Seat No._____

SUE	B: ENVIRC	DNMENTAL ENGINEERING (EN)		
				Time: 1 Hour 30 minutes
Inst	1. Ei 2. U 3. Cl 4. Tl 5. U	nsure that all pages are printed. se Black ball pen only hange in option is not allowed here is no negative marking se of non -programmable scient	fic calculator is	s allowed
1.	Value	e of 40 JTU is approximately	equal to 40 N	TU when standard used is
	A C	Formazin Pt-Co	B D	Silica Bentonite
2.	Pure	water dissociates to yield a so	lution having	OH ion concentration of
	A C	10 ⁻⁵ mol/L 10 ⁻⁸ mol/L	B D	10 ⁻⁷ mol/L 10 ⁻¹⁴ mol/L
3.	For m	noderately hard water, hardne	ss is in the ra	nge of
	A C	25-50 mg/L 75-150 mg/L	B D	50-75 mg/L 150-200 mg/L
4.	What and m	is total hardness of water in n nagnesium zero mg/L	ng/L as CaC(D ₃ in a sample having calcium 40 mg/L
	А	80	В	100
-	С	200	D	92.2
5.	End p	point for Total acidity in given	n sample of w	rater occurs at pH?
	А	2.3	В	4.5
	С	7.5	D	8.3
6.	What	is total alkalinity of water in	mg/L as CaC	O_3 in a sample of 50 ml having O_3 sulfuric acid till and point?
	A	100	B	125
	C	200	D	250
7.	How	much N/1 acid should be dilu	ted to 1000 n	nl to get N/50 acid
	А	20 ml	В	40 ml
	С	50 ml	D	100 ml
8.	Solub	ility of atmospheric oxygen a	at 35°C in free	sh water is around?
	А	4.0 mg/L	В	7.0 mg/L
	С	10.0 mg/L	D	14 mg/L
9.	Teeth	problems are very rare when	fluoride con	centration is
	А	Greater than 1.5 mg/l	В	Lesser than 0.5 mg/l

D

Zero

С

Between 1.0- 1.5 mg/l

10.	Methemoglobinemia disease is caused in infants by			
	А	Chloride	В	Sulfur
	С	Nitrate	D	Fluoride
11.	Theoreti	cal Oxygen Demand of a glucos	e solution	of 900 mg/l is
	А	900 mg/l	В	960 mg/l
	C	1020 mg/l	D	1180 mg/l
12	When w	hite precipitate is formed after a	ddition of	$MnSO_4$ and alkali-jodide reagent in
12.	DO test,	it indicates	uunnon or	initio of and antal found fougent in
	A	Absence of oxygen	В	Presence of excess oxygen
	С	Presence of Nitrogen	D	None of these
13.	1 gram o	of molecular weight dissolved in	1 liter of v	water is called
	А	Molar solution	В	Molal solution
	С	Normal solution	D	None of these
14.	Size of I	Dissolved Particles comes in the	range	
	Δ	$10^{-1} \mu^{m}$ to $10^{-3} \mu^{m}$	B	$10^{-3} \mu^{m}$ to $10^{-5} \mu^{m}$
	C C	$1^{\mu m}$ to 100 $^{\mu m}$	D	$10^{\mu m}$ to $10^{-1} \mu m$
15	C Tree sys	tem of water distribution system	is also cal	led
101			-	
	A	Dead end system	В	Grid Iron system
16	C	Radial system	D	Ring system
16.	How ma	ny moles are found in 10 kg CH	4	
	А	160	В	525
	С	625	D	1250
17.	Capacity	of ESR in water supply scheme	e design is	calculated by
	А	Mass curve method	В	Hardy cross method
	С	Simplex method	D	None of these
18.	Water be	oils at room temperature if press	ure above	it is reduced to
	А	0.4 psia	В	0.6 psia
	С	0.8 psia	D	None of these
19.	Decomp	osition of radioactive element is	simplest e	example of
	А	First order reaction	В	Second order reaction
	C	Zero order reaction	D	None of these
20.	Minimu	m self-cleansing velocity to be n	naintained	in sewer is
	٨	0.45 m/saa	D	1.0 m/saa
	A C	0.43 m/sec	D D	1.0 m/sec
21	Crown o	1.J III/SCU	U vidation o	2.0 m/sec f
<u>~1.</u>	CIUWIIC	onosion in sewer is caused by 0	Aluanon 0.	L
	A	CH ₄	В	CUS
	С	H_2S	D	None of these

