CIL	37		
Sl.	N .	0	
O1.	7.1	v.	

			IU
Register Number			

2019

CIVIL ENGINEERING (Diploma Std.)

Time Allowed: 3 Hoursl

[Maximum Marks: 300

DCE/19

Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

- 1. The applicant will be supplied with Question Booklet 15 minutes before commencement of the examination.
- 2. This Question Booklet contains 200 questions. Prior to attempting to answer, the candidates are requested to check whether all the questions are there in series and ensure there are no blank pages in the question booklet. In case any defect in the Question Paper is noticed, it shall be reported to the Invigilator within first 10 minutes and get it replaced with a complete Question Booklet. If any defect is noticed in the Question Booklet after the commencement of examination, it will not be replaced.
- Answer all questions. All questions carry equal marks.
- 4. You must write your Register Number in the space provided on the top right side of this page. Do not write anything else on the Question Booklet.
- 5. An answer sheet will be supplied to you, separately by the Room Invigilator to mark the answers.
- 6. You will also encode your Question Booklet Number with Blue or Black ink Ball point pen in the space provided on the side 2 of the Answer Sheet. If you do not encode properly or fail to encode the above information, action will be taken as per Commission's notification.
- 7. Each question comprises four responses (A), (B), (C) and (D). You are to select ONLY ONE correct response and mark in your Answer Sheet. In case you feel that there are more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each question. Your total marks will depend on the number of correct responses marked by you in the Answer Sheet.
- 8. In the Answer Sheet there are four circles (A), (B), (C) and (D) against each question. To answer the questions you are to mark with Blue or Black ink Ball point pen ONLY ONE circle of your choice for each question. Select one response for each question in the Question Booklet and mark in the Answer Sheet. If you mark more than one answer for one question, the answer will be treated as wrong. e.g. If for any item, (B) is the correct answer, you have to mark as follows:
 - $A \odot C \odot$
- 9. You should not remove or tear off any sheet from this Question Booklet. You are not allowed to take this Question Booklet and the Answer Sheet out of the Examination Hall during the time of examination. After the examination is concluded, you must hand over your Answer Sheet to the Invigilator. You are allowed to take the Question Booklet with you only after the Examination is over.
- 10. Do not make any marking in the question booklet except in the sheet before the last page of the question booklet, which can be used for rough work. This should be strictly adhered.
- 11. Applicants have to write and shade the total number of answer fields left blank on the boxes provided at side 2 of OMR Answer Sheet. An extra time of 5 minutes will be given to specify the number of answer fields left blank.
- 12. Failure to comply with any of the above instructions will render you liable to such action or penalty as the Commission may decide at their discretion.

SEAL

20003881

- 1. In a cantilever with uniformly distributed load, the variation of a bending moment is according to
 - (A) Linear Law

Parabolic Law

(C) Cubic Law

- Horizontal Law
- 2. In which of the following beams, the supports are not situated at the ends
 - (A) Cantilever beam

Simply supported beam

Overhanging beam

- (D) Fixed beam
- The Modulus of rigidity is given by the relation 3.

(B) $C = \frac{\sigma_n}{e_v}$

(C) $C = \frac{\sigma}{\varrho}$

- (D) $C = \frac{\tau}{e}$
- 4. The value of shear force at A for a simply supported beam AB of span 10 m with point load 25 kN at centre of span is
 - (A) 25 kN

(B) 50 kN

12.5 kN

- 2.5 kN(D)
- 5. If l and δl are the length and change in length respectively, the strain is equal to

(B) $\frac{l}{\delta l}$

 $l \times \delta l$

- (D) $l^2 \times \delta l$
- 6. A perfect frame should satisfy the relation

$$m = 2j - 3$$

(B)
$$m = 2j - 4$$

(C) m = 3j - 2

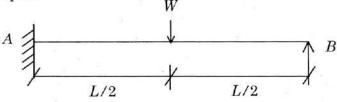
(D) m = 3j - 3

- 7. The property of certain materials of returning back completely to its original shape and size, after the removal of external forces, then it is said to be
 - (A) Perfectly Plastic

(P) Perfectly Elastic

(C) Partially Plastic

- (D) Partially Elastic
- 8. The deflection at the free end of a cantilever of length (*l*) carrying a point load (*W*) at its free end is given as


(B) $\frac{Wl}{2El}$

(C) $\frac{Wl^2}{2EI}$

- (D) $\frac{Wl^3}{2EI}$
- 9. Algebraic sum of the moments of the forces, to the right (or) left of the beam section is known as
 - (A) Bending moment

- (B) Shear force
- (C) Uniformly distributed load
- (D) Point load
- 10. The difference between number of unknown reaction components and the number of available equilibrium equations is
 - (A) degree of freedom

- (B) degree of determinacy
- degree of indeterminacy
- (D) degree of displacement
- 11. What is the prop reaction value at 'B' of the following cantilever beam subjected to a point load 'W' at Mid Span?

(B) $\frac{11}{16}W$

(C) $\frac{5}{8}W$

(D) $\frac{3}{8}W$

- 12. A column of length is one end fixed and other pin jointed. Its equivalent length will be equal to
 - (A) 2l

(B) 1

(C) 0.5l

- 0.7071
- 13. The surveys are to fix the boundaries of municipalities are
 - Cadastral surveys

(B) City surveying

(C) Engineering surveys

- (D) Military surveys
- 14. What is the critical load (P) value of a column with one end fixed and other end hinged?
 - (A) $P = \frac{\pi^2 EI}{L^2}$

(B) $P = \frac{4\pi^2 EI}{L^2}$

 $P = \frac{2\pi^2 EI}{L^2}$

- (D) $P = \frac{\pi^2 EI}{4I^2}$
- 15. A propped cantilever beam of span 'l' propped at free end is subjected to UDL of w/m run over its entire length then in bending moment diagram, the point of contra flexure occur at a distance of
 - (A) $\frac{2l}{4}$ from propped end

