

JKSSB JE

Previous Year Paper

(Civil) 02 Nov, 2025

ALL EXAMS, ONE SUBSCRIPTION

1,00,000+ Mock Tests

Personalised Report Card

Unlimited Re-Attempt

600+ Exam Covered

25,000+ Previous Year Papers

500% Refund

ATTEMPT FREE MOCK NOW

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO

Booklet Serial No. 823673

Test Booklet Series

JUNIOR ENGINEER - CIVIL OMR Examination - 2025

Time Allowed: 120 Minutes

Maximum Marks: 120

INSTRUCTIONS

- IMMEDIATELY AFTER THE COMMENCEMENT OF THE EXAMINATION, YOU SHOULD CHECK THAT THIS TEST BOOKLET DOES NOT HAVE ANY UNPRINTED OR TORN OR MISSING PAGES OR ITEMS, ETC. IF SO, GET IT REPLACED BY A COMPLETE TEST BOOKLET.
- 2. Please note that it is the candidate's responsibility to encode and fill in the Roll Number, Booklet Serial No. and Test Booklet Series Code A, B, C or D carefully and without any omission or discrepancy at the appropriate places in the OMR Answer /Response Sheet. Any omission/discrepancy will render the Response Sheet liable for rejection.
- 3. You have to enter your Roll Number on the Test Booklet in the Box provided alongside.

 DO NOT write anything else on the Test Booklet.

1	1	0	O	0	7	3
, ,	•	J				

- 4. This Test booklet contains 120 items (questions). Each item comprises of four responses (answers). You will select the response which you want to mark on the Answer Sheet/Response Sheet. In case you feel that there is more than one correct response, mark the response which you consider the appropriate. In any case, choose *ONLY ONE* response for each item.
- 5. You have to mark all your responses *ONLY* on the separate Answer /Response Sheet provided. See directions in the Response Sheet.
- 6. All items carry equal marks.
- 7. After you have completed filling in all your responses on the Response Sheet and the examination has concluded, you should hand over to the Invigilator only the Answer /Response Sheet. You are permitted to take away with you the Test Booklet and Candidate's Copy of the Response Sheet.
- 8. Sheets for rough work are appended in the Test Booklet at the end.
- 9. While writing Centre Code and Roll No. on the top of the Answer Sheet/Response Sheet in appropriate boxes use "ONLY BLUE/BLACK BALL POINT PEN".
- 10. Penalty for wrong answers:

THERE WILL BE PENALTY FOR WRONG ANSWERS MARKED BY THE CANDIDATE IN THE WRITTEN TEST (OBJECTIVE TYPE QUESTIONS PAPERS).

- (i) There are four alternatives for the answer to every question. For each question for which a wrong answer has been given by the candidate, (1/4) of the marks assigned to that question will be deducted as penalty.
- (ii) If a candidate gives more than one answer, it will be treated as a **wrong answer** even if one of the given answers happens to be correct and there will be same penalty as above for that question.
- (iii) If a question is left blank, i.e., no answer is given by the candidate, there will be **no penalty** for that question.

