

Hall Tick	et Nur	nber														
								Q. B. No	o. [1	7	4	3	2	1	_
Marks:1		ıtes			3	ТВ	32S				Вос	oklet (Code	:	A	_
	O 21-22-21							J								-
Signatur	re of th	e Car	ndida							<u>-</u>	ionat	iire o	f the l	nvio	ilato	- r

INSTRUCTIONS TO THE CANDIDATE

(Read the Instructions carefully before Answering)

- 1. Separate Optical Mark Reader (OMR) Answer Sheet is supplied to you along with Question Paper Booklet. Please read and follow the instructions on the OMR Answer Sheet for marking the responses and the required data.
- **2.** The candidate should ensure that the Booklet Code printed on OMR Answer Sheet and Booklet Code supplied are same.
- 3. Immediately on opening the Question Paper Booklet by tearing off the paper seal, please check for (i) The same booklet code (A/B/C/D) on each page, (ii) Serial Number of the questions (1-100), (iii) The number of pages and (iv) Correct Printing. In case of any defect, please report to the invigilator and ask for replacement of booklet with same code within five minutes from the commencement of the test.
- **4.** Electronic gadgets like Cell Phone, Calculator, Watches and Mathematical/Log Tables are not permitted into the examination hall.
- 5. There will be ¼ negative mark for every wrong answer. If the response to the question is left blank without answering, there will be no penalty of negative mark for that question.
- 6. Using Blue/Black ball point pen to darken the appropriate circles of (1), (2), (3) or (4) in the OMR Sheet corresponding to correct or the most appropriate answer to the concerned question number in the sheet. Darkening of more than one circle against any question automatically gets invalidated and will be treated as wrong answer.
- 7. Change of an answer is NOT allowed.
- 8. Rough work should be done only in the space provided in the Question Paper Booklet.
- 9. Return the OMR Answer Sheet and Question Paper Booklet to the invigilator before leaving the examination hall. Failure to return the OMR sheet and Question Paper Booklet is liable for criminal action.

This Booklet consists of 20 Pages for 100 Questions + 3 Pages of Rough Work -
1 Title Page i.e., Total 24 Pages.

Г	_	_	_	_	_	_	_	٦
L	_	_	_	_	_	_	_	┙

AA

SPACE FOR ROUGH WORK

3TB2S 2 - A

Time: 2 Hours Marks: 100

Instructions:

(i) Each question carries **one** mark and ½ negative mark for every wrong answer.

(ii) Choose the correct or most appropriate answer from the given options to the following questions and darken, with Blue/Black Ball Point Pen, the corresponding digit (1), (2), (3) or (4) in the circle pertaining to the question number concerned in the OMR Answer Sheet, separately supplied to you.

				_	o you.	stion i	numbe	er con	cerned in the OMR Answer Sheet,
1.	Matc	h the f	ollowi	ng :					
		Insti	tute						Location
	(a)	Cent	ral Dru	ıg Rese	earch Institute			(i)	Dehradun
	(b)	Instit	tute of	Himal	ayan Bioresource Te	echnolo	ogy	(ii)	Palampur
	(c)	Cent	re for C	Cellula	r and Molecular Bio	logy		(iii)	Hyderabad
	(d)	Fores	st Rese	arch In	stitute			(iv)	Lucknow
	Choo	se the	correc	t answ	er:				
		(a)	(b)	(c)	(d)				
	(1)	(iv)	(ii)	(i)	(iii)				
	(2)	(iv)	(ii)	(iii)	(i)				
	(3)	(iii)	(ii)	(i)	(iv)				
	(4)	(iv)	(iii)	(i)	(ii)				
2.	Stud	y of fis	hes is o	called :					
	(1)		thology			(2)	Herpe	etology	V
	(3)		ıropolo			(4)	_	yology	
3.	The t	heory	of Biog	genesis	was experimentally	prove	ed by:		
	(1)	S.A.	Waksn	nan		(2)	Alexa	ınder I	Fleming
	(3)	Edwa	ard Jen	ner		(4)	Louis	Paste	ur

3TB2S 3 - A

4.	Mat	ch the f	followi	ng list	s:						
		List ·	- I			List-	- II				
	(a)	Lyco	persic	on	(i)	Fami	ily				
	(b)	Pole	monial	les	(ii)	Spec	ries				
	(c)	Mora	aceae		(iii)	Genu	us				
	(d)	Labl	ab		(iv)	Divis	sion				
					(v)	Orde	er				
	Cho	ose the	correc	t answ	er:						
		(a)	(b)	(c)	(d)						
	(1)	(iii)	(iv)	(i)	(v)						
	(2)	(v)	(ii)	(iii)	(iv)						
	(3)	(iii)	(v)	(i)	(ii)						
	(4)	(iv)	(i)	(ii)	(iii)						
5.	Five	kingdo	om clas	ssificat	ion wa	s giver	n by :				
	(1)	R.H.	Whitta	aker	(2)	Carl	linnaeus	(3)	Carl Woese	(4)	Lynn Margulis
6.		ertion (•		O		sed for biog				
	Reas	son (R)	:	Som CH ₄		aebact	erial specie	s which	are present in the	e gut of s	such animals produce
	Cho	ose the	correc	t answ	er:						
	(1)	Both	(A) an	d (R) a	re true	and (F	R) is the corr	ect expl	anation of (A) .		
	(2)	Both	(A) an	d (R) a	re true	, but (F	R) is not the	correct (explanation of (A)).	
	(3)	(A) i	s true, l	but (R)	is fals	e.					
	(4)	(A) is	s false,	but (R) is true	e.					
7.	Mate	ch the f	ollowi	ng:							
		List ·	- I				List - II				
	(a)	Myc	oplasn	nas		(i)	mycolic a	cid			
	(b)	Acti	nomyc	etes		(ii)	diatoms				
	(c)	Kies	elguhr			(iii)	lack cell v	vall			
	(d)	Noct	tiluca			(iv)	cytophary	/nx			
						(v)	biolumine	escence			
	Cho	ose the	correc	t answ	er:						
		(a)	(b)	(c)	(d)						
	(1)	(iii)	(i)	(ii)	(v)						
	(2)	(iii)	(ii)	(i)	(iv)						
	(3)	(i)	(iii)	(iv)	(v)						
	(4)	(v)	(iv)	(ii)	(iii)						