 $\frac{3l}{4}$ from propped end

(C) $\frac{l}{4}$ from propped end

- (D) $\frac{l}{2}$ from propped end
- 16. A cantilever beam subjected to uniformly distributed load over its entire span then the maximum deflection occurs at
 - (A) fixed end

free end

(C) middle of span

(D) at $\frac{1}{3}$ from free end

L7.	Seaso	oning of timber is required to		
	(A)	soften the timber	(B)	harden the timber
	(C)	straighten the timber	9	remove sap from the timber
18.	The f	formation of dull patches occurs on t	he finishe	ed polished surface. It is called
	A	Bloom	(B)	Blisting
ď	(C)	Flashing	(D)	Wrinkling
19.	Due	to uneven shrinkage, wood sometim	es flatten	s during drying this is known as
	(A)	Check	(B)	Cup
	(0)	Collapse	(D)	Split
	3	Conapse	(2)	-
00	mı	01: 1: 1:01 1: 0:	1. 4	1
20.	The	thin radial fibres extending from pit	n to cami	olum layer are known as
	A	Medullary rays	(B)	Medulla
	(C)	Alburnum	(D)	Heart wood
21.	For	marine work, the best suited cement	is	
	(A)	Low heat portland cement	(B)	Rapid hardening cement
	(C)	Ordinary portland cement		Blast furnace slag cement
22.	The	proper size of mould for testing com	pressive	strength of cement is
	(A)	7.06 cm	(B)	10.05 cm
	(C)	15 cm	(D)	12.05 cm
1		200		
23.	In n	paint linseed oil is used as		
ພບ.	(A)	A thinner	(B)	A drier
	(A)	A vehicle	= ,	A water – proofing base
		A venicle	(D)	A water - proofing base

24.	Fire	resistant mortar is used for		
	(A)	Insulating and acoustic properties		
	(B)	Protection against hazardous emis	sion	
	JOY	For laying refractory brick in furns	ce, chim	nney
	(D)	Packing the oil wells		
25.	High	alumina cement is produced by fusi	ng toget]	her of mixture of
	4	Limestone and bauxite	(B)	Limestone and gypsum
	(C)	Limestone and clay	(D)	Limestone and chalk
		7-		
26.	The	consistency of concrete can be measu	rod in to	orma of
-0.	(A)	Hardness		8
	(A)		(B)	Impact
		Slump	(D)	Crushing
27.	The l	norizontal distance between the verti	ical joint	s in successive courses is termed as
	A	Lap	(B)	Bond
	(C)	Perpends	(D)	Bed
28.	The	vertical distance between the wall p	olate and	d top of the ridge is called ———— of
	roof.			
	A	rise	(B)	hip
	(C)	wall plate	(D)	template
29.	The c	legree of workability of concrete can	be found	d in terms of
	A	Compacting factor	(B)	Hardness
	(C)	Impact value	(D)	Fineness of coarse aggregate
30.	The c		compres	ssive strength in the range 50 to 60 MPa is
	(A)	standard concrete	(B)	normal concrete
	9	high strength concrete	(D)	low strength concrete

31 .	The co	onstruction of cement concrete road is o	done b	y — methods.
	(A)	one	D	two
	(C)	three	(D)	four
32.	Extre	eme end supports of a bridge superstruc	cture	
	(A)	Apron	(B)	Revetment
	(C)	Pier	.00	Abutment
	(-)	*		
0.0	D. J.	turin landing Islands are provided at		
33.		strain loading Islands are provided at		
4	(A)	useful for to change the traffic directi	on	* ***
	(B)	to separate opposing flow of traffic		
	(C)	to guide the traffic		
	1	regular bus stop for protection of pass	senger	's
34.		yer of concrete, masonry stones etc. I ert or a bridge to prevent scouring	laid li	ke flooring at the entrance or outlet of a
	(A)	Revetment	(D)	Apron
17	(C)	Wing walls	(D)	Foundation
			910	
35.	The	centre to centre distance between any t	wo ad	jacent support is called
	(A)	Total span	(B)	Clear total span
	(C)	Clear span	0	The span
36.	Trio	xial Compression test is used to determ	nine	
50.	(A)	Tensile strength of soil		Shear strength of soil
		Water absorption value	(D)	Bearing strength of soil
	(C)	water absorption value	(D)	Bearing strength of son
37.		oad or a railway over a valley is called		
	(A)	an aqueduct		viaduct
	(C)	causeway	(D)	road bridge
				te and the second secon

- 38. PCU refers to
 - (A) Passenger Carriage Units
- (B) Passenger Count Units

(C) Passenger Cart Units

- P Passenger Car Units
- 39. Minimum super elevation provided is
 - (A) 7%
 - (B) 10%
 - (C) not less than the grade of the road
 - not less than camber at the section
- 40. Super elevation (e) = $\frac{V^2}{127 R}$ where, V is the
 - (A) Centrifugal force

- (B) Weight of the vehicle
- Speed of vehicle in kmph
- (D) Frictional force
- 41. The area of the trapezoidal channel having the bottom width 'b', depth 'd' and side slopes 1:1 is given by
 - (A) A = (b+2d)d

A = (b+d)d

(C) A = (b + 0.5d)d

- (D) A = (2b+d)d
- 42. Conditions for most economical channel of trapezoidal section having bottom width 'b' and depth 'd' is given by
 - (A) $\frac{b+2nd}{2} = d^2\sqrt{n+1} \text{ and } m = \frac{d}{2}$
 - (B) $\frac{b+2nd}{2} = d\sqrt{n^3 + 1} \text{ and } m = \frac{d}{3}$
 - (C) $b+nd=d\sqrt{n+1}$ and $m=\frac{d}{3}$
 - $\frac{b+2nd}{2} = d\sqrt{n^2 + 1} \text{ and } m = \frac{d}{2}$