	<i>[</i>	- Lacate following set of terms	doos			
1,/	Whi	ch of the following set of terms	does not	relate	to operation of a theodolite?	
	A)			В	B) Face left and face right	
	C)	Right swing and left swing		D	D) Gauging and sounding	
1	TC4h	e whole circle bearing is 315°20',	its quadra	antal i	hogeing	
1		g 26020' W	quadr			
	A)	S 36°30' W		B)	,, 10 11	
	C)	N 57°24' W		D)	, = 00 10 11	
3,	Erro	r due to inclination of line of collin	nation in l	evelli	ing across a river can be eliminat	ed
1	by	To be been notified		B)	Designated eanging	
	A)	Reversion		,	1110	
	C)	Reciprocal levelling		D)		as.
4,	The	length of a survey line when meas d to be 841.5m. If the chain used is 0	sured with	h a ch long, t	nain of 20 m nominal length wa the correct length of the measure	ed
	toun	a to be 641.5111. If the ontain			837.3 m	
	line	18		B)	837.3 m	
	A)	845.7 m·		D)	839. 4 m	
	C)	841.6 m				
		y closed traverse, if the survey wor	k is error	free,	then	
5	In an	The algebraic sum of all the latitud	es should	l be ed	qual to zero	
	I.	The algebraic sum of all the latitude. The algebraic sum of all the depart.	ures shou	ld be	equal to zero	
	П.	The algebraic sum of all the depart	equal to	the su	um of the southings	
	Ш.	The algebraic sum of all the depart The sum of the northings should be	rrect?		12.2	
	Whi	ch of the above statements		R)	I and III	
	A)	I and II		D)	I, II and III	
	C)	II and III				
_		a ti i atataments:				
6.	Cons	ider the following statements:	of			
	Recip	procal leveling eliminates the effect				
	L	Errors due to earth's curvature Errors due to atmospheric refraction	1			
	Π .	Errors due to atmospheric restaurant Mistakes in taking levelling staff rea	dings			
	Π .	Mistakes in taking leveling starts Error due to line of collimation				
	IV.	Error due to line of communer	•			
	Which	h of these statements are correct?	B		I, III and IV	
	A) I	, II and III	D) [, II and IV	
		I, III and IV >				
6		ler the following statements about the	he charac	terist	tics of contours:	
J		. 4 Annual MAC WITH HIGHER VALUE	Co Illore	Direction.		
•	I. C	losed contour lines with higher versions on tour is an imaginary line joining p	points of e	equal	elevations ~	
J	II. C	ontour is an imaginary fine joining plosely spaced contours indicate stee	n slope -	,		
J	III. C	losely spaced contours indicate stee ontour lines can cross each other in (case an o	verha	anging cliff	
I	IV. C	ontour lines can cross each other in	case an o	VIIIC		
		of these statements are correct?	ים	T	and II	
	,	III and IV	B)		and II	
(C) Ia	nd IV	D)	1,	II and III	
(Set - A	4)	(3)			[P.T.O	•

Match List - I with List-II and select the correct answer using the codes given below the lists:

List - I (Type of survey)

- Topographical survey i.
- Reconnaissance survey ii.
- Cadastral survey iii.
- Archaeological survey IV.

List - II (Purpose)

- To determine boundaries of fields, houses, etc.
- To find relics of antiquity 2.
- To determine natural features 3. of a country
- To determine possibility and 4. rough cost of the surveying system to be adopted

Choose the correct option:

- A) (i) - 3, (ii) - 4, (iii) - 1, (iv) - 2
- (i) 3, (ii) 1, (iii) 4, (iv) 2B)
- C) (i) - 2, (ii) - 4, (iii) - 1, (iv) - 3
- (i) 2, (ii) 1, (iii) 4, (iv) 3D)

Match List - I with List-II and select the correct answer using the codes given below the lists:

List - I (Statement)

- Accurate centering in plane table i. surveying is necessary for
- ii. Exact orientation is more important than accurate centering for
- 111. The intersection method of plane table surveying is particularly employed for
- Plane table survey is useful for iv.

Choose the correct option:

- (i) 3, (ii) 4, (iii) 1, (iv) 2.
- B) (i) - 4, (ii) - 3, (iii) - 2, (iv) - 1
- C) (i) - 1, (ii) - 2, (iii) - 4, (iv) - 3
- D) (i) - 3, (ii) - 2, (iii) - 1, (iv) - 4

List - II (Situation)

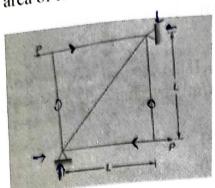
- 1. Inaccessible points
- 2. Open country with good intervisibility
- 3. Large scale maps
- Small scale maps 4.

16. The following steps are necessary to obtain sufficient accuracy with the tape:

- Keeping uniform tension on tape for each measurement
- II. "Breaking" tape on slopes are necessary to keep the tape level
- Π . Keeping accurate count of the stations
- Keeping the tape on the line being measured

The correct sequence of these steps is:

- IV, II, I, III A)
- B) II, III, IV, I.
- C) IV, I, II, III
- III, II, I, IV ~, D)



20+10(1)

