35%	(D) 8.19%	- 4
AP	(ASH) PHYSICS 2016	14	

40.	A cy	yclotron osci	llating fre	equency of	1.0 M	IHz is	used to	accele	rate p	orotons.
	If th	he radius of	the dee	is 60 cm,	find tl	ne mag	metic fi	ield.		
	(A)	1.06 T			(B)	0.09	г			
	(C)	0.06 T			(D)	0.01	Г			
41.	Whi	ich of the fo	ollowing is	true for	Scintil	lation	detecto	rs ?		
	(A)	Inorganic	Scintillati	on detecto	ors are	used	to mea	asure t	he en	ergy of
		α- and β-p	articles							
1	(B)	Organic S	cintillation	detectors	are u	ised to	detect	X-and	γ-rays	3
	(C)	They gene	rally have	e low effic	eiency					
	(D)	They have	very shor	t dead tim	e (~10	-9 s) pe	rmittin	g very l	high c	ounting
		rates			C.					
42.	Qua	ark composit	ion of Σ*	is:			72.			
*	(A)	uud			(B)	udd				
	(C)	uds	F.		(D)	uus				
AP(ASH) l	PHYSICS 20	16	18	5					P.T.O.

43. A particle X has two decay modes with partial decay rates r_1s^{-1} and r_2s^{-1} .

What is the inherent uncertainty in the mass of particle X?

(A) $\hbar \sqrt{r_1^2 + r_2^2}$

(B) $\hbar(r_1 + r_2)$

(C) $\hbar \sqrt{r_1^2 - r_2^2}$

- (D) $h(r_1 r_2)$
- 44. The eigen value of a commutator, $\left[\frac{d}{dx}, \hat{x}\right]$ is :
 - (A) zero

(B) 1

(C) -1

- (D) h
- 45. At time t = 0, the wave function of hydrogen atom is given by :

$$\psi(r,\,0) = \frac{1}{\sqrt{10}}(2\psi_{100} + \psi_{210} + \sqrt{2}\psi_{211} + \sqrt{3}\psi_{21,-1}).$$

Find the expectation value for the energy of the system :

(A) -13.6 eV

(B) -3.4 eV

(C) -7.5 eV

(D) -10.2 eV

- What is the value of the uncertainty product $(\Delta L_x)(\Delta L_y)$ in a representation in which L^2 and L_z have simultaneous eigen functions ?
 - (A) $(\Delta L_x)(\Delta L_y) \ge \frac{\hbar}{2}$

(B) $(\Delta L_x)(\Delta L_y) \ge \frac{m\hbar^2}{2}$

(C) $(\Delta L_x)(\Delta L_y) \ge m\hbar$

- (D) $(\Delta L_x)(\Delta L_y) \ge \frac{m^2 \hbar^2}{4}$
- 47. The unperturbed wave functions of a particle trapped in an infinite square well of bottom 'a' are $\Psi_n = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}$. If the system is perturbed by raising the floor of the well by a constant amount V_0 , then the second order correction to the energy of the nth state is:
 - (A) nV_0

(B) V₀

(C) zero

- (D) V₀²
- 48. Which of the following electric dipole transitions is not allowed ?
 - (A) $1s \rightarrow 2p$

(B) 2p → 3d

(C) 3s → 5d

(D) 1s → 1f

49. Which of the following is correct for Dirac matrices?

(A)
$$\alpha_x \alpha_y + \alpha_y \alpha_x = \hat{I}$$

(B)
$$\alpha_x \alpha_y + \alpha_y \alpha_x = \hat{0}$$

(C)
$$\alpha_x \alpha_y + \alpha_y \alpha_x = \hbar \hat{I}$$

(D)
$$\alpha_x \alpha_y + \alpha_y \alpha_x = \alpha_z$$

- 50. A stationary body explodes into two fragments each of mass 1.0 kg that move apart at speeds of 0.6c relative to the original body. Find the mass of the original body.
 - (A) 3.5 kg

(B) 3.0 kg

(C) 2.5 kg

- (D) 2.0 kg
- 51. An electron and a positron, moving side by side in the +X direction at 0.5c, annihilate each other. If two photons are produced, what is the energy of each photon?
 - (A) 0.885 MeV, 0.295 MeV
- (B) 0.500 MeV, 0.500 MeV
- (C) 0.250 MeV, 0.295 MeV
- (D) 0.295 MeV, 0.313 MeV

