Q1. If ∠AOB=68° and ∠BOC=42° then measure of ∠AOC is –
(a) 48°
(b) 22°
(c) 26°
(d) 110°
Sol.
∠AOC=∠AOB-∠COB=68°-42°=26°
Q2. If ∠XOY=56° and ∠YOZ=34° then measure of ∠XOZ is –
(a) 68°
(b) 112°
(c) 90°
(d) 22°
Sol.
∠XOZ=∠XOY+∠YOZ=56°+34°=90°
Q3. Ratio of angles of linear pair is 8 : 1 then measure of each angle is –
(a) 80°, 10°
(b) 120°, 15°
(c) 160°, 20°
(d) 200°, 25°
Sol.
Let angles be 8x and x
8x + x = 180
x = 20° then angles are 160° and 20°
Q4. If x = 58° and y = 42° then value of z/2 form given figure is –
(a) 80°
(b) 60°
(c) 50°
(d) 40°
Sol.
58° + 42° + z = 180°
z = 180° – 100 = 80°
1/2 z=40°
Q5. Value of x + y in given figure is-
(a) 80°
(b) 160°
(c) 260°
(d) 180°
Sol.
x + y + 2 × 50° = 360°
x + y = 360° – 100° = 260°
Q6. If OP and OQ are bisectors of ∠AOC and ∠BOC then measure of ∠POQ is –
(a) 90°
(b) 45°
(c) 80°
(d) 100°
Sol.
∠POC=1/2∠AOC
∠COQ=1/2∠COB
∠POC+∠COQ=1/2 (∠AOC+∠COB)
∠POQ+1/2 (180°)
∠POQ=90°
Q7. In given figure if p∥q and ∠1=70° then measure of ∠2 is –
(a) 110°
(b) 90°
(c) 70°
(d) 120°
Q8. In give figure AB∥CD,∠ABO=60°,∠AOB=20° then ∠ODC is –
(a) 100°
(b) 160°
(c) 120°
(d) 110°
Sol.
∠COD=20°
∠OCD=60°
∠ODC=180°-(20°+60°)
= 100°
Q9. In given figure if ∠CBD=103° and ∠BAC=35° then value of x is –
(a) 77°
(b) 65°
(c) 68°
(d) 103°
Sol.
y = 180° 1 – 103° = 77°
x + y + 35° = 180°
x = 180° – 35 – 77 = 68°
Q10. In given figure ∠PQR=69°, ∠QPR=25° then ∠PRS is –
(a) 11°
(b) 94°
(c) 55°
(d) 111°
Sol.
∠PRS=69°+25°=94°