Robert Hooke discovered experim A) Stress = strain C) Stress / Strei-	
A) State of the A)	regio limit
C) Stress = strain	nentally that within elastic limit B) Stress X strain = 1 Stress X strain = 1
12 a constant	the of silvar
A circular bar is	mum intensity of the
bar. bar. subjected to an ax	ial pull of 100 kN. If the maximum intensity of shear to exceed 60 MN/m ² , determine the diameter of the
A) 21.6 mm	
C) 45.6 mm	B) 32.6 mm
	D) 48.6 mm
13. In case of	vinum shear stress is percent more than the
Ja. In case of a circular section, the ma mean shear stress.	ximum shear stress is percent mere
A) 10	B) 20
C) 33.33	D) 66.66
load lies within the	ill be of the same sign throughout the section if the
load lies within the of the s	section.
, and third	B) Middle half
C) Both (A) and (B)	D) None of the above
Find the deflection at the free end if t	he slope at the free end is 1.5°.
A) 21.88 mm	B) 29.45 mm
C) 36.48 mm	D) 41.54 mm
The slope and deflection at a section in following methods?	a loaded beam can be found out by which of the
A) Double integration method	B) Moment area method
C) Macaulay's method	D) Any of the above
be	ic properties in all directions at a point is said to
A) homogeneous	B) orthotropic
C) viscoelastic	D) isotropic
then maximum shear stress at the point is	al case are -10 MPa and 20 MPa respectively,
A) 10 MPa	B) 15 MPa ····
C) 20 MPa	D) 30 MPa
(Set - A) (5	[P.T.O.

All the members of the planar truss (see figure), have the same properties in terms of area of cross-section (A) and modulus of elasticity (E),

For the loads shown on the truss, the statements that correctly represents the nature of

- There are 3 members in tension, and 2 members in compression forces in the members of the truss is:
- There are 2 members in tension, and 2 members in compression, 1 zero-force B)
- There are 2 members in tension, 1 member in compression, and 2 zero-force C)
- There are 2 members in tension, and 3 zero-force members D)
- The following statement are related to bending of beams **,2**0.
 - The slope of the bending moment diagram is equal to the shear force
 - The slope of the shear force diagram is equal to the load intensity I.
 - The slope of the curvature is equal to the flexural rotation + \coprod .
 - The second derivative of the deflection is equal to the curvature + x \coprod .
 - The only FALSE statement is
 - I A)
 - IIB)
 - ${
 m I\hspace{-.1em}I}$ C)
 - $IV \cdot \cdot$ D)
- A circular solid shaft of span L = 5 m is fixed at one end and free at the other end. A twisting moment T = 100 kN-m is applied at the free end. The torsional rigidity GJ is 50000 kN-m²/rad. Following statements are made for this shaft:
 - The maximum rotation is 0.01 rad
 - The torsional strain energy is 1 kN-m

With reference to the above statements, which of the following applies?

- Both statements are true A)
- Statement 1 is true but 2 is false B)
- Statement 2 is true but 1 is false x C)
- Both statements are false y

Adda 247

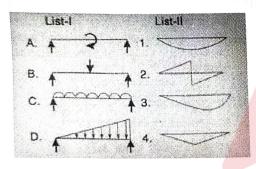
2. Consider the following statements:

- On a principal plane, only normal stress acts
- On a principal plane, both normal and shear stresses act Π.
- On a principal plane, only shear stress acts * \mathbf{III} .
- Isotropic state of stress is independent of frame of reference IV.

Which of these statements is/are correct?

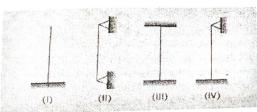
- I and IV. A)
- B) II only
- C) II and IV
- II and III D)

The "Plane section remain plane" assumption in bending theory implies 23


Stress profile is linear

Strain profile is linear B)

Both profiles are linear C)


Shear deformation is neglected D)

24. List-I shows different loads acting on a beam and List-II shows different bending moment distributions. Match the load with the corresponding bending moment diagram.

- A 4, B 2, C 1, D 3A)
- A-4, B-3, C-1, D-2 B)
- A-2, B-3, C-4, D-1 C)
- None of the above ... D)

Four columns of the same material and having identical geometric properties are 25. supported in different ways as shown below:

It is required to arrange these four columns in the increasing order of their respective first buckling loads. The correct order is given by

- I, II, III, IVA)
- III, IV, I, IIB)
- II, I, IV, IIIC)
- I, II, IV, III , " D)

- (I) P I, I, IV, III

(Set-A)

(7)

W2P

[P.T.O.