22.	Coliforn	n bacteria are determined by		
23	A C Shana a	MPN test DO test	B D	Jar test None of these
23.	Shape, s			changes in the process of
	A C	Discrete settling	B	Flocculant settling
24.	As per in	norganic chemistry, maximum o	vidation st	ates of nitrogen can be
	A	2	D	Λ
	A C	5	D D	4 7
25.	Mostly ı	used coagulant in India is	D	,
	А	Copperas	В	Alum
	С	Sodium Aluminate	D	Chlorinated copperas
26.	For colle	oidal particles, energy barrier in	coagulatio	n mechanism is removed by
	А	Vaan der waal force	В	Brownian motion
	С	Electrical charge	D	Water hydration
27.	Settling	velocity in primary settling tank	depends o	n
	А	Length of tank	В	Width of tank
	С	Depth of tank	D	Length and Width of tank
28.	Value of	f velocity gradient(G) taken for t	he design	of blades of flocculator is
	А	30-60/s	В	100-150/s
	С	200-400/s	D	400-600/s
29.	What va	lue of velocity gradient shown b	elow can b	be taken for design of flash mixer
	А	50/s	В	100/s
• •	C	200/s	D	600/s
30.	Surface	overflow rate(m ³ /m ² /d) for Seco	ndary sedi	mentation tank is in the range
	А	25-50	В	100-150
	C	200-250	D	250-300
31.	Back wa	ashing is generally used in		
	А	Slow sand filter	В	Rapid sand filter
	C	Pressure filter	D	None of these
32.	What is $880 \text{ m}^3/\text{l}$	weir loading for a tank of diame	ter of 28 n	n and flow rate entering to tank of
	A	$240 \text{ m}^3/\text{m/d}$	В	$340 \text{ m}^{3}/\text{m/d}$
	С	$440 \text{ m}^{3}/\text{m/d}$	D	$540 \text{ m}^{3}/\text{m/d}$
33.	What is	diameter of sewer if hydraulic m	nean depth	is 0.15 m
	А	0.3 m	В	0.45 m
	С	0.6 m	D	0.75 m

34.	What is approximate value of effective size of sand used for slow sand filter			
	А	0.2-0.4 mm	В	0.5-0.6 mm
	С	0.6-0.8 mm	D	1-2 mm
35.	To prote	ct contamination in the distributi	on system	, the chemical used is
	А	Ozone	В	Chlorine
	С	Lime	D	None of these
36.	The mos	t widely used adsorbent in Indi	a is	
	А	Silica	В	Activated carbon
	С	Alumina	D	Lime
37.	What is t	the approximate velocity to be m	aintained	in horizontal flow in PST
	А	0.1 m/min	В	0.3 m/min
	С	0.6 m/min	D	1 m/min
38.	Which m	nethod is not used for reducing T	DS in soft	ening process is
	А	Reverse osmosis	В	Electrodialysis
	С	Lime -Soda method	D	None of these
39.	In the de around	termination of BOD for 5 days,	oxidation	of organic matter completed is
	А	30-40%	В	60-70%
	С	75-85%	D	85-95%
40.	Trunk se	wer is also called as		
	А	Main sewer	В	Lateral sewer
	С	Outfall sewer	D	None of these
41.	Basic and	d main important characteristic o	of dairy wa	stewater is
	А	High BOD	В	High COD
	С	Acidic pH	D	High Ph
42.	Process i	nvolved to mix two different pH	streams o	f wastewater is
	А	Flow control	В	Flow neutralization
	С	Flow adjustment	D	Flow equalization
43.	Domestic	c wastewater is directly discharg	ed into the	water body if dilution factor is
	А	Less than150	В	Between 150 to 300
	С	Between 300 to 500	D	Above 500
44.	The unit,	, in which the Velocity control de	evice is pr	ovided is
	А	Screen	В	Grit chamber
	С	Primary settling tank	D	Secondary settling tank
45.	Toleranc	e limit of TSS for sewage efflue	nt discharg	ged into surface water source is
	А	30 mg/l	В	100 mg/l
	С	200 mg/l	D	None of these