3TB2S

 $\mathbf{A} \mathbf{A}$

4 - A

8.	Mate	ch the f	ollowi	ng:					
		List.	- I				List -	II	
	(a)	Clost	tridium			(i)	Toxic	prote	in
	(b)	Aspe	rgillus			(ii)	Butyı	ric acio	1
	(c)	Mon	ascus pi	urpurei	ıs	(iii)	Citric	acid	
	(d)	Bacil	lus thu	ringien	sis	(iv)	Statir	าร	
						(v)	Cyclo	spori	n-A
	Cho	ose the	correc	t answ	er:				
		(a)	(b)	(c)	(d)				
	(1)	(ii)	(iii)	(i)	(iv)				
	(2)	(iii)	(ii)	(iv)	(v)				
	(3)	(v)	(i)	(ii)	(iii)				
	(4)	(ii)	(iii)	(iv)	(i)				
9.	Asse	ertion (A):	Som	e Photo	synthet	ic alg	ae can	form symbiotic associations with fungi.
	Reas	son (R)	:	Fung	gal asso	ociations	with	algae	involve absorption of nutrients by plants.
	Cho	ose the	correc	t answ	er:				
	(1)	Both	(A) an	ıd (R) a	re true	and (R)	is the	corre	ct explanation of (A).
	(2)	Both	(A) an	ıd (R) a	re true	, but (R)	is not	the co	orrect explanation of (A).
	(3)	(A) is	s true,	but (R)	is false	<u>)</u> .			
	(4)	(A) is	s false,	but (R) is true	<u>)</u> .			
10.	The	proces	s of tra	nsfer o	f DNA	from or	ne bac	terial	cell to another bacterial cell was first observed by :
	(1)	Fred	erick C	Griffith	in Stre	ptococci	us Pne	eumor	iiae
	(2)	Lede	erberg	and Ta	tum in	E. Coli			
	(3)	Lede	erberg	and Zi	nder in	Salmon	ella T	yphin	nurium
	(4)	Jacol	b and N	Monod	in E. C	oli			
11.	Sube	erin occ	curs in	associ	ation w	vith :			
	(1)	cellu	llose in	cork c	ells of e	endoder	m	(2)	hemicellulose in cork cells of protoderm
	(3)	cellu	llose in	cork c	ells of t	he perio	lerm	(4)	pectin in cork cells of the endoderm

3TB2S 5 - A

12.	Fun	ction of the n	ucleolus is :						
	(1)	DNA syntl	nesis		(2)	ATF	P synthesis		
	(3)	t-RNA syn	thesis		(4)	Asse	embly of ribosom	es	
13.	Whi	ch of the follo	owing cell org	ganelles cont	ain deo	xy-nu	cleic acid :		
	(1)	Chloroplas	st and Mitoch	ondria					
	(2)	Golgi bodi	es and Endop	olasmic reticu	ılum				
	(3)	Mitochond	lria and Lysos	some					
	(4)	Nucleus ar	nd Lysosome						
14.	The	correct order	of sub stages	of Prophase	- I of m	eiosis	are:		
	(1)	Leptotene,	Zygotene, Di	akinesis, Dip	olotene,	Pachy	tene		
	(2)	Leptotene,	Diplotene, Z	ygotene, Pacl	hytene,	Diakir	nesis		
	(3)	Leptotene,	Zygotene, Pa	chytene, Dip	olotene,	Diakir	nesis		
	(4)	Leptotene,	Zygotene, Pa	chytene, Dia	kinesis,	Diplo	otene		
15.	Asse	ertion (A):	Cell cycle i M phases.	n eukaryotes	is divid	led into	o four overlappir	ng phases	or stages; G ₁ , S, G ₂ and
	Reas	son (R):	daughter c	ells. For this	reason,	it is im	portant that the ϵ	events of t	t equally between two he cell cycle proceed in re the next stage com-
	Cho	ose the correc	et answer :						
	(1)	Both (A) ar	nd (R) are true	e and (R) is th	ne corre	ct expl	lanation of (A).		
	(2)	Both (A) ar	nd (R) are true	e, but (R) is n	ot the co	orrect	explanation of (A	L).	
	(3)	(A) is true,	but (R) is fals	e.					
	(4)	(A) is false,	but (R) is tru	e.					
16.	DN	A replication	takes place ir	which stage	e of cell	cycle ?	?		
	(1)	G ₂ Phase	(2)	S Phase		(3)	G ₁ Phase	(4)	M Phase

3TB2S 6 - A

17.	Whi	ch of the following	g is the co	orrect stateme	nt reg	arding	the enzyme acti	vity?	
	(1)	Enzymes lower	s the acti	vation energy					
	(2)	Enzymes increa	ses the a	ctivation ener	gy				
	(3)	Enzymes do no	t change	the activation	energ	зу			
	(4)	Increase free en	ergy						
18.	Read	d the following sta	tements.						
	(a)	Plants cannot s	ynthesize	e ten essential	l amin	o acid	S.		
	(b)	Stem cells alone	e are capa	able of conver	ting to	other	cell types in anii	nal cells.	
	(c)	During cytokin	esis in pl	ants, a cell pla	ate is c	constru	icted.		
	(d)	Plasmodesmata animal cells.	n mediate	e movement o	of mole	ecules	and communica	tion signa	ls between individual
	Cho	ose the correct stat	tements.						
	(1)	(a) and (d)	(2)	(b) and (c)		(3)	(b) and (d)	(4)	(c) and (d)
19.	Whi	ch of the followin	g stateme	ent is false reg	gardin	ng prote	eins and their fu	nction ?	
	(1)	GLUT - 4 enable	es glucos	se transport in	to cel	ls			
	(2)	Collagen forms	intercell	ular ground s	ubstaı	nce			
	(3)	Trypsin is an er	nzyme						
	(4)	All proteins are	enzyme	s					
20.	Corı	rect order of layers	s (from o	uter to inner)	preser	nt in tra	nsverse section o	of gut is :	
	(1)	Muscularis, Ser	osa, Sub-	-mucosa, Muc	cosa				
	(2)	Serosa, Muscula	aris, Muc	cosa, Sub-muc	osa				
	(3)	Serosa, Muscula	aris, Sub-	-mucosa, Muc	cosa				
	(4)	Mucosa, Sub-m	ucosa, M	Iuscularis, Sei	osa				
21.	Cilia	ated epithelium is	found in	:					
	(1)	Bronchioles	(2)	Oesophagu	S	(3)	Skin	(4)	Urinary bladder
22.	Fles	hy flattened and fl	leshy cyli	indrical stem	modif	ication	s are seen respec	ctively in :	
		O	cmara <i>c</i> me	2	(2)	Asp	aragus and Eupl	norbia	
	(1)	Opuntia and A	sparagus	,	()		0 1		