/26.	Find beriod	the delta for a crop d of this crop is 120	when its duty is	864	hectares/cume	ec on the field	d, the base
		104 cm	auys.	B)	120 cm		
	,	138 cm		D)	720 cm		
27.	water A)	depth of penetration probed. Their obsert distribution efficie 0.168	rved values are 2.0	of a 0, 1.9 B)	boarder strip at , 1.8, 1.6 and 1 0.905	points 30 me.5 meters. Co	eters apart mpute the
	C)	1.760		D)	2.105		
28.	10110	e drainage system dowing a storm. If the many cubic meters of 1000 m ³	system is designe	ed usi noved B)	ng a drainage of during this per 2000 m ³	coefficient of	wo days, 1.25 cm,
(<i>C</i>)	2000 III		D)	4000 m^3		
29.	The water	recharging rate of gr er stored, and is gene	rally less.		n	and on the	depth of
	A) C)	the permeability of Infiltration tube spr	the spread area · rings	B) D)	Renney type w None of the ab		
30.	The	e lake of water which	is formed upstream	n is of	ten called a		
	A) C)	creep > side flanks		B) D)	reservoir ·- swift trinity		
31	Sta in T Sta wat	tement - 1: The culver Type III. An intermedia tement - 2: In Type I ter is carried in a maso oose the correct opt Statement 1 is corr Statement 2 is corr Statement 1 and 2 a Statement 1 and 2 a	t length or width of a ate value exists in T III, earthen section onry or a flumed in tion: ect and Statement 2 ect and Statement 2 are correct	ype II of the this c	act is maximum in e canal is discon ase. correct	n Type I and mi	
32.	Star 0.1 Star and	tement - 1: The length L to 0.2 L. L indicate tement - 2: The top less freeboard. It can be opose the correct opto Statement 1 is correct Statement 2 is correct.	h of the guide bank s the length of structive evel of guide banks btained by adding a ion: ect and Statement 2	ture bis govall thes	vetween the abut verned by HFL, a se four values.	mente	
	C)	Statement 1 and 2 a	re correct				
(8.4	D)	Statement 1 and 2 a	re incorrect				
(Set	(-A)		(8)				

33. The drainage water intercepting the canal can be disposed in different ways. And the type of cross-drain of cross-drainage works with their function is given below the lists: and select the correct answer using the codes given below the lists:

List - 1 (Function/Places)

- 1. By passing the canal over the drainage
- 2. By passing the canal below the drainage
- 3. By passing the drain through a canal

List - II (Accomplished)

- Either through a level crossing or through inlets and outlets
- Either through a super-passage ii. or through a canal syphon
- Either through an aqueduct or iii. through a syphon-aqueduct

Choose the correct option:

- (1) i, (2) ii, (3) iii
- B) (1) - ii, (2) - iii, (3) - i
- C) (1) - iii, (2) - i, (3) - ii γ
- (1) iii, (2) ii, (3) i

34. Match List - I with List-II and select the correct answer using the codes given below the lists:

List-I(Classification of River Training)

- High water training
- 2. Low water training
- 3. Mean water training

List - II (Purpose)

- Sediment (efficient disposal of i. suspended load and bed load)
- Discharge (flood control) ii.
- Depth (provide sufficient water iii. depth)

Choose the correct option:

- (1) i, (2) ii, (3) iii
- (1) ii, (2) iii, (3) i \rightarrow B)
- C) (1) - iii, (2) - i, (3) - ii
- D) (1) - iii, (2) - ii, (3) - i

evaporates water, and (ii), by causing and controlling winds, circulates the evaporated water vapour, and thus, helping in its ___(iii)__ at different places.

Choose the correct option to fill out i, ii, iii in order.

- Sun, hydro cycle, filtration
- Sun, Coriolis force, filtration B)
- Sun, cycle, precipitation - \mathbf{C})
- Sun, Coriolis force, reprecipitation).—-D)

In a domestic wastewater sample, COD and BOD were measured. Generally, which of the following statement is true for their relative magnitude?