43.	Groun	nd water mainly depends upon the tw	o prope	rties of the underground soil	
	W	porosity and permeability			
	(B)	voids and pores			
	(C)	degree of saturation and water conte	ent		
	(D)	void ratio and moisture content			
44.	Recu	peration test is used to determine the	67		
	(A)	Yield of well	(B)	Permeability	
1000	(C)	Porosity	(D)	Storage capacity	
	(0)	Totolog	. ,		
45.	The orific	maximum contraction takes place at ce, where the jet of water is more or le	a secti ess horiz	on slightly on the downstream side of contal. Such a section is known as	the
	VA)	Vena contracta	(B)	Cross section	
	(C)	Orifice	(D)	Mouth piece	
46.		pump which raises the water or liquientrifugal force is known as	d from	a lower level to a higher level by the ac	tion
	(A)	Centrifugal pump	(B)	Reciprocating pump	
	(C)	Vane pump	(D)	Jet pump	
47.	Pun	np is a machine which converts			
T 1.		Pressure energy into Mechanical e	nergy		
7.7	(II)	Mechanical energy into Pressure e			
	(C)	Mechanical energy into Electrical			-
	(D)	Electrical energy into Pressure ene		· "	
	(2)	2200			
48.	The	trapezoidal section of a channel will	be most	economical, when its	
	4	wetted perimeter is minimum			
	(B)	wetted perimeter is maximum			
	, (C)	side slope is minimum			71
	(D)	side slope is maximum			

- 49. If 'A' is the area of the immersed surface, w is the specific weight of liquid and \bar{x} is the depth of horizontal surface from the liquid surface, then the total pressure P on the surface is given by
 - (A) $P = wA^2 \overline{x}$

(B) $P = w^2 A \overline{x}$

 $P = wA\overline{x}$

- (D) $P = wA\overline{x}^2$
- 50. The intensity of pressure 'p' is related to specific weight 'W' of the liquid and vertical depth 'h' of the point by the equation

11

p = Wh

(B) h = pW

(C) $p = Wh^2$

- (D) $p = Wh^3$
- 51. The shape of vertical curves usually are
 - (A) Circular

(B) Parabolic

(C) Spiral

- (D) Elliptical
- 52. In a transit theodolite, the vernier in vertical circle is

- (B) Movable
- (C) Either fixed or movable
- (D) Always movable
- 53. In Surveyor's Compass, the Graduations are lies in

- (B) W.C.B. System
- (C) Both W.C.B. And R.B. System
- (D) Azimuthal System

- If the bearing of $AB = N40^{\circ}E$, and bearing of $BC = S70^{\circ}E$, then $ABC = S70^{\circ}E$, then $ABC = S70^{\circ}E$ 54.
 - 30° (A)

70° (B)

- (D) 40°
- The horizontal distance between point of curve to point of tangent is called 55.

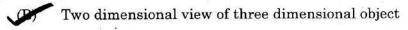
Length of long chord

- (B) Length of curve
- (C) Apex distance
- (D) Mid ordinate
- In offset from long chord method, the ordinate at a distance x from mid point of long chord 56. is expressed by the relation

$$O_X = \sqrt{R^2 - X^2} - (R - O_0)$$

(B)
$$O_X = \sqrt{R^2 + X^2} - [R - O_0]$$

(C)
$$O_X = \sqrt{R^2 - X^2} + [R - O_0]$$


(D)
$$O_X = \sqrt{R^2 - X^2} - (R + O_0)$$

- The following sights are taken on a turning point 57.
 - (A) Back sight only
 - (B) Fore sight only

Fore sight and back sight

- Intermediate sight and fore sight (D)
- 58. Photogrammetric imaging is a method of recording a
 - One dimensional view of three dimensional object (A)

- Three dimensional view of three dimensional object (C)
- Two dimensional view of two dimensional object (D)

59.	know		tical pl	ane through 180° about the trunnion axis is
	(A)	Centring	. 0	Transiting
	(C)	Swinging	(D)	Changing
60.	А Та	cheometer fitted with an anallactic le	ns, thei	n the value of additive constant is
	W.	0 (Zero)	(B)	100
	(C)	0.3	(D)	0.15
61.	As pe	er Is Recommendations, the length of	each lir	nk in 30 m chain must be
	(A)	10 cm	0	20 cm
	(C)	30 cm	(D)	15 cm
62.	A Sev	wer which receives storm water, surfa	ce run-	off and sewage is called a
	(A)	Common Sewer		Combined Sewer
	(C)	Branch Sewer	(D)	Outfall Sewer
63.	The p	presence of bacteria in water causes		
	(A)	Hardness	(B)	Alkalinity
	(Diseases	(D)	Bad taste
64.	The p	H value of water for public supplies is	s limite	ed from
	SA	6.5 to 8	(B)	2.5 to 6.5
	(C)	8 to 10.5	(D)	10.5 to 15
65.	The a	verage domestic water consumption p	er capi	ita per day for an Indian city may be taken
	W	135 <i>l/c/d</i>	(B)	210 <i>l/c/d</i>
	(C)	240 l/c/d	(D)	270 l/c/d
		a a		

66.		method, which is most widely used for analysin	ng and designing the pipes of all types of
	compl	plex water distribution network is	
	(A)	Equivalent pipe method	
	W/	Hardy cross method	
	(C)	Circle method	
	(D)	Absolute method	
67.	The b	bacteria which require oxygen for their surviva	l is known as
	(A)	Anaerobic bacteria	
	(B)	Pathogenic bacteria	
	5	Aerobic bacteria	
	(D)	Non-pathogenic bacteria	
68.	The	e most desirable temperature for public water su	apply is between
	(A)	0°C to 4°C	4.4°C to 10°C
	(C)	11°C to 10.4°C (D)	15°C to 20°C
69.	The	e most commonly used disinfectant for drinking	water throughout the world is
	(A)	Alum (B)	Nitrogen
	(C)) Lime	Chlorine
70.	Tem	mporary hardness of water is removed by	
	V	Adding lime to water	
	(B)) Adding sulphate to water	
	(C)	Adding pottasium to water	
	(D)) Adding salt in excess	