52. In a transistor amplifier circuit (as shown), find the base current IB:

(A) 40 µA

(B) 50 μA

(C) 65 µA

(D) 80 µA

53. Find the barrier potential for Si junction at 0°C if its value at 25°C is 0.7 V:

(A) 0.7 V

(B) 0.75 V

(C) 0.80 V

(D) 0.85 V

AP (ASH) PHYSICS 2016

54.	In	an AM wave, cal	culate the power	saving	ng when the carrier and one sideband	
	are	suppressed cor	responding to n	n = 1.		
	(A)	83%		(B)	73%	
	(C)	69%		(D)) 56%	
55.	Cor	overt 25.625 ₁₀ i	nto its binary e	quival	lent:	
	(A)	10011.0012		(B)	11001.1012	
	(C)	11100.110_2		(D)	00111.0012	
56.	Two	electrical signa	als 101101 and 1	10101	I are applied to an AND gate. Find	
	the	output of the A	AND gate.			
	(A)	100101_2		(B)	1011012	
	(C)	1101012		(D)	101100_2	
57.	A tr	ain of light pul	ses is transmitte	ed thro	rough a 500 m fibre with $n_1 = 1.4$	
	and	$n_2 = 1.35$. Find	d the total dispe	rsion	assuming input pulse of zero line	
	widt	h.	*			
	(A)	102 ns		(B)	83 ns	
	(C)	75 ns		(D)	36 ns	
AP(A	SH) P	HYSICS 2016	20			

of the F	the concentration of donor atoms is tripled, find the level. (Take, $k_{\rm B}T=0.03~{\rm eV}$): 8 eV below the conduction band	the new position
(A) 0.1		
	8 eV below the conduction band	
(B) 0.2		
	8 eV below the conduction band	
(C) 0.4	7 eV below the conduction band	
	eV below the conduction band	
59. In a sin	gle stage transistor used in common emitter (CE	configuration, the

and the input resistance $R_i = 2.5 \text{ k}\Omega$. Find the output voltage if the input

When a sinusoidal signal is fed to an amplifier, the output current is given

(B)

(D)

 $i_c = 15 \sin 400t + 1.5 \sin 800t + 1.2 \sin 1200t + 0.5 \sin 1600t$

21

Find the percentage increase in power due to distortion.

(B) 0.2 V

(D) 0.4 V

3.97%

0.8%

P.T.O.

is 2 mV.

(A) 0.1 V

(C) 0.3 V

(A) . 5.34%

(C) 1.74%

AP (ASH) PHYSICS 2016

by:

60.

61. The circuit of SCR half wave rectifier is adjusted so that the gate current is 1.0 mA. The forward breakdown voltage of SCR at the gate current is 100 V. If a sinusoidal voltage of 200 V peak is applied, find the conduction angle:

(A) 30°

(B) 60°

(C) 90°

(D) 150°

 1 62. Find the wavelength of a photon so that it converts into an $e^{-}-e^{+}$ pair.

(A) 2.3×10^{-15} m

(B) 3.2×10^{-13} m

(C) 1.2×10^{-12} m

(D) 6.3 × 10⁻¹⁰ m

63. For a Gaussian wave packet:

(A) $\Delta x \cdot \Delta p_x \ge \hbar/2$

(B) $\Delta x \cdot \Delta p_x \le \hbar$

(C) $\Delta x \cdot \Delta p_x = \hbar/2$

(D) $\Delta x \cdot \Delta p_x = 0$

64. A neutron is confined in space to 10⁻¹⁴ m. Find the time its wave packet will take to spread to four times its original size.

(B)
$$2.3 \times 10^{-21} \text{ s}$$

(C)
$$1.6 \times 10^{-22}$$
 s

65. Consider a state $|\psi\rangle = \frac{1}{\sqrt{2}} |\phi_1\rangle + \frac{1}{\sqrt{5}} |\phi_2\rangle + \frac{1}{\sqrt{10}} |\phi_3\rangle$ which consists of three orthonormal states $|\phi_1\rangle$, $|\phi_2\rangle$ and $|\phi_3\rangle$. If $\hat{B}|\phi_n\rangle = n^2 |\phi_n\rangle$, find the expectation value of \hat{B} for the state $|\psi\rangle$.

(A)
$$\frac{22}{10}$$

(D)
$$\frac{11}{5}$$

66. Which of the following matrices is an element of the group SU(2) ?

(A)
$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

(B)
$$\begin{pmatrix} \frac{1+i}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \frac{1-i}{\sqrt{3}} \end{pmatrix}$$

(C)
$$\begin{pmatrix} 2+i & i \\ 3 & 1+i \end{pmatrix}$$

(D)
$$\begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$

- 67. The equation of the plane that is tangent to the surface xyz = 8 at the point
 - (1, 2, 4) is:

(A)
$$x + 2y + 4z = 12$$

(B)
$$x + 4y + 2z = 0$$

(C)
$$x + y + z = 7$$

(D)
$$4x + 2y + z = 12$$

68. The Laplace transform of the function f(x) (shown below) is :

(A)
$$\frac{1+e^{-s}}{s}$$

(B)
$$\frac{1 - e^{-s}}{s}$$

(C)
$$\frac{1}{s(1 + e^{-s})}$$

(D)
$$\frac{1}{s(1-e^{-s})}$$

69.	If A, B and C are non-zero He	rmitian operato	ors, which of t	he following r	elations
	must be false ?				
		157 /41		. 00	
	(A) A + B = C	(B)	ABA = C		
	(C) AB + BA = C	(D)	[A, B] = C		
70.	The degeneracy of an exci	ted state of 1	nitrogen ato	m having el	ectronic
	configuration $1s^2 2s^2 2p^2 3d^1$	is:		*	12
	(A) 6	(B)	10		
	191				
	(C) 15	(D)	150		
71.	If the hyperfine interaction	in an atom	is given by	$\mathbf{H} = \alpha \overrightarrow{\mathbf{S}}_e \cdot \overrightarrow{\mathbf{S}}_p$, where
	\vec{S}_p and \vec{S}_p are the spins of	electron and	proton, resp	ectively, the	splitting
	between 3S1 and 3S0 state	s is:			
	~ 14				
	(A) αħ ²	(B)	$a\hbar^2/2$		
	(C) aħ²/√2	(D)	$2ah^2$		
X 75.	ACITY DELIVETOR DOLO	0.5			P.T.O.
AP(ASH) PHYSICS 2016	25			1.1.0.

72. Identify the nature of interactions for the following reactions?

(i)
$$K^- + p \rightarrow \Sigma^- + \pi^+$$

$$(ii) \quad \mu^- + \mu^+ \rightarrow K^- + K^+$$

(iii)
$$\Sigma^+ \rightarrow p + \pi^0$$

- (A) (i): strong, (ii): electromagnetic, (iii): weak
- (B) (i): strong, (ii): weak, (iii): electromagnetic
- (C) (i): weak, (ii): electromagnetic, (iii): strong
- (D) (i): weak, (ii): electromagnetic, (iii): weak
- 73. In the circuit shown, the voltage drop across the diode in forward bias condition is 0.7 V. The current passing through the diode is :

(A) 0.5 mA

(B) 1.0 mA

(C) 1.5 mA

(D) 2,0 mA

74. The specific heat of the photon gas varies with temperature as :

75. The first three energy levels of a system lie at 0, E and 2E. The energy level E is 2-fold degenerate, whereas the other two are non-degenerate. The partition function of the system with $\beta = (k_B T)^{-1}$ is given by :

(B)
$$2e^{-\beta E} + e^{\beta E}$$

(C)
$$(1 + e^{-\beta E})^2$$

(D)
$$1 + e^{-\beta E} + e^{-2\beta E}$$

76. A particle of mass m slides under the gravity along the parabolic path $y = ax^2$ (as shown). The Lagrangian of the particle is given by :

- (A) $L = \frac{1}{2}m\dot{x}^2 mgax^2$
- (B) $L = \frac{1}{2}m(1 + 4a^2x^2)\dot{x}^2 mgax^2$
- (C) $L = \frac{1}{2}m\dot{x}^2 + mgax^2$
- (D) $L = \frac{1}{2}m(1 + 4a^2x^2)\dot{x}^2 + mgax^2$
- 77. Which of the following cannot be explained by considering a harmonic approximation for the lattice vibrations in solids?
 - (A) Deby's T³ law

(B) Thermal expansion

(C) Dulong-Petit's law

(D) Optical branches in lattices

- 78. If L_x , L_y and L_z are, respectively, the x, y and z components of angular momentum operator \vec{L} , the commutator $[L_xL_y, L_z]$ will be :
 - (A) $i\hbar(L_x^2 + L_y^2)$

(B) 2iħL,

(C) $i\hbar(\mathbf{L}_x^2 - \mathbf{L}_y^2)$

- (D) null-operator
- 79. If the spatial part of the wave function of a two fermion system is given by:

$$\psi(\overrightarrow{r_1}, \overrightarrow{r_2}) = \frac{1}{\sqrt{2}} [\phi_1(\overrightarrow{r_1}) \ \phi_2(\overrightarrow{r_2}) + \phi_2(\overrightarrow{r_1}) \ \phi_1(\overrightarrow{r_2})],$$

The spin part of the wave function should be :

(A) $\frac{1}{\sqrt{2}}(\alpha\beta + \beta\alpha)$

(B) $\frac{1}{\sqrt{2}}(\alpha\beta - \beta\alpha)$

 $(C) \frac{1}{\sqrt{2}}\alpha\beta$

- (D) $\frac{1}{\sqrt{2}}(\alpha \beta)$
- 80. The wave function of a particle moving in free space is given by $\psi = e^{ikx} + 3e^{-ikx}$.