46.	Recirculation factor(F) for wastewater for R/I of 1.4 for trickling filter is			
	А	2.85	В	2.4
	С	0.85	D	1.85
47.	Range of	f value of MCRT for convention	al Activate	ed sludge process is
	А	5-15 d	В	15-25 d
	С	25-35 d	D	20-30 d
48.	What is 1	HRT for ASP, when the inflow i	s 30 MLD	and volume of 5000 m^3
	А	2.5 hrs	В	4 hrs
	С	6 hrs	D	12 hrs
49.	For DW	W, percentage of CH ₄ generated	from solid	ls of sludge digestion tank is
	А	30-40%	В	40-50%
	С	60-70%	D	80-90%
50.	Lowest I	BOD/COD ratio is generally four	nd in	
	А	Dairy wastewater	В	Tannery wastewater
	С	Distillery wastewater	D	Paper and pulp wastewater
51.	"Black li	quor" is generated in the process	s of digesti	ion in the
	А	Dairy wastewater	В	Tannery wastewater
	С	Textile wastewater	D	Paper and pulp wastewater
52.	What is 1	BOD of sample if 5 ml of sample	e is diluted	to 500 ml and loss of DO during
		$\frac{30 \text{ mg/l}}{100000000000000000000000000000000000$	D	100 mg/l
	A C	200 mg/l	D	250 mg/l
53.	What is t	the percentage contribution of C	O_2 in gree	nhouse effect in troposphere?
	Δ	20%	B	30%
	л С	50%	ם	70%
54	Depletio	30%	ש nainly cau	row
54.	Depictio		nanny cau	
	A	Aerometric compounds	В	PAN
~ ~	C	Chlorofluorocarbons	D	Nitrogenous compounds
55.	Dobson	unit is used to measure		
	А	O ₃	В	SOx
	С	NOx	D	CO_2
56.	PAN is a	ir pollutant, which is in the cate	gory of	
	А	Primary air pollutant	В	Secondary air pollutant
	С	Stationary air pollutants	D	None of these
57.	Oxygen	carrying capacity of blood is red	uced by w	hich air pollutant
	А	СО	В	CO ₂
	С	SO _x	D	O ₃
		<u>~</u>		-

Page 5 of 10

https://www.freshersnow.com/previous-year-question-papers/

58.	. Which air pollutant has no contribution in Global warming			
59.	A C When m	CH_4 H_2S list is dense enough to obscure v	B D ision it is	CO ₂ O ₃
60.	A C In air po	Dense mist Fume Illution the meaning of "soot" is	B D as	Fog Smoke
61.	A C Air pollu	Release of carbon particles after incomplete combustion Release of SOx and NOx from exhaust of vehicles utant causing yellowish pattern i	B D n plant lea	Release of carbon particles after complete combustion Release of SOx and NOx from exhaust of vehicles ves is called
62.	A C Arsines	Necrosis Abscission pollutants can cause	B D	Chlorosis Epinasty
63.	A C Particula	Damages to Kidney Asthma ates as well as gaseous pollutant	B D s are simul	Nausea Eye irritation taneously removed by
64.	A C As per a	Scrubbers Cyclone separators mbient air quality standards SO	B D 2 concentra	Fabric filters Gravity settlers tion in 24 hrs in air is
65.	A C Carbon	40 μg/m ³ 80 μg/m ³ monoxide concentration in 8 hrs	B D in atmosp	60 μg/m ³ 120 μg/m ³ here, as per ambient air quality is
66.	A C How ma	$2 \mu g/m^3$ 20 $\mu g/m^3$ my times more reactive is CO co	B D ompared to	$10 \ \mu g/m^{3}$ 30 \ \mu g/m^{3} O ₂ with hemoglobin
67.	A C Metal us	50 150 sed as catalyst along with Plating	B D um to preve	100 200 ent lead poisoning in exhaust of cars
60	A C	Copper Bronze	B D	Gold Palladium
68.	Low inte A C	dBA dBC	cales as B D	dBB dB
69.	Noise le A C	vel for rail traffic is around 50-60 dB 90-110 dB	B D	70-80 dB 120-150 dB