71.	A est	imate is a revised			
	(A)	rough estimate			00
	(B)	final estimate			
	S	detailed estimate			
	(D)	approximate estimate			
72.	The e	estimate which is prepared at the init	ial stag	e before execution of works	s is called
	(A)	Major estimate			
, -		Main estimate			
	(C)	Detailed estimate			* E
	(D)	Approximate estimate			
7 3.	In de	tailed estimate the volumes are work	ed out t	to the nearest	
	(A)	0.001m^3	98	0.01m^3	- h
	(C)	$0.005 \mathrm{m}^3$	(D)	$0.05 \mathrm{m}^3$	
74.	The o	quantity of D.P.C is worked out in			
	(A)	m^3		m^2	
	(C)	m	(D)	lump-sum	
7 5.	The	gradual accumulation of amount by	way of a	nnual periodic deposits w	nich is meant for
	the r	eplacement of the structure at the en	d of its	useful life period is known	as
	(A)	annuity	981	sinking fund	
	(C)	depreciation	(D)	solatium	

- 76. The quantity of cement required for $1m^3$ of cement mortar 1:3 is
 - (A) 360 Kg

480 Kg

(C) 720 Kg

(D) 1440 Kg

- 77. Estimate is
 - (A) the actual cost of construction of a structure
 - the probable cost arrived at before commencement of the structure
 - (C) a random guess of the cost of construction
 - (D) the absolute cost of construction
- 78. Block shear in a steel member occurs is
 - shear acts on one plane and tension act at perpendicular plane
 - (B) shear acts on both planes
 - (C) tension acts on both planes
 - (D) compression in one plane and shear acts at perpendicular plane
- 79. The maximum value of effective slenderness ratio for a tension member in which reversal of direct stress occurs due to loads other than wind (or) seismic forces shall be
 - (A) 120

(B) 400

(C) 350

- D 180
- 80. The effective width of flange of T beam is calculated by
 - (A) $\frac{l_o}{3} + 3Df + 0.6bw$

(B) $\frac{l_o}{6} + Df + 6bw$

(C) $\frac{l_o}{bw} + Df + 3bw$

 $\frac{l_o}{6} + 6Df + bw$

81.	The nominal cover to the reinforcement for moderate conditions considering the durability
	requirement shall be
	(A) 20 mm
	(C) 15 mm (D) 25 mm
82.	While designing the stairs spanning horizontally, the maximum bending moment is
	calculated by the expression
	(A) $wl^2/12$ (B) $wl^2/2$
	$(D) wl^2/8$ (D) $wl^2/10$
83.	Calculate the Nominal shear stress of a simply supported beam carrying a design shear force of 128.51 kN. The size of the beam is 300×457 mm (Effective). The beam is reinforced with
	3 Nos of 20 mm bars use M20 and Fe 415
	(A) 1.12 N/mm^2 0.94 N/mm^2
	(C) 0.88 N/mm^2 (D) 1.36 N/mm^2
84.	The hending moment on the feetings assumed in the least in the second of
01.	The bending moment on the footings supporting a column is calculated at
	(A) half way between the face and support
	(B) at a distance of d from the face of column
	(C) at a distance of $d/2$ from the face of column
	face of the column
85.	As per IS 456-2000, Grade M 30 is called as
	(A) Ordinary concrete
	Standard concrete
	(C) High atronath conserts

(D)

Very high strength concrete

- The cross-sectional area of the longitudinal reinforcement of column shall be greater than 86.
 - (A) 0.6 percent of A

0.8 percent of A

(C) 0.4 percent of A

- 0.65 percent of A
- In the design of doubly reinforced section, the shear stress τ_c is calculated using 87.
 - (A) Asc

(Asc + Asf)(C)

- (D) (d-d')
- In the under reinforced section, the value of x_u is 88.
 - equal to x_u max (A)

(P) less than x_u max

greater than x_u max (C)

- (D) equal to 0.5 times d
- In the limit state method, the resultant compressive force in the stress block acts at a 89. distance of
 - (A) $\frac{4}{7}x$ from top

(C) $\frac{1}{7}x$ from top

- (B) $\frac{1}{2}x$ from top $\frac{3}{7}x$ from top
- The ratio of average annual earning per year to the net total investment 90.
 - Present Value of Index (PVI) (A)
 - Net Present Value (NPV) (B)
 - Internal Rate of Return (IRR)
 - Accounting Rate of Return (ARR) (D)
- The difference between cash inflow and cash outflow is called 91.
 - the cash flow (A)

the net value

the net present value (C)

the net future value

C

- 92. Negative slack indicates
 - (A) On schedule condition
 - (B) Ahead of schedule condition
 - Behind the schedule condition
 - (D) No such condition exists
- 93. If t_0 , t_P and t_L represent the optimistic, pessimistic and most likely time estimates, the expected time of completion of the activity is given by
 - $(A) t_E = \frac{t_O + t_L + t_P}{3}$

(B) $t_E = \frac{t_O + 2t_L + t_P}{4}$

(C) $t_E = \frac{t_O + 3t_L + t_P}{5}$

 $t_E = \frac{t_O + 4t_L + t_P}{6}$

- 94. An activity requires
 - (A) resources

time and resources

(C) time

- (D) events
- 95. The entries in the measurement books (M-books) has to be entered by the
 - (A) Technical Assistant
 - Section Officer
 - (C) Sub-Divisional Engineer
 - (D) Divisional Engineer
- 96. The process of laying out the various activities of the project in a time sequence logically, orderly and systematic manner
 - (A) Project Surveying