3TB2S 7 - A

(1) (2) (3) (4) ——————————————————————————————————	Jasm Colc Ficu ose the (a) (iii) (i) (iv) ertion (son (R) ose the	gifera aine ocasia s correc (b) (v) (iii) (ii) (v) A):	(c) (i) (iv) (v) (i) Photodue to the answer.	(d) (iv) (i) (iii) (ii) tophospto a lightermina	ht driven ele	is the sectron to	ranspoi			inorganic phospl	
(b) (c) (d) (1) (2) (3) (4) 24. Ass Rea Cho (1) (2) (3)	Jasm Colc Ficu ose the (a) (iii) (i) (iv) ertion (son (R) ose the	casia s correct (b) (v) (iii) (v) A):	(c) (i) (iv) (v) (i) Photodue to the answer.	(ii) (iv) (v) (ver: (d) (iv) (ii) (iii) tophospt to a lightermina	Hypantho Cyathium Receme Cymule	is the sectron to	ranspoi	rt.			
(c) (d) (d) Cho (1) (2) (3) (4) (2) (3)	Cold Ficu ose the (a) (iii) (i) (iv) ertion (R) ose the	correction (b) (v) (iii) (v) A):	(c) (i) (iv) (v) (i) Photodue to the answer.	(iii) (iv) (v) ver: (d) (iv) (i) (iii) tophospto a lightermina	Cyathium Receme Cymule phorylation at driven ele	is the sectron to	ranspoi	rt.			
(d) Cho (1) (2) (3) (4) 24. Ass Rea Cho (1) (2) (3)	Ficusose the (a) (iii) (i) (iv) ertion (R) ose the	(b) (v) (iii) (v) A):	(c) (i) (iv) (v) (i) Photodue to the answer.	(iv) (v) ver: (d) (iv) (i) (iii) tophospto a lightermina	Receme Cymule phorylation at driven ele	is the sectron to	ranspoi	rt.			
(1) (2) (3) (4) 24. Ass Rea Cho (1) (2) (3)	(a) (iii) (i) (iv) ertion (son (R) ose the	(b) (v) (iii) (ii) (v) A):	(c) (i) (iv) (v) (i) Photodue to the answer.	(v) ver: (d) (iv) (i) (iii) tophospto a lightermina	Cymule phorylation ht driven ele	ectron tı	ranspoi	rt.			
(1) (2) (3) (4) 24. Ass Rea Cho (1) (2) (3)	(a) (iii) (i) (iv) ertion (son (R)	(b) (v) (iii) (v) A):	(c) (i) (iv) (v) (i) Photodue to the answer.	(d) (iv) (i) (iii) (iii) tophospto a lightermina	phorylation ht driven ele	ectron tı	ranspoi	rt.			
(1) (2) (3) (4) 24. Ass Rea Cho (1) (2) (3)	(a) (iii) (i) (iv) ertion (son (R)	(b) (v) (iii) (v) A):	(c) (i) (iv) (v) (i) Photodue to the answer.	(d) (iv) (i) (iii) (ii) tophospto a lightermina	ht driven ele	ectron tı	ranspoi	rt.			
(2) (3) (4) 24. Ass Rea Cho (1) (2) (3)	(iii) (i) (iv) ertion (son (R) ose the	(v) (iii) (v) A):	(i) (iv) (v) (i) Photodue to the set answer.	(iv) (i) (iii) (ii) tophospto a lightermina	ht driven ele	ectron tı	ranspoi	rt.			ıate
(2) (3) (4) 24. Ass Rea Cho (1) (2) (3)	(ii) (iv) ertion (son (R)	(iii) (v) A):	(iv) (v) (i) Photodue to the strength answer.	(i) (iii) (ii) tophospto a lightermina	ht driven ele	ectron tı	ranspoi	rt.			
(3) (4) 24. Ass Rea Cho (1) (2) (3)	(i) (iv) ertion (son (R)	(ii) (v) A):	(v) (i) Photodue to the total answer.	(iii) (ii) tophosp to a lightermina	ht driven ele	ectron tı	ranspoi	rt.			
(4) 24. Ass Rea Cho (1) (2) (3)	(iv) ertion (son (R) ose the	(v) A): : correct	(i) Photodue to the tanswer answer.	(ii) tophosp to a ligh	ht driven ele	ectron tı	ranspoi	rt.			
24. Ass Rea Cho (1) (2) (3)	ertion (son (R)	A): : correc	Phot due t The t	tophosi to a ligi termina	ht driven ele	ectron tı	ranspoi	rt.			
Rea Cho (1) (2) (3)	son (R)	: correc	due t The t	to a ligi	ht driven ele	ectron tı	ranspoi	rt.			ıate
(1) (2) (3)	ose the	correc	ct answ		al electron a	ccepter	in resp	oiratory electron	transport	is ovygen	
(1)(2)(3)				er:				J	г	is oxygen.	
(2)	Both	(A) an	ıd (R) a								
(3)			()	re true	and (R) is the	he corre	ect expl	anation of (A).			
	Both	(A) an	ıd (R) a	re true	, but (R) is n	ot the c	orrect e	explanation of (A	A).		
(4)	(A) i	s true, l	but (R)	is false	e.						
	(A) i	s false	but (R)	is true	!						
25. Wh	ich one	is total	l root p	arasite	2?						
(1)	Lora	nthus		(2)	Santalum		(3)	Orobanche	(4)	Viscum album	
26. Gly	colytic	reactio	n catal	yzed b	y which of t	he follo	wing e	nzyme results ir	the forma	ntion of ATP?	
(1)	Hex	okinase	e			(2)	G-3-	P dehydrogenas	e		
(3)	Phos	sphogly	ycerok	inase		(4)	Enol	lase			