The energy of the particle is:

(A) $\frac{5\hbar^2k^2}{2m}$

(B) $\frac{4\hbar^2 k^2}{2m}$

(C) $\frac{3\hbar^2k^2}{2m}$

(D) $\frac{\hbar^2 k^2}{2m}$

81.	Around which year did the Chine	se pilgrim, Hiuen Tsang, visit India?
	(A) 629 BC	(B) 292 BC
	(C) 629 AD	(D) 922 AD
82.	At which place in Chamba Distric	et of H.P. is Shakti Devi temple ?
	(A) Chhatrari	(B) Bharmaur
	(C) Mani Mahesh	(D) Saho
83.	According to the 2011 census w	hich District of H.P. has the lowest sex
	ratio ?	
	(A) Lahaul-Spiti	(B) Solan
	(C) Sirmaur	(D) Kinnaur
84.	Who was the first Sikh Chieftain	n to invade the Kangra princely state?
	(A) Jai Singh	(B) Jassa Singh
	(C) Ranjit Singh	(D) Dhian Singh
AP	(ASH) PHYSICS 2016	30

85.	In w	which princely	y state v	as 'Bhai	Do Na	Pai Do'	movement l	aunched	?
	(A)	Bilaspur			(B)	Mandi	9	<	
	(C)	Bushahar			(D)	Sirmaur		*	
86.	In w	which District	of H.P.	is Ghad	asaru la	ake ?		4	
	(A)	Chamba			(B)	Kangra			
	(C)	Kullu			(D)	Shimla			
87.	Whe	ere do the pe	ople of B	ilaspur r	egion of	H.P. go	for holy dip	on Baish	aki
	Day	?	7.			. 4.5			
	(A)	Markanda			(B)	Ghagas			
	(C)	Samoh			(D)	Hatwar	, ×		
88.	At	which place	around	Kotgarh	is the	нрмс	up-grading	its pack	ing
	hous	se ?	14						
	(A)	Nankhari			(B)	Jarol T	ikkar		
	(C)	Khadrala			(D)	Baghi			
AP(A	SH) I	PHYSICS 201	6	8	31		46	P.7	r.o.

89.	Which country is assisting in Swan river Integrated Watershed Managemen	t
	Project in Una District of H.P. ?	
	(A) France (B) Germany	
25	(C) Japan (D) Korea	
90.	In which river basin is Thirot hydel project ?	
	(A) Ravi (B) Chenab	
. 1	(C) Satluj (D) Beas	
91.	Who is the Chief Justice of India ?	
	(A) Justice H.L. Dattu (B) Justice Joseph Kurian	
	(C) Justice Tirath Singh Thakur (D) Justice R.M. Lodha	
92.	To which state did Sharad Joshi, who died recently, belong?	
	(A) UP (B) Maharashtra	
	(C) Punjab (D) Haryana	

93.	Wit	h which of the following	was V	irend	ra Nath Mishra as	sociate	d?
			*2				
	(A)	Medicine		(B)	Archaeology		
				Miles			
	(C)	Economics		(D)	Sports		
94.	Wh	ich is Indian Navy's late	et etanl	th da			
		ion io maian mavy's late	st stear	in de	stroyer ?		
		TMO **		323			
	(A)	INS Kuthar		(B)	INS Mysore		
	(C)	INS Delhi		and the same		2 - 0	
	(6)	INS Deini		(D)	INS Kochi		
05	1171		a .:				
95.	Who	has been named as Inc	lia's ric	hest	person by the For	oes Ma	gazine?
	1000000						
	(A)	Jagmohan Dalmia		(B)	Mukesh Ambani		
	(C)	Azim Premji		(D)	K.K. Birla		
				-2	- WIT 1		
96.	To v	which country does econom	ist Ang	us De	aton, who got the 2	015 No	bel Prize

	belo	ng ?					
						4	
	(A)	USA		(B)	Britain		7.
	(C)	Germany		(D)	France	4	
AP (A	SH) P	HYSICS 2016	33				P.T.O.

97.	Who is Bindhya Bhandari?	
	(A) President of Nepal	
	(B) Speaker of Odisha Assembly	
	(C) Governor of Jharkhand	
	(D) Communist leader of Pashcl	nim Banga
98.	In which country is Antalya, whi	ch was the venue of G-20 summit held in
	November, 2015 ?	
7	(A) Brazil	(B) Turkey
140	(C) Russia	(D) Canada
99.	Who is Justin Trudeau ?	
	(A) President of Maldives	(B) President of South Korea
	(C) Prime Minister of Canada	(D) Prime Minister of Romania
100.	Who has been elected as the Pr	resident of Guatemala recently?
	(A) Ahmed Chalabi	(B) Dilima Rousseff
	(C) Alexis Tsipras	(D) Jimy Morales
AP	(ASH) PHYSICS 2016	34