(B) Project Sequencing

(C) Project Controlling

Project Scheduling

97.	A joint is taken for analysis only when there are not more than —	—— unknown forces
× .	acting at the point.	

(A) 5

(B) 4

(C) 3

2

98. Neutral axis in a beam, passes through the

(A) Major axis

Centre of area

(C) Minor axis

(D) Principle axis

99. The section modulus of a circular section of diameter (d) is

(A) $\frac{\pi}{32}d^2$

 $\frac{\pi}{32}d^3$

(C) $\frac{\pi}{64}d^3$

(D) $\frac{\pi}{64}d^4$

100. Moment of inertia of a rectangle about its XX-axis is given by

 $\frac{bd^3}{12}$

(B) $\frac{db^3}{12}$

(C) $\frac{bd^2}{6}$

(D) $\frac{bd^3}{6}$

(A) Modulus of elasticity

(B) Ultimate stress

Elastic limit

(D) Yield point stress

0.5 mm

(B) 1.0 mm

(C) 1.5 mm

(D) 2.0 mm

- A shaft revolving at r.p.m. transmits torque (T) in KN.m. The power developed is
 - (A) $2\pi NTkW$

 $\int \frac{2\pi NT}{60} kW$

(D) $\frac{2\pi NT}{120}kW$

A cantilever is a beam whose

one end is fixed and other end free

- (B) both ends are fixed
- (C) both ends are simply supported
- (D) one end is fixed and other end simply supported
- The point through which the whole weight of the body may be assumed to act is defined as 105.
 - (A) Centroid

Centre of gravity

(C) Moment of inertia

- (D) Point of area
- 106. The value of maximum bending moment for a simply supported beam of span 'l' carry a concentrated load 'W' at a distance 'a' from A and a distance 'b' from B is

(B) $\frac{Wa^2b}{l}$

- (D) $\frac{Wab}{t^2}$
- The relation between E (Modulus of elasticity), K (Bulk Modulus of elasticity) and C107. (Modulus of rigidity) is given by

$$E = \frac{9KC}{3\dot{K} + C}$$

(B)
$$E = \frac{6KC}{K + 3C}$$

(C)
$$E = \frac{3K + C}{6KC}$$

(D)
$$E = \frac{3KC}{3K + C}$$

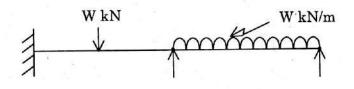
- 108. In a fixed beam, the point of contraflexure occurs in how many points?
 - (A) only one point

two points

(C) not occurs

- (D) three points
- 109. The value of Rankine's constant for Timber is
 - (A) $\frac{1}{9000}$

(B) $\frac{1}{7500}$


(C) $\frac{1}{1600}$

- $\frac{1}{750}$
- 110. What will be the slope at the fixed end of a fixed beam carrying uniformly distributed load (UDL) through out its span?
 - $\theta_A = \theta_B = 0$

(B) $\theta_A \neq \theta_B$

(C) $\theta_A = \theta_B = 45^\circ$

- (D) $\theta_A = \theta_B = 1$
- 111. What is the degree of indeterminacy of the following continuous beam with partially fixed support?

(A) (

(B) 1

9 2

- (D) 3
- 112. The ratio of the stiffness of the member to the total stiffness of all the members meeting at the joint is
 - (A) Carry over factor

(B) Stiffness factor

0

Distribution factor

(D) Relative factor

- 113. The survey used for determining points of strategic importance is
 - (A) Archaeological survey

(B) Topographical survey

(C) Engineering survey

- Military survey
- 114. A simply supported beam of span 'l' is carrying a UDL of w per unit length. If the beam is propped at its centre then in Bending moment diagram, the Bending moment is zero at a distance of
 - (A) $\frac{2l}{8}$ from both ends

 $\frac{3l}{8}$ from both ends

(C) $\frac{3l}{4}$ from both ends

- (D) $\frac{3l}{2}$ from both ends
- 115. A cantilever of span l is fixed at A and propped at the other end B. if it is carrying a uniformly distributed load of w per unit length, then the prop reaction will be
 - $\frac{3wl}{8}$

(B) $\frac{5wl}{8}$

(C) $\frac{3wl}{16}$

- (D) $\frac{5wl}{16}$
- 116. A fixed beam AB of span 6 m is subjected to two point load of 20 KN each at distance of 2 m from both ends then the fixing moments are
 - (A) 16.67 KNm

26.67 KNm

(C) 36.67 KNm

- (D) 26.07 KNm
- 117. A simply supported beam of span (l) is subjected to a UDL of (w) per unit length over the whole span. The maximum deflection at the centre of the beam is
 - (A) $\frac{5wl^3}{48EI}$

(B) $\frac{5wl^4}{96EI}$

(C) $\frac{5wl^4}{192El}$

 $\frac{5wl^4}{384EI}$

118.	The a	angular aggregates obtained from lam	inated	d rocks having thickness smaller than the
	width	and /or length are termed as		
	(A)	rounded	(B)	irregular
15.00	9	flaky	(D)	thawing
119.	A sm	all portion of the painted surface is son	netime	e seen loose. It is known as
ei v	SIN	Flaking	(B)	Flashing
	(C)	Blisting	(D)	Fading
120.	A cou	uple – close roof is used for span upto		
	(A)	3.5 m	0	4.2 m
	(C)	9 m	(D)	14 m
121.	The e	elongation index is not applicable to siz	e sma	ller than
	(A)	10 mm	(B)	8.2 mm
	(C)	13 mm	0	6.3 mm
122.	A pit	ched roof in which rafters slope to one	side o	nly is called
		Lean-to-roof	(B)	Couple roof
A	(C)	Collar beam roof	(D)	Couple-close roof
123.	Dorn	ner window	10	
	(A)	A small window at a greater height the	han re	egular window
	9	A vertical window provided on the slo	ping	roof
	(C)	A window provided in a door		
	(D)	A window in which shutter can rotate	e verti	ical only
10				