3TB2S 8 - A

27.	Mat	ch the f	ollowi	ng:				
		L	ist - I					List - II
		(Cro	p varie	ty)			(Res	istance to disease)
	(a)	Whe	at (Hin	nagiri)		(i)	Bact	erial blight
	(b)	Bras	sica (P	usa sw	arnim)	(ii)	Leaf	and stripe rust
	(c)	Cow	pea (P	usa ko	mal)	(iii)	Toba	acco mosaic virus and leaf curl
	(d)	Chil	li (Pusa	a sadal	oahar)	(iv)	Whi	te rust
		(iii) (ii) (i) (iii) ertion (A): son (R): Both (A) a Both (A) a (A) is true (A) is false				(v)	Blac	k rot
	Cho	ose the	correc	t answ	er:			
		(a)	(b)	(c)	(d)			
	(1)	(ii)	(i)	(iv)	(v)			
	(2)	(ii)	(iv)	(i)	(iii)			
	(3)	(iii)	(ii)	(v)	(i)			
	(4)	(i)	(iii)	(ii)	(iv)			
28.	Asse	ertion (A):	Inact	tive Bt Prot	otoxin be	ecomes	active form of toxin in the insect gut.
	Reas	son (R)	:	Acid	ic pH of th	e Insect-	gut sol	ubilises and thus activates Bt toxin.
	Cho	ose the	correc	t answ	er:			
	(1)	Both	(A) an	d (R) a	re true and	(R) is th	e corre	ect explanation of (A).
	(2)	Both	(A) an	d (R) a	re true, but	(R) is no	t the c	orrect explanation of (A).
	(3)	(A) i	s true,	but (R)	is false.			
	(4)	(A) is	s false,	but (R) is true.			
29.					~ -	ormone	kills d	licotyledonous weeds, but does not affect mature
	(1)	Gibb	erellic	acid (C	GA ₃)		(2)	2, 4 - dichlorophenoxy acetic acid
	(3)	Ethe	phon				(4)	Cytokinin
30.	Whi	ch one	of the	followi	ing photosy	nthetic _]	pigme	nts is not an accessory pigment?
	(1)	Chlo	rophy	ll b		(2)	Xan	thophylls
	(3)	Caro	tenoid	s		(4)	Chlo	prophyll a
3TB	2S						9 -	Α

 Δ

31.	Asse	ertion (A):		immed Juard c		use of openin	ng or clo	osing of the stom	nata is a cha	nnge in the turgidity o
	Reas	son (R)	:								rientation of cellulos ening and closing.
	Cho	ose the	correc	t answ	er:						
	(1)	Both	(A) an	d (R) a	re true	and (I	R) is the corre	ect expl	anation of (A).		
	(2)	Both	(A) an	d (R) a	re true	, but (I	R) is not the c	orrect e	explanation of (A	A) .	
	(3)	(A) is	s true, l	but (R)	is false	э.					
	(4)	(A) is	s false,	but (R) is true	е.					
32.	Mate	ch the f	ollowi	 ng :							
		List ·	- I				List - II				
	(a)	epip	etalous	6		(i)	citrus				
	(b)	poly	adelph	ous		(ii)	brinjal				
	(c)		hyllou			(iii)	china rose				
	(d)		oadelp			(iv)	lily				
	,		•			(v)	pea				
	Cho	ose the	correc	t answ	er:	. ,	•				
		(a)	(b)	(c)	(d)						
	(1)	(ii)	(iv)	(i)	(iii)						
	(2)	(v)	(ii)	(iii)	(iv)						
	(3)	(iv)	(iii)	(v)	(i)						
	(4)	(ii)	(i)	(iv)	(iii)						
33.		ch one iremer		follow	ring ins	ectivo	rous plant u	se its n	nodified leaves	to trap ins	ects for their nitroge
	(1)	Cact			(2)	Acac	cia	(3)	Nerium	(4)	Dionea
34.	Mat	ch the f	ollowi	ng:							
		List ·	- I				List - II				
	(a)	Holo	zoic			(i)	Trypanason	na			
	(b)	Para	sitic			(ii)	Rhincomon	as			
	(c)	Copi	rozoic			(iii)	Amoeba				
	(d)	Holo	phytic			(iv)	Euglena				
	Cho	ose the	correc	t answ	er:						
		(a)	(b)	(c)	(d)						
	(1)	(iii)	(ii)	(i)	(iv)						
	(2)	(iv)	(ii)	(iii)	(i)						
	(3)	(ii)	(iii)	(iv)	(i)						
		(iii)	(i)	(ii)	(iv)						

3TB2S 10 - A

35.	The	events	during	eryth	rocytic	cycle c	ot plasn	nodiun	n are g	iven below			
	(a)	game	etocyte	forma	tion		(b)	ameb	oid sta	ige	(c)	trop	hozoite
	(d)	signe	et ring	stage			(e)	shizo	nt stag	ge			
	The	correct	order	of sequ	ience is	3:							
	(1)	(c) - (d) - (e)	- (b) - (a)			(2)	(d)-((c) - (e) - (a) -	(b)		
	(3)	(c) - (d) - (b)	- (e) - (a)			(4)	(a) - (b) - (c) - (e) -	(d)		
36.	Mate	ch the f	ollowi	ng :									
		List-	·I				List-	II					
	(a)	Rhiz	opodiı	ım		(i)	Difflu	ugia					
	(b)	Filop	odium	ı		(ii)	Gron	nia					
	(c)	Axoj	odiun	n		(iii)	Elph	idium					
	(d)	Lobo	podiu	m		(iv)	Actir	nophrys	S				
	Cho	ose the	correc	t answ	er:								
		(a)	(b)	(c)	(d)								
	(1)	(ii)	(iv)	(iii)	(i)								
	(2)	(ii)	(iii)	(i)	(iv)								
	(3)	(iii)	(iv)	(ii)	(i)								
	(4)	(iii)	(ii)	(iv)	(i)								
37.	How	v many	floatir	ng ribs	are fou	ınd in l	human	ı?					
	(1)	Thre	e pairs		(2)	Two	pairs		(3)	One pair		(4)	Four pairs
38.	Stud	ly the fo	ollowi	ng chai	acteris	tic feat	ures.						
	(a)	Dipl	oblasti	c body	wall			(b)	Radia	al symmetry	7		
	(c)	Coel	entero	n body	cavity			(d)	Extra	and intra c	ellular	digesti	on
	(e)	Asex	ual mo	ode of 1	eprodu	uction		(f)	Holo	blastic cleav	age		
			ooturo	s are n	resent	in the p	hylun	1 :					
	The	above i	eature	o are p									