ΕN

Page 6 of 10

https://www.freshersnow.com/previous-year-question-papers/

70.	. What is the limit of sound level in Industrial area as per ambient noise standards			
	А	45-55 dB	В	65-75 dB
	С	95-105 dB	D	105-120 dB
71.	What is t	the range of moisture content du	ring the co	omposting process
	А	10-20%	В	30-40%
	С	50-60%	D	70-80%
72.	Waste m	inimization, resource conservati	on and rec	overy of by product is a major goal
	of			
	А	EIA	В	EPA
	С	CPCB	D	WHO
73.	For any p	project EIS report is prepared for	r	
	А	Feedback of people	В	Approval or rejection of project
	С	Sustainable development	D	None of these
74.	In which	method of the following, there	is sludge g	generation problem
	А	Reverse osmosis	В	Electrodialysis
	С	Lime -Soda method	D	None of these
75.	Main cau	use of rising sludge in ASP is		
	А	Nitrification	В	Denitrification
	С	Acidification	D	Neutralization
76.	Detention	n time for high rate digestion pro	ocess is are	ound
	А	15 d	В	30 d
	С	45 d	D	60 d
77.	Well des	igned and operated sludge thick	eners shou	ld at least reduce sludge volume by
	А	10%	В	20%
	С	30%	D	50%
78.	Typical I	Indian solid waste has calorific v	value which	h is in the range of
	А	500-800 kcal/kg	В	800-1000 kcal/kg
	С	1200-1800 kcal/kg	D	2000-2500 kcal/kg
79.	Complete	e destruction of pathogens from	solid wast	e is achieved in the process of
	А	Incineration	В	Open window Composting
	С	Land filling	D	Mechanical composting
80.	Which of	f these solid waste disposal tech	nologies is	Environmental friendly?
	А	Mechanical composting	В	Incineration
	С	Plasma Pyrolysis	D	Sanitary land filling
81.	Laplace '	Transform is a		
	A	Linear transform	В	Binomial transform
	С	Canonical transform	D	None of these

82. The Particular Integral of $(D^2 + D - 2)y = e^x$

A	$\frac{xe^2}{3}$	В	$\frac{xe^2}{4}$
С	$\frac{xe^2}{5}$	D	$\frac{xe^2}{6}$

83. Tickets numbered 1 to 20 are mixed up and then a ticket is drawn at random. What is the probability that the ticket drawn has a number which is a multiple of 3 or 5?

	А	$\frac{1}{2}$	В	$\frac{2}{5}$
	С	$\frac{8}{15}$	D	$\frac{9}{20}$
84.	If $f(x)$	$=x\left[\sqrt{x}-\sqrt{x+1}\right]$ then		
	А	f(x) is continuous but not differentiable at x=0.	В	f(x) is differentiable at x=0
	С	f(x) is not differentiable at x=0	D	None of these
85.	If $f(x)$	$f(x) = \begin{cases} 1, & x < 0\\ 1 + \sin x, 0 \le x \le \pi/2 \end{cases}$ then	at x=0, the	derivative $f'(x)$ is.
	А	1	В	0
	С	Infinite	D	does not exist
86.	Which o	f the following substitution redu	uce the diff	erential equation
	$\frac{dz}{dx} + \frac{z}{x} \log \frac{z}{x}$	$\log z = \frac{z}{x^2} (\log z)^2$ in to the form	$\frac{du}{dx} + P(x)u$	u = Q(x)?
	А	$u = \log z$	В	$u = e^{z}$
	С	$u = (\log z)^{-1}$	D	$u = (\log z)^2$
87.	Which of derivativ	of the following could represent yes? $f_x(x, y, z) = 3xy(xy+2), f_y$	nt a function $(x, y, z) = x^2$	ion, $f(x, y)$, with first-order partial $(2xy+3)$