124.	Accor	ding to IS 383 - 1970, the average leading to percent when aggregate teste		weight after ten cycles should not exceed sodium sulphate.
	W	12	(B)	16
	(C)	18	(D)	20
125.	Phota	ash- lime glass also known as		
	S	Bohemian glass	(B)	Pyrex glass
	(C)	Bottle glass	(D)	Common glass
126.	The b	orick laid with its length parallel to th	e face o	of the wall is called a
	(A)	course	D	stretcher
	(C)	header	(D)	closer
127.	In roa	ad arboriculture for clayey soil		
	SAY	Mango tree recommended	(B)	Kanju tree recommended
	(C)	Skisham kanji tree recommended	(D)	Arroo tree recommended
128.	The c	lear distance between any two adjace	nt supp	port is called the
	(A)	total span	(B)	span
	S	clear span	(D)	clear total span
129.		affic sign, sign in circular shape, blue angle of 45° is used as,	backgr	round, a red border, and an oblique red bar
	(A)	Stop sign	4	No-parking sign
	(C)	Prohibitory sign	(D)	Speed limit sign
130.		n the load on a foundation is excessionomical, then ————————————————————————————————————		heavy and other types of foundations are
	(A)	spread foundation	(B)	raft foundation
	(C)	grillage foundation	5	pile foundation

131.	Inorg	anic silt with low pla	sticity is denoted	as	
	(A)	MH		(B)	LC
		ML		(D)	LS
132.	Based		haviour, paveme	ents a	are generally classified into
	(A)	five		(B)	four
a i	(C)	three	1 × *	· 100	two
133.	The r		which further rec	duction	n in water does not reduction in volume is
	(A)	Liquid Limit		(B)	Plasticity Index
	9	Shrinkage Limit		(D)	Liquidity Index
1					
134.	Poorl	y graded gravel is ge	nerally denoted b	y a syı	mbol as
	(A)	SP			GP
	(C)	GM	8 1	(D)	GW
135.		minimum water cont ring force is known a		soil w	ill flow under the application of very small
	(A)	Plastic limit		(B)	Shrinkage limit
	0	Liquid limit		(D)	Plasticity index
136.	The	integral part of the ro	oad pavement str	ucture	to support the pavement from beneath
	(A)	Base course		(B)	Binder
	(C)	Aggregate		9	Sub grade soil
137.	Limi	ting gradient value o	on plain terrain is	.11	•
	(A)	3.3%		S	5%
	(C)	7%		(D)	9%
DCF	E/19		2	26	

- A channel without any cover at the top is known as
 - Natural channel (A)

Artificial channel

Open channel

- Prismatic channel (D)
- Chezy's formula to calculate the velocity of flow 139.

 $V = C\sqrt{mi}$

(B) $V = C\sqrt{m} i^{\frac{2}{3}}$

(C) $V = C m^{\frac{2}{3}} i^{\frac{1}{2}}$

- (D) $V = AC\sqrt{mi}$
- The total energy line lies over the hydraulic gradient line by an amount equal to the

Velocity head

- Pressure head (B)
- Pressure head + Velocity head (C)
- Pressure head Velocity head
- The value of standard Atmospheric pressure is

101.3 KPa

10.13 KPa (B)

1.013 KPa (C)

- (D) 1013 KPa
- The coefficient of discharge of internal mouthpiece running full is given by 142.

0.707

0.85 (B)

0.50 (C)

- (D) 0.60
- The discharge through an external mouthpiece is given by 143.

C

(A) 0.855 a√2gH

(B) $1.85 \text{ a} \sqrt{2gH}$

(C) $5.85 \text{ aH}\sqrt{\text{g}}$

- (D) 85 a√gH
- Centrifugal pump is suitable for 144.
 - Higher heads (A)
 - Less discharge (B)
 - Less discharge and higher heads (C)
 - Large discharge and smaller heads

145.	The	theoretical velocity of jet at vena contr	racta i	s given by the relation, where h = Head o
	wate	er at vena contracta,		
		$\sqrt{2 { m gh}}$	(B)	$2\sqrt{\mathrm{g}}\mathrm{h}$
	(C)	$2g\sqrt{h}$	(D)	2gh
146.	The	dimension of Chezy's constant 'C' is	50	
	(A)	LT^{-1} $\operatorname{L}^{rac{1}{2}}\operatorname{T}^{-1}$	(B)	$\mathbf{L^{-1}T^{rac{1}{2}}}$
,		$\mathrm{L}^{rac{1}{2}}\mathrm{T}^{-1}$	(D)	$\mathbf{L}^{-1}\mathbf{T}$
147.	Cent	crifugal pump works on the principle of		
		Forced vortex flow	(B)	Forced laminar flow
	(C)	Forced uniform flow	(D)	Forced steady flow
148.	Orifi	ice and Mouthpieces are used to measur	re	
	(A)	the velocity of liquid		the rate of flow of liquid
	(C)	the pressure of the liquid	(D)	the density of the liquid
149.	The	numerical value of 1 Pa of pressure is e	qual t	•
		1N/m^2	(B)	$1 k N/m^2$
	(C)	1MN/m ²	(D)	$10\mathrm{N/m^2}$
150.	A fl	ow, in which each liquid particle do	es not	have a definite path, and the paths o
	indi	vidual particles also cross each other, is	called	la
80. F 10	(A)	Rotational flow	(B)	Non-uniform flow
E 5	S	Turbulent flow	(D)	Unsteady flow