39.	Hirudinaria (Leech) contains x pairs of testes and y pairs of nephridia.													
	(1)	x - 14	4; y - 1	9	(2)	x - 5;	y - 2		(3)	x - 11; y - 17	(4)	<i>x</i> - 10; <i>y</i> - 13		
40.	CO ₂	transp	orted	in bloo	d mair	ıly in tl	ne form	n of :						
	(1)	Diss	olved	in plas	ma			(2)	Bica	rbonate				
	(3)	Carb	onates	S				(4)	Carl	oamino Compour	nds			
41.	In aı	mnioce	ntesis	amnio	tic flui	d is col	lected	for the	diagn	osis of :				
	(1)	Vira	l infect	tion				(2)	Bact	erial infection				
	(3)	Phys	siologi	cal abn	ormali	ities		(4)	Chro	omosomal abnori	nalities			
42.	Mat	ch the f	ollow	ing:										
		List ·	- I				List	- II						
	(a)	Myo	pia			(i)	loss	of pow	er of a	ccommodation o	f lens			
	(b)	Pres	byopia	ì		(ii)	near	-sighte	edness					
	(c)	Нур	opia		(iii)	non-	unifor	m cur	vature of cornea					
	(d)	Asti	gmatis	m		(iv)	far-sightedness							
	Cho	ose the	corre	ct answ	er:									
		(a)	(b)	(c)	(d)									
	(1)	(iii)	(i)	(ii)	(iv)									
	(2)	(i)	(ii)	(iv)	(iii)									
	(3)	(ii)	(i)	(iv)	(iii)									
	(4)	(ii)	(i)	(iii)	(iv)									
43.	Pode	ocytes	are fou	ınd in :										
	(1)	Prox	imal c	onvolu	ted du	ct	(2)	Bow	man's	Capsule				
	(3)	Asce	ending	loopo	f Henle	ey	(4)	Desc	endin	g loop of Henley				

3TB2S 12 - A

44.	Match the following cell types with their corresponding secretions:											
		Cell	type				Secret	ions				
	(a)	Gobl	et cells	6		(i)	Pepsir	noger	ı			
	(b)	Chie	f cells			(ii)	HCl					
	(c)	Oxyı	ntic cel	lls		(iii)	Mucus	s				
	(d)	Beta	cells			(iv)	Insuli	n				
	Cho	ose the	correc	t answ	er:							
		(a)	(b)	(c)	(d)							
	(1)	(i)	(ii)	(iii)	(iv)							
	(2)	(iii)	(ii)	(i)	(iv)							
	(3)	(iii)	(ii)	(iv)	(i)							
	(4)	(iii)	(i)	(ii)	(iv)							
45.	The	e following national act provided legal framework on 'Induced abortion' :										
	(1)	Med	ical Te	rminat	ion of I	Foetus	Act (MT	ΓFΑ),	1990.			
	(2)	Med	ical Te	rminat	ion of l	Pregna	ncy Act	, 1964	l .			
	(3)	Med	ical Te	rminat	ion of l	Pregna	ncy Act	, 1971	l.			
	(4)	Med	ical Pr	egnanc	y Act,	1974.						
46.	Max	imum	absorp	otion of	the en	d prod	ucts of o	diges	tion oc	curs in :		
	(1)	Duo	denum	l	(2)	Stom	ach		(3)	Small Intestine	(4)	Large Intestine
47.	Each	haemo	oglobi	n mole	cule ca	n carry	a maxii	mum	of hov	v many molecules	of oxyge	en ?
	(1)	2			(2)	3			(3)	4	(4)	1
48.	The	structu	re of tl	he spor	ozoite	of plas	modium	vivax	wass	tudied by :		
	(1)		t Haec	-		•		(2)		ıham		
	(3)		onald					(4)		illo Golgi		

3TB2S 13 - A

49 .	Match the following
-------------	---------------------

List - I

(Species)

(Type of malaria)

List-II

- (a) Plasmodium vivax
 - m vivax (i) mild tertian malaria
- (b) Plasmodium falciparum
- (ii) benign tertian malaria
- (c) Plasmodium ovale
- (iii) quartan malaria
- (d) Plasmodium malariae
- (iv) malignant tertian malaria

Choose the **correct** answer:

- (a) (
 - (b)
- (c) (d)

(iii)

- (1) (i)
- (ii)
- (iv)
- (2) (ii)
- (iv)
- (i) (iii)
- (3) (iii)
- (i)
- (ii) (iv)
- (4) (iv)
- (iii)
- (i) (ii)

50. The middle ear of a human contains three ossicles called:

- (1) External auditory meatus, tymparum, cochlea
- (2) Scala vestibuli, scala media, scala tympani
- (3) Malleus, incus, stapes
- (4) Ampulla, saccule, utricle

- **51.** The lens of the eye held in position by :
 - (1) Inferior oblique muscles
- (2) Superior oblique muscles
- (3) Suspensory ligaments
- (4) Medial rectus muscles

- **52.** The following pump plays an important role in the opening and closing of stomata:
 - (1) Sodium pump

(2) Potassium pump

(3) Na^+/k^+ pump

(4) Proton pump

3TB2S

14 - A

issner's membrane silar membrane nom contains a sintegrins xic carbohydra gh in saturated uscular dystrop orexia ealth Organizat	e all the fo	n be linked t	(2)	Toxic Sarat	· ·	se						
nom contains a sintegrins xic carbohydra gh in saturated ascular dystrop orexia	all the fo	n be linked t	(2) (4) co which (2)	Toxic Sarat h of the Bulii	c proteins fotoxins following ?	se						
sintegrins xic carbohydra gh in saturated uscular dystrop orexia ealth Organiza	fats can	n be linked t	(2) (4) to which (2)	Sara h of the Bulin	fotoxins following?	se						
xic carbohydra gh in saturated uscular dystrop orexia	fats can	located in :	(4)	Sara h of the Bulin	fotoxins following?	se						
gh in saturated uscular dystrop orexia ealth Organiza	fats can	located in :	to which	h of the Bulii	following?	se						
orexia	ohy tion is l	located in :	(2)	Bulir	mia	se						
orexia ealth Organiza	tion is l					se						
ealth Organiza			(4)	Card	liovascular diseas	se						
_												
w Delhi	(2)	Geneva										
				(3)	New York	(4)	London					
"While the general type of vegetation is not related to temperature, the type of flora of a particular region is determined by it."												
is called as :												
big's law			(2)	Schi	mper's first law							
w of thermal en	nergy		(4)	Law	of sciophytes							
cosystems are c	divided	l as fresh wa	ter and	marine	ecosystems. The	lentic ecc	osystem represents the					
ean	(2)	Spring		(3)	Lake	(4)	Estuary					
	sferred			her forr	m, the amount of u	ıseful ene	ergy decreases because					
				Free-	energy							
s in the form of	f heat. [nodel	(2)									
	r energy is tran			s in the form of heat. This is known as:	s in the form of heat. This is known as:	gle - channel energy model (2) Free-energy						