COD = BODA)

B) COD > BOD

COD < BOD... C)

D) None of the above

.37.	The			irrace water by adopting the following
	A)	Pismicenting - Storage and Suppry		cculation - Sedimentation - Filtration -
	B)	Pisitifection - Storage and Supply	4	oagulation - Flocculation - Filtration -
	C)	Sedimentation - Storage and Suppr	У	pagulation -Filtration - Disinfection -
	D)	Turbid surface water - Coagulation Sedimentation - Storage and Supply	on - Fl y	occulation -Filtration - Disinfection -
38.	A 19	% solution of sewage sample is incubate found to be 3ppm. Determine the BC	ated for OD of ra	5 days at 20°C. The depletion of oxygen w sewage.
	A)	60 ppm	B)	150 ppm
	C)	300 ppm	(D)	600 ppm
39.	1101	per Noise Pollution (Regulation and se limit for a residential zone, express	l Contro sed in d B)	ol) Rules 2000 of India, the day time B (A) L _{eq} , is
	C)	65	D)	75
40.		en the depth of trench exceeds 1.5 to tical, it becomes necessary to supperation is known as	2m, and ort the	d when excavations is made with side side by sheeting and bracing. This
	A)	shafts of trench	B)	electro-osmosis «
	C)	boning of trench	D)	timbering of trench ×
41.	The	e following two statements are relevan	t to met	hod of sewage disposal.
	Sta	tement - 1: The three principal pro- Broad irrigation or sewage farming, (ii	cesses (of land treatment of wastewater are
	Stat	tement - 2: The ratio of quantity of rec charge is called the dilution factor.		
,*		pose the correct option:		
	A)	Statement 1 is correct and Statemen	t 2 is in	correct
	B)	Statement 2 is correct and Statemen	t 1 is in	correct
	C)	Statement 1 and 2 are correct		
	D)	Statement 1 and 2 are incorrect		in the second se
(Set	-A)	(10))	

Match List - I with List-II and select the correct answer using the codes given below the lists:

List - I (Water properties)

Alkalinity

Hardness ii.

iii. Chlorine

Dissolved Oxygen

List - II (Titrants)

N/35.5 AgNO₃ 1.

 $N/40 Na_2S_2O_3$ 2.

N/50 H₂SO₄ 3.

N/50 EDTA 4.

Choose the correct option:

- (i) 2, (ii) 4, (iii) 3, (iv) 1
- B) (i) - 3, (ii) - 4, (iii) - 1, (iv) - 2
- C) (i) - 1, (ii) - 2, (iii) - 4, (iv) - 3
- (i) 4, (ii) 3, (iii) 2, (iv) 1

Match List - I with List-II and select the correct answer using the codes given below the lists:

List - I (Materials and Air pollutants)

- Materials: Metals; and Pollutants: SO₂ 1.
- Materials: Paper; and Pollutants: SO₂ 2.
- Materials: Textiles; and Pollutants: SO₂

List - II (Effects)

- **Embrittlement** i.
- Reduction in tensile strength ii.
- Tarnishing of surfaces iii.

Choose the correct option:

- (1) i, (2) ii, (3) iii
- B) (1) - ii, (2) - iii, (3) - i
- C) (1) - iii, (2) - i, (3) - ii
- D) (1) - iii, (2) - ii, (3) - i
- Match List I with List-II and select the correct answer using the codes given below the lists:

List - I (Type of water impurity)

- i. Hardness
- Brackish water from sea ii.
- Residual MPN from filters iii.
- **Turbidity** iv.

List - II (Method of treatment)

- Reverse Osmosis
- Chlorination 2.
- 3. Zeolite treatment
- Coagulation, Flocculation and 4. Filtration

Choose the correct option:

- (i) 1, (ii) 4, (iii) 3, (iv) 2A)
- (i) 4, (ii) 3, (iii) 1, (iv) 2 B)
- (i) 2, (ii) 1, (iii) 4, (iv) 3 C)
- (i) 3, (ii) 1, (iii) 2, (iv) 4 = -D)
- Particles may settle out of a suspension in four ways, depending upon the concentration of the suspension and the flocculating properties of the particles. Arrange the four types in order with respect to decreasing of settling depth vs increasing of settling time.

Choose the correct order.