- 151. In chain, Handles are connected to the link by
 - (A) Flexible joint

(B) Rigid joint

Swivel joint

- (D) Ball and socket joint
- 152. In Single plane method, the choosen Instrument stations at A is higher than 'B', then the horizontal distance between Instrument station 'A' to Staff station is calculated by
 - (A) $D = \frac{d \tan \alpha_2}{\tan \alpha_1 \tan \alpha_2}$

 $D = \frac{d \tan \alpha_2 - S}{\tan \alpha_1 - \tan \alpha_2}$

(C) $D = \frac{d \tan \alpha_2 + S}{\tan \alpha_1 - \tan \alpha_2}$

- (D) $D = \frac{d \tan \alpha_2 S}{\tan \alpha_2 + \tan \alpha_2}$
- 153. An Invar tape is made of an alloy of
 - (A) Brass and nickel

(B) Brass and steel

(C) Copper and steel

- Nickel and steel
- 154. The bearing of line measured eastward or westward from north or south, which ever is nearer is called
 - (A) Whole circle bearing

Reduced bearing

(C) Fore bearing

- (D) Back bearing
- 155. The distance between two station P and Q is 200 m, whereas their difference in elevation is 2 m, Hence the horizontal distance between P and Q is
 - (A) 199 m

(B) 199.9 m

199.99 m

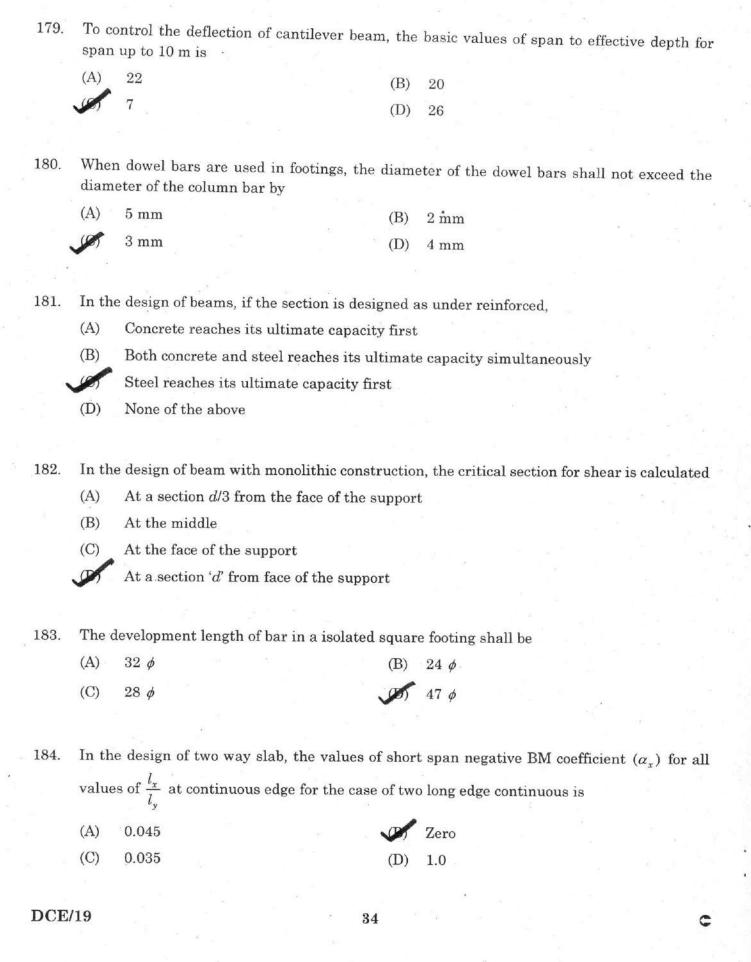
- (D) 199.995 m
- 156. Isogonic line is the line drawn through the points of same
 - (A) elevation

(B) bearing

declination

(D) dip

157.	Comb	oined correction for curvature and r	efraction	for 1.29 km is	
	(A)	0.0112 m	VB)	0.112 m	
1 2	(C)	0.0112 km	(D)	0.00112 m	
			jan 1		
158.	Inas	survey it was recorded that ΣRise =	0, then		k.
	(A)	the ground is continuously rising			
		the ground is continuously falling			
	(C)	the ground is undulating			
	(D)	the survey had many invert readi	ngs		
159.	Tache	eometry is best suited			
	W	where chaining is impossible			
	(B)	for populous areas			
	(C)	for extremely accurate survey			
	(D)	where chaining is possible			
	8				
160.	Whic	ch of the following method of contou	ring is mo	ost suitable for railway and route surv	veys
	(A)	Direct method			
	(B)	Square method			
	9	Cross sections method			
	(D)	Tacheometric method			
161.	Close	ed contours, with lower values insid	le, it indic	cates	
	(A)	a hill		a depression	
	(C)	a plane surface	(D)	a cliff	
DCE	E/19	и	30		,


	(D)	Temperature increase				
164.	The e	effect of Iron oxide in water will cause				
	S	Hardness	(B)	Corrossion of r	netal	
	(C)	Alkalinity	(D)	Taste		
165.	Float	ing matter, oil, fat, grease are remove	ed in —	——tank.		
	(A)	Sedimentation tank	(B)	Septic tank		
	Jan	Skimming tank	(D)	Sewage tank	E	
	6)					9
166.	A str	ructure constructed to provide access	to the s	sewer for facilita	ting inspecti	on, cleaning or
	usua	l maintenance operations is termed a	S			
	S	Man hole	(B)	Light hole		
	(C)	Soil pipe	(D)	Vent pipe		
C			31			DCE/19 [Turn over