3TB2S 15 - A

60.	Match the following national parks with their corresponding protected species:												
		L	ist - I					List	- II				
		Nati	onal P	arks			Prot	ected A	Animals				
	(a)	Dack	nigam I	Nation	al Park	(i)	Bird	S					
	(b)	Keol	adeo N	Vationa	al Park	(ii)	Kasl	hmir St	tag				
	(c)	Rajaj	ji Natio	onal Pa	ırk	(iii)	Asia	itic Lio	n				
	(d)	Gir F	orest l	Vation	al Park	(iv)	Asia	ın Elep	hant				
	Cho	ose the	correc	t answ	er:								
		(a)	(b)	(c)	(d)								
	(1)	(ii)	(i)	(iv)	(iii)								
	(2)	(iv)	(i)	(ii)	(iii)								
	(3)	(iii)	(ii)	(iv)	(i)								
	(4)	(ii)	(i)	(iii)	(iv)								
61.	A zone of junction or a transition area between two diverse communities where these communities integrills is known as :												
	(1)	Com	munit	y Dyna	mics		(2)	Ecot	one				
	(3)	Ecol	ogical l	Niche			(4)	Ecol	ogical Succession	n			
62.	The ansv	-	ce of g	general	proces	ss of ecologic	al succ	ession	involves the follo	owing ste	ps. Choose the correct		
	$(1) \qquad \text{Nudation} \rightarrow \text{Aggregation} \rightarrow \text{Invasion} \rightarrow \text{Ecesis} \rightarrow \text{Reaction} \rightarrow \text{Competition} \rightarrow \text{Stabilization}$												
	(2)			00	Ü				Competition → 1	-			
	(3)					_			Competition → 1				
	(4)					•			$sion \rightarrow Ecesis \rightarrow 1$				
63.	-		_	•		ue to the rel		a gas	from Union Carb	oide indu	stry which took many		
	(1)	Meth	nyl isod	yanate	9		(2)	Sulp	hur dioxide				
	(3)	Carb	on mo	noxide	2		(4)	Met	hane				
64.						ts in ponds a				excess gr	owth of algae causing		
	(1)	Ecol	ogical l	Niche			(2)	Edge	e effect				
	(3)	Eutr	ophica	tion			(4)	Ecol	ogical Successio	n			
65.	In th	e proce	ess of c	lestruc	tion of	ozone, the fo	ollowir	ng aton	n functions as a c	atalyst:			
	(1)	Oxyg	gen ato	m	(2)	Chlorine a	tom	(3)	Carbon atom	(4)	Hydrogen atom		

3TB2S 16 - A

	caus	sed due to :																			
	(1)	Cadmium	(2)	Copper		(3)	Mercury	(4)	Lead												
67.		National Forest Po he hills respectivel		88) of India h	ias reco	mmen	ded the followin	g forest co	over for the p	olains and											
	(1)	50 and 50 perce	nt		(2)	33 aı	nd 67 percent														
	(3)	30 and 70 perce	nt		(4)	40 a	nd 60 percent														
68.		enhouse effect is re to the following ga	-	le for heating	g the ea	rth's sı	urface and atmos	phere. Th	ne greenhous	se effect is											
	(1)																				
	(2)																				
	(3)	(3) Sulphur dioxide, Carbon dioxide, Nitrous oxides																			
	(4) Nitrous oxide, Methane, Sulphur oxides																				
69.	The (1)	phenomenon of m Sex index	ultiple (2)	expression of Polymorpl	_	le gene (3)	is called : Pleiotropy	(4)	Sex linked	gene											
										The blood types are inherited by the interaction of three autosomal alleles of the gene located on :											
70.	The	blood types are in	herited l	by the interac	ction of	three a	utosomal alleles	of the ger	ne located on	ı:											
70.	The (1)	blood types are in Chromosome 18		by the interac	etion of		utosomal alleles omosome 9	of the ger	ne located on	1:											
70.		V 1		by the interac		Chro		of the ger	ne located on	1:											
70.	(1) (3) Whe	Chromosome 18	3 normal v	rision (homoz	(2) (4) zygous	Chro	omosome 9 omosome 12														
	(1) (3) Whe	Chromosome 18 Chromosome 7 en a women with r	ormal v	rision (homoz arriers (heter	(2) (4) zygous	Chro Chro) marri us).	omosome 9 omosome 12 ies a colour-blind	I man. Th	ne sons and c	laughters											
	(1) (3) Whe	Chromosome 18 Chromosome 7 en a women with r	normal vers are c	rision (homoz arriers (heter lindness mar	(2) (4) zygous cozygou	Chro Chro) marri 1s).	omosome 9 omosome 12 ies a colour-blind	I man. Th	ne sons and c	laughters											
	(1) (3) Whe are r	Chromosome 18 Chromosome 7 en a women with r normal but daught carrier women for	normal vers are colour b	rision (homoz arriers (heter lindness mar ers are colou	(2) (4) zygous rozygou rries a 1 ur blind	Chro Chro marri) marri us). man wi	omosome 9 omosome 12 ies a colour-blind	I man. Th	ne sons and c	laughters be:											
	(1) (3) Whe are r If a c (1)	Chromosome 18 Chromosome 7 en a women with reportance of the carrier women for All the sons and All the daughter blind.	normal vers are colour belding the daught	rision (homoz arriers (heter lindness mar ers are colou alf of the son	(2) (4) zygous rozygou rries a r ur blind	Chro Chro marrius). man wi I. norma	omosome 9 omosome 12 ies a colour-blind	I man. Th , their offe	ne sons and o	laughters be : are colour											
	(1) (3) Whe are r If a c (1) (2)	Chromosome 18 Chromosome 7 en a women with reported but daught earrier women for All the sons and All the daughte blind. All the sons and colour blind.	normal vers are colour be daught rs and he dalf the	rision (homoz arriers (heter lindness mar ers are colou alf of the son	(2) (4) zygous rozygou rries a r ur blind as have	Chro Chro narrius). man wi l. norma	omosome 9 omosome 12 ies a colour-bline th normal vision	I man. The street of the street half other half	ne sons and o	laughters be : are colour											
	(1) (3) Whearer If a c (1) (2) (3) (4)	Chromosome 18 Chromosome 7 en a women with reported but daught earrier women for All the sons and All the daughte blind. All the sons and colour blind.	normal vers are colour be daught rs and he daught the rs are co	rision (homozarriers (heter lindness mar ers are colou alf of the son the daughters blour blind ar	(2) (4) zygous rozygou rries a r ur blind as have have r	Chro Chro Chro I marri Is). man wi I. normal normal	omosome 9 omosome 12 ies a colour-blind th normal vision I vision and the over	I man. The their offsother half	of the daug	laughters be: are colour ghters are											
71.	(1) (3) Whearer If a c (1) (2) (3) (4)	Chromosome 18 Chromosome 7 en a women with reported but daught earrier women for All the sons and All the daughte blind. All the sons and colour blind. All the daughte	normal vers are colour be daught rs and he dauf the rs are coes	rision (homozarriers (heter lindness mar ers are colou alf of the son the daughters blour blind ar	(2) (4) zygous rozygou rries a r ur blind as have have r	Chro Chro Chro) marrius). man wi I. normal ons hav	omosome 9 omosome 12 ies a colour-blind th normal vision I vision and the over	I man. The their offer the half other half	of the daug	laughters be: are colour ghters are											