А	$f = x^2 y (xy+3) - 6$	В	$f = xy\left(x^2y + 3\right)$
С	$f = x^3 y^2 + 2x^2 y^3 + 1$	D	None of these

Page 8 of 10

https://www.freshersnow.com/previous-year-question-papers/

ΕN

88.	The fixed point of the transformation $W = Z^2$ are				
	А	0,1	В	0,-1	
	С	-1,1	D	<i>i.</i> - <i>i</i>	
89.	Followin	g are the values of a function y	(x): y(-1)	$=5, y(0), y(1)=8$ $\frac{dy}{dt}$ at $x=0$ as	
	per New	ton's central difference scheme	is		
	А	0	В	1.5	
	С	2.0	D	3.0	
90.	$L(t^2 \sin(t^2))$	(2t)).			
	А	$12s^2 - 16$	В	$3s^2 - 4$	
		$\overline{\left(s^2+4\right)^4}$		$\overline{\left(s^2+4\right)^3}$	
	С	$12s^2 - 16$	D	$12s^2 - 16$	
		$\overline{\left(s^2+4 ight)^6}$		$\overline{\left(s^2+4 ight)^3}$	
91.	To solve	$(D^2 + 16)y = tan 4x$ by Varia	ation of pa	rameter, then wronskian W is :	
	А	4	В	3	
	С	2	D	None of these	
92.	If $f(x, y)$	$(x, z) = x^2 + y^2 + z - 9 = 0$ the	n the tange	ent plane at the point $P_0(1,2,4)$ is	
	А	2x + 4y + z = 14	В	2x - 4y + z = 14	
	С	2x + 4y - z = 14	D	2x + 2y + z = 14	
93.	The gene	eral solution of $(x+1)^2 y'' + (x+1)^2 y' + (x+1$	(+1)y'+y	v = 0 is :	
	Α	C1 Cosx + C2 Sinx	В	C1 Cos(lnx) + C2 Sin(lnx)	
	С	$(\mathbf{C}_1 + \mathbf{C}_2 \mathbf{x})\mathbf{e}^{\mathbf{x}}$	D	None of these	
94.	A Partial	differential equation has.			
	А	One indepdent variable	В	Two or more indepdent variables	
	С	More than one dependent variable	D	Equal number of dependent and independent variables.	
95.	The parti	al differential equation $5\frac{\partial^2 u}{\partial x^2} + 6$	$6\frac{\partial^2 u}{\partial v^2} = xy$	is classified as	
	А	elliptic	B	Parabolic	
	С	hyperbolic	D	None of the above.	
96.	The root method i	of $x^3 - 2x - 5 = 0$ correct to the s.	ee decima	l places by using Newton-Raphson	
	А	2.0946	В	1.0404	
	С	1.7321	D	0.701.	

ΕN

Page 9 of 10

https://www.freshersnow.com/previous-year-question-papers/

97.	Find the equations of normal line to the surface $x^2 + 2y^2 + z = 3$ at point (2,1,-3)			
	А	$\frac{x-2}{z-1} = -\frac{y-1}{z-1} = \frac{z+3}{z-1}$	В	$\frac{x-2}{z+3} = \frac{y-1}{z+3} = \frac{z+3}{z+3}$
	C	$\frac{4}{x-2} = \frac{y-1}{1} = \frac{z+3}{2}$	D	$\frac{8}{4} = \frac{1}{4} = \frac{1}{2} = \frac{1}{2}$
98.	The gene	eral solution of $(x^2D^2 - 3xD^2)$	+4)y=0	is :
	А	$C_1 e^{2X} + C_2 e^{-2x}$	В	$(\mathbf{C}_1 + \mathbf{C}_2 \mathbf{x}) \mathbf{e}^{2\mathbf{x}}$
	С	$(\mathbf{C}_1 + \mathbf{C}_2 \ln \mathbf{x})\mathbf{x}^2$	D	None of these
99.	Number values is	of observations are 30 and va	lue of arith	nmetic mean is 15 then sum of all
	А	15	В	450

C 200 D 45

100. In which of the following methods, proper choice of initial value is very important?

А	Bisection method	В	False position
С	Newton-Raphson	D	Bairsto method