107.	wate	r free from salt is called	as	-			
	(A)	Salty water		(B)	Brackish water		
	S	fresh water		(D)	Dissolved water		
168.	The i	ntake well located near t	he bank of cana	l is c	alled		
	(A)	River Intake		B	Canal Intake		
	(C)	Submerged Intake		(D)	Jack Well		
169.	Wate	rs are considered "hard",	if the hardness	is of	the order of		
	(A)	50 ppm		(B)	100 ppm		
	(C)	150 ppm	J	DI	300 ppm		
170.	In le	velling work with dumpy	level and wood	en st	aff readings are ta	aken with a l	east count of
	(A)	0.001 m		(B)	0.01 m		
	5	0.005 m		(D)	0.10 m		
171.	The	net area of the living room	ns excluding kit	cher	ı, pantry etc.		
	(A)	non-liveable area		D)	carpet area	* 1	
	(C)	plinth area		(D)	total area		
			æ				
172.	The	unit of measurement for	electrical fitting	s is			
	(A)	m		(B)	Nos	<u> </u>	
	(0)	Points		(D)	m^2		
							e fin s
		* " " "	9				

32

DCE/19

173.	What	is the unit of measurement used for re	inforc	ed brick work?
	(A)	sq.m	D	cu.m
	(C)	metre	(D)	tonne
174.	One I	Hectare is equal to		
	S	10,000 m ²	(B)	$1000~\mathrm{m}^2$
	(C)	100 m^2	(D)	10 m ²
175.	The v	value of dismantled materials is		
	(A)	Salvage value		Scrap value
	(C)	Market value	(D)	Book value
		7,		
176.	The v	volume of cement in one bag is		
1.0.	(A)	$0.067~\mathrm{m}^3$	(B)	0.050 m^3
,	(41)	0.034 m^3	(D)	$0.025 \mathrm{m}^3$
	()	0.004 III	(1)	2.020M
1.77				20 mm
177.		egate	ment	concrete with 1:1.5:3 ratio using 20 mm
		0.285 m ³	(B)	0.385 m^3
	(C)	0.185 m ³	(D)	0.485 m^3
	(0)	0.100 iii	(15)	0.300 M
150	4 L	Programme To Programme To the Art of the Art		-1-ifl-ll-i-li-
178.		rding to Indian standards Institute, the	e actu	al size of modular bricks is
	(A)	$22 \text{ cm} \times 11.5 \text{ cm} \times 11.5 \text{ cm}$		
	(B)	21 cm × 13 cm × 13 cm		
		$19 \text{ cm} \times 9 \text{ cm} \times 9 \text{ cm}$		
	(D)	$20~\text{cm}\times10~\text{cm}\times10~\text{cm}$		

185.	In the continuous slab,	the	curtailment	length	at	the	top	of th	ne slab	near	the	end	support
	from the face of wall shall be												

1/10

(B) l/5

(C) 1/8

(D) 1/20

186. When the column is subjected to axial load with biaxial bending, the column shall be designed for

(A) p_u

(B) p_u, l_x

 p_u, l_x, l_y

(D) p_u, l_y

187. In the design of T-beam, the recommended value of $\frac{Df}{d}$ for all the grades of steel by the IS code 456–2000 shall be

(A) 0.12

(B) 0.36

(C) 0.446

0.2

188. The average strength of 150 mm size concrete cube with a characteristic strength of 20 N/mm² and a standard deviation of 4 N/mm² is

26.58 N/mm²

(B) 31.24 N/mm²

(C) 18.67 N/mm²

(D) 21.76 N/mm²

189. In the two-way simply supported slab, the bending moment along y-direction is

(A) $\alpha_x w l_x^2$

 $\alpha_y w l_x^2$

(C) $\alpha_y w l_y^2$

C

(D) $\alpha_x w l_y^2$

190. The diameter of the lateral ties in a column should be greater than 5 mm as well as

- $\frac{1}{4}$ of dia. of longitudinal bar
- (B) $\frac{1}{6}th$ of dia. of longitudinal bar
- (C) $\frac{1}{8}$ of dia. of longitudinal bar
- (D) $\frac{1}{10}$ of dia. of longitudinal bar

191.	The a	mount of S.D. to be deposited by	the tenderer is
	(A)	1% of the tender amount	
75 10	0	10% of the tender amount	
	(C)	15% of the tender amount	
	(D)	20% of the tender amount	
		e e	
19 2.	The b	usiness organisation run by an i	ndividual is called
	(A)	One man organisation	•
	(B)	Individual organisation	
	(C)	Single man proprietorship	747
		Sole proprietorship	
193.	Thoo	occurrence of the completion of a	n activity is called its
190.	The o		
	(1)	head event	(B) tail event
	(C)	dual event	(D) on-going activity
194.		contractor undertakes to complete wner is called	te the construction work in full, for a total sum fixed by
	(A)	Lump sum and schedule contra	act
	(P)	Lump sum contract	
	(C)	Unit rate contract	
	(D)	Cost plus percentage contract	
	(D)	Cost pius percentage contract	
	an.		
195.	CPM	adopts	
	(A)	Probabilistic approach	
	P	Deterministic approach	
	(C)	Stochastic approach	
	(\mathcal{D})	Poriodia approach	

1,30.	A con	iputer moder than infinites the operation	n or a	real (or) proposed system is can
	(A)	Robot Technology		
	D	Simulation		
	(C)	Database approach		
	(D)	Integrated Accounting System		
197.	D.L.F	R. stands for		
	(A)	Daily Labour Register	(B)	Daily Labour Roll
	W.	Daily Labour Report	(D)	Daily Labour Record
198.	SISI	stands for		
	(A)	Small Scale Industries Services Instit	tute	
	(B)	Small Institution Services Industries		E
	SOF	Small Industries Services Institute		
	(D)	Service Industries Services Institute		
199.	The r	reliability of the test results of the samp	ple car	n be assessed based on
	(A)	Reliability number	(B)	Probability number
	(C)	Stock number	W/	Liability number
200.	Cost	Slope is given by		
	S	crash cost - normal cost normal time - crash time	(B)	crash cost - normal cost crash time - normal time
	(C)	normal time - crash time crash cost - normal cost	(D)	crash time – normal time crash cost – normal cost

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK

DCE/19 40