3TB2S 17 - A

73.	The presence of immunogenic D antigen indicates the following condition :													
	(1)	'A' blood group	(2)	'B' blood g	group	(3)	'Rh' positive	(4)	'ABO' blood group					
74.		sickle - cell anaemia es, Hb ^A and Hb ^s fou			essive ş	genetic	blood disorder, i	s control	led by a single pair of					
	(1)	Chromosome 12			(2)	Chr	omosome 7							
	(3)	Chromosome 11			(4)	Chro	omosome 16							
75.	Iden	tify the correct seque	ence o	f DNA finge	printin	ıg:								
	(a)	Obtaining and frag	gment	ting DNA										
	(b)	Using probes to id	entify	specific DN	A									
	(c)	Separation of DNA	A frag	ments by elec	ctropho	resis								
	(d)	Hybridization wit	h prol	bes										
	(e)	Denaturing DNA	and b	lotting										
	(f)	(f) Exposure on film to make a DNA fingerprint												
	(1)	$(1) \qquad (b) \rightarrow (a) \rightarrow (c) \rightarrow (d) \rightarrow (e) \rightarrow (f) \qquad (2) \qquad (a) \rightarrow (c) \rightarrow (e) \rightarrow (b) \rightarrow (d) \rightarrow (f)$												
	(3)	$(e) \rightarrow (a) \rightarrow (b) \rightarrow ($	c) → ($d) \rightarrow (f)$	(4)	(a) –	\rightarrow (b) \rightarrow (c) \rightarrow (e) \rightarrow	\rightarrow (d) \rightarrow (f)					
76.	A base is changed by the repositioning of a hydrogen atom altering the hydrogen bonding pattern of that base, resulting in incorrect base pairing during replication is :													
	(1)	Tautomerism			(2)	Dea	mination							
	(3)	Spontaneous muta	ation		(4)	Indu	aced mutation							
77.		use of deficiency in I lts in :	Homo	gentisate 1, 2	- deoxy	ygenas	e, blocking Tyrosi	ne degra	dation occurs and this					
	(1)	Albinism			(2)	Phe	nyl Ketonuria							
	(3)	Alkaptonuria			(4)	Нур	erphenyl alanina	emia						
78.		following is an auto		recessive ge	enetic d	isorde	r results due to m	utation a	offecting a gene in the					
	(1)	Sickle-cell-anaemi	a		(2)	Haemophilia								
	(3)	Cystic fibrosis			(4)	Leul	kemia							

3TB2S

79.		essive degradation defects caused by §					of abnormal haem	oglobin	molecules, because of					
	(1)	Edwards syndro	ome	((2)	Klin	efelter's syndrome							
	(3)	Colour blindnes	SS	((4)	Thal	assemia							
80.		change in the frequ lled :	iency of	gene that occur	s me	erely by	chance and not by	selection	on in small population					
	(1)	Speciation	(2)	Genetic drift		(3)	Genetic load	(4)	Gene flow					
81.	Diffe	erent structures ev	olving f	or the same fund	ction	n and h	ence having simila	rity is k	known as :					
	(1)	Biological Evolu	ıtion	((2)	Con								
	(3)	Divergent Evolu	ition	((4)	Ada	ptive Radiation							
82.		Living organisms evolved gradually through evolution involving two mechanisms i.e. Principle of use and disuse and Inheritance of acquired characters. This theory is known as:												
	(1)	Biogenesis	(2)	Neo Darwinis	sm	(3)	Darwinism	(4)	Lamarckism					
83.	The golden age of reptiles in the geological time scale is:													
	(1)	Coenozoic era	(2)	Palaeozoic er	a	(3)	Mesozoic era	(4)	Precambrian era					
84.	Sudden appearance of some vestigial organs in a better developed condition is called :													
	(1)	Analogous orga	ns	((2)	Con	necting link							
	(3)	Atavism		((4)	Hon	nologous organs							
85.	In th	e Natural selection	n, surviv	al of the fittest _l	pher	nomen	on is coined by the	followi	ng scientist :					
	(1)	Herbert Spencer		((2)	Alfre	ed Russel Wallace							
	(3)	Darwin		((4)	Lam	arck							
86.	Read	d the following sta	tements	:										
	(a)	They occur from	time to	time in naturall	y br	eeding	populations							
	(b)	They are discon	tinuous	and are not accu	umu	lated o	over generations							
	(c)	They are full fle	dged an	d so there are no	inte	ermedi	ate forms							
	(d)	They are subject	ed to na	tural selection										
	Whi	ch one of the follow	wing the	ories is better ex	kplai	ined by	the salient feature	s given	above?					
	(1)	Theory of Heric	lily	((2)	Mut	ation Theory							
	(3)	Darwin's Theor	y	((4)	Lam	arck's Theory							

3TB2S 19 - A

87.	generation under certain set conditions, is called:													
	(1)	Natu	ıral sel	ection			(2)	Gen	e flow					
	(3)	Haro	dy - Wε	einberg	equili	brium	(4)	Gen	etic load	I				
88.	The	existen	ice of d	leleteri	ous ge	nes wit	thin the popu	ılation	is called	 1 :				
	(1)	Gene	e muta	tion		(2)	Genetic Dri	ift	(3)	Genetic Load	(4)	Gene Flow		
89.	Mate	ch the f	ollowi	ng:										
		List ·	- I				List - II							
	(a)	anag	genesis			(i)	habitat, cap	If speciation takes place in the organisms which live in the san habitat, capable of interbreeding, but do not interbreed due to son isolation mechanism						
	(b)	clad	ogenes	sis		(ii)	If speciatio	n take	s place o	lue to geographi	cal isola	tion		
	(c)	allop	oatric s	peciat	ion	(iii)	Evolution of	of a ne	w specie	es in a single line	age			
	(d)	(d) sympatric speciation Choose the correct answer:					If one speci	es div	erges to	become two or m	ore spec	ries		
	Cho													
		(a)	(b)	(c)	(d)									
	(1)	(i)	(ii)	(iv)	(iii)									
	(2)	(iii)	(iv)	(ii)	(i)									
	(3)	(ii)	(iii)	(i)	(iv)									
	(4)	(iv)	(i)	(ii)	(iii)									
90.	Iden	tify the	corre	ct sequ	ence of	the sta	nges of huma	n evol	ution:					
	(1)	•	opitheo nosapie		Austra	lopithe	ecus → Homo	ohabili	is → Ho	moerectus → Ho	monear	derthalensis $ ightarrow$		
	(2)		nohabi nosapie		Oryopit	thicus ·	→ Homonea	ndertl	nalensis	→ Australopithe	ecus → l	Homohabilis →		
	(3)		nonean nosapie		alensis	s → Dry	yopithecus –	→ Aust	ralopith	ecus → Homoere	ectus → l	Homohabilis →		
	(4)		tralopi 10sapie		→ Dry	opithi	cus → Homo	erectu	ıs → Ho	omohabilis → Ho	monean	derthalensis $ ightarrow$		

3TB2S 20 - A

91.	The aim of breeding animals is for the following desirable qualities													
	(a)	Incre	ease in	the qu	ality a	nd quantity of	f milk,	meat,	wool etc					
	(b)	To h	ave ne	w tech	nologi	es								
	(c)	Enha	anced j	produc	tive lif	e by improvir	ng the	genetic	merit of livestoc	k				
	(d)	For §	good m	nanagei	ment o	f livestock								
	The	correct	t answ	er is :										
	(1)	(a) a	nd (b)		(2)	(c) and (d)		(3)	(a) and (c)	(4)	(b) and (d)			
92.	Bird	flu dis	sease is	cause	d by:									
	(1)	H_5N	I_1		(2)	H_2N_1		(3)	N_1H_3	(4)	N_1H_4			
93.	The	vaccin	es agai	inst Di _l	phther	ia and tetanu	s are :							
	(1)	Atte	nuated	d whole	e agent	vaccines	(2)	Serum vaccines						
	(3)	Inac	tivated	l whole	e agent	vaccines	(4)	Toxo	oids					
94.	The	first cli	inical g	gene the	erapy	was given in 1	1990 to	a four	year girl with th	ne followii	ng deficiency :			
	(1)	Pher	nylalar	nine hy	droxy	lase	(2)	Ade	nosine deaminas	se				
	(3) Homogentisate - 1, 2 - dioxygenase						(4)	Tyro	osine - 3 - mono o	xygenase				
95.	Pap Smear test is done to detect the follow						g cano	er:						
	(1)	Pros	tate ca	ncer			(2)	Bloo	d cancer					
	(3)	Cerv	vical ca	ncer			(4)	Brea	st cancer					
96.	Mat	ch the f	followi	ing:										
		List	- I			List - II								
	(a)	Totij	potent		(i)	differentiat	te into	nearly	all types of cells					
	(b)	Plur	ipoten	t	(ii)	can produc	e only	one ce	ll type, their owi	n				
	(c)	Mul	tipoten	ıt	(iii)	construct a	comp	lete via	ble organism					
	(d)	Unip	otent		(iv)	can differer cells	ntiate i	nto a ni	umber of types o	f cells of cl	osely related family of			
	Cho	ose the	correc	ct answ	er:									
		(a)	(b)	(c)	(d)									
	(1)	(iv)	(ii)	(iii)	(i)									
	(2)	(i)	(iv)	(ii)	(iii)									
	(3)	(iii)	(i)	(iv)	(ii)									
	(4)	(ii)	(i)	(iii)	(iii) (iv)									

3TB2S 21 - A

Th	he fi	rst tra	nsgeni	ic Cow	, Rosie	produced the fo	llov	wing:			
(1))	Hum	an alp	ha - la	ctalbu	min (2	2)	Insulin - like growth factor			
(3))	α - 1	- antitr	ypsin		(4	l)	Insulin			
En	nzyr	me - L	inked l	 Immur	nosorbe	ent Assay (ELISA	A) is	a biochemical procedure to detect :			
(1))	Cano	er			(2	2)	Genes			
(3))	Antil	oodies			(4	ł)	Blood groups			
Mi	latcl	n the f	ollowi	ng:							
		List -	I			List - II					
(a))	MRI			(i)	Is a non invasiv	ve p	procedure for recording electrical changes in the heart.			
(b))	ECG			(ii)	A process of probject.	rod	ucing a two dimensional slice through a 3 - dimension			
(c))	EEG			(iii)	Uses Magnetis body compone		Radio waves and a Computer to produce images of .			
(d)	l)	CT S	Scan		(iv)	A process of re	cor	ding the electrical activity of the brain.			
Ch	Choose the correct answer:										
		(a)	(b)	(c)	(d)						
(1))	(i)	(iii)	(iv)	(ii)						
(2))	(iv)	(ii)	(iii)	(i)						
(3))	(iii)	(i)	(iv)	(ii)						
(4))	(ii)	(iv)	(i)	(iii)						
0. Th	he fo	ollowi	ng Ho	ney be	es are v	widely used in be	ee k	eeping in India :			
(1))	Musc	a dome	stica		(2	(2) Blatta orientalis				
(3))	Apis	cerana	indica		(4	ł)	Prolixus Rhodnius			
(1))	Musc	c	dome	ng Honey be a domestica erana indica	a domestica	a domestica (2	()			

-0Oo-

3TB2S

AA

SPACE FOR ROUGH WORK

3TB2S 23 - A

AA

SPACE FOR ROUGH WORK

3TB2S 24 - A