- Discreate settling, Flocculant settling, Zone settling, Compression settling A)
- Compression settling, Flocculant settling, Discreate settling, Zone settling B) ·
- Zone settling, Flocculant settling, Discreate settling, Compression settling C)
- Discreate settling, Zone settling, Flocculant settling, Compression settling D)

	,	in i	which			
46.	Gap	grading of aggregate is one, in the At least one intermediate aggregate	regate fr	actio	n is absent 4 -	
	A)	% passing fall within a narroy	limit of	fsize	fractions	
	B)	% passing fall within a narroy	-f fine a	nd co	arse aggregates	
	C)	Combines different fractions	Of thic a	na co	7,4,50	
	D)	All the aggregate are of same	size			
1		er limit state design method the	ltimat	e stra	in in the outermost comp	****
47.			e ultimat	C Sti a	Comp	ression fiber
		oncrete in bending is taken as				
	A)	0.0020				
	B)	0.0120 0.0035 ***				
	C)					
	D)	0.0520				
48.	A fr	ame having (M) number of me	ember an	d ioi	nts (J) is said to be perfec	t from - :c:
	follo	ows the equation as given below	V		() are so period	t traine if it
	A)	J = 2M - 3		B)	M = 2J - 3	
	C)	M = 3J - 2		D)	J = M + 3	21-3
				notiviti		
<i>J</i> 49.	Con	sider the following pairs, for a ca	antilever	beam	of length (1), loaded by po	int load (w)
	and	flexural rigidity (EI).			The state of the s	introdu (w)
					1	
	i.	Maximum Bending Moment	1.	wl		
	ii.	Strain Farms		wl^2		
	11.	Strain Energy	2.	$\frac{1}{2EI}$		
	iii.	Maximum slop	3.	$\frac{wl^3}{2\pi r}$		
				3EI		
	iv.	Maximum deflection	4.	w^2l^3		
	Wh		100	6EI		
	A)	iich of the pair given below is	correct	ly ma	tched?	
	B)	(i)-(1), (ii)-(4), (iii)-(3), (iv)- (i)-(1), (ii)-(4), (iii)-(2), (iv)-	(2)			
	C)	(i)-(4), (ii)-(2), (iii)-(1), (iv)-	(3)			
	D)	(i)-(4), (ii)-(3), (iii)-(1), (iv)-				
	,		, ,			
50.	The	constituent compounds of cen	nent in de	creas	ging order of rate of hydratic	n are
	A)	C_2S , C_3S and C_3A	ar ar	B)	C_3S , C_3A and C_2S	ni arc
		C_3A , C_2S and C_3S			C_3A , C_3S and C_2S	
					anton transma ent ente	
51.	Whi	ch of the following Indian Standa	ard (IS) co	ode us	sed for wind load analysis for	designing
	bull	ding structure				(8)
	A)	IS 456		B)	IS 800	
	C)	IS 875		D)	IS 1893 ×	
(Set	-A)		(12)			
-	-		()			

52.	In a car	ntilever RCC beam design, tensile rein	force	ment is provided
	A) C	On the top of the beam		
	B) C	On the bottom of the beam		
	C) In	n the middle of the beam		
	D) (On the top and bottom of the beam		
		op and bottom of the beam		
53.	For co	instruction of structure under water the	type	of lime used is
	A) I	Hydraulic lime	<i>3</i> 1	
	B) 1	Fat lime		
		Quick lime		
		Pure lime		
	2)	i die iiiie		
54.	Thes	tandard size of the brick as per IS stand	ard is	
9	A)	$10 \times 9 \times 9$ cm	B)	$18 \times 9 \times 9$ cm
	C)	19 × 9 × 9 cm	D)	23 ×12 ×8 cm
	C)	19 × 9 × 9 cm	D)	
€£.	T J.		ing re	esults in
20.		equate compaction during concrete cast	B)	Rutting
	A)	Segregation	D)	Honey combing
	C)	Bleeding	D)	Tioney comoning
(F)	X 0:1-	face reinforcement is required when the	e der	oth of the web of a beam is
750		Greater than 750 mm	B)	Greater than 900 mm
	A)		D)	Greater than 1000 mm
	C)	Greater than 950 mm	(ע	Greater than 1000
	Diet	ribution of shear stress intensity over a r	ectan	gular section of a loaded beam follows
-57	diag	rammatically	Cottan	
	•	A circular curve	B)	A straight line
	A)	A parabolic curve	D)	An elliptical curve
	C)	A parabolic curve	(ט	
= 0) / The	compressive strength of 100 mm cube	as co	ompared to 150 mm cube is always
58		More	B)	Less
	A)	Same	D)	Unpredictable
	C)	Same	, D)	Onprediction
=0	3171-2	ich of the following is a tensile test of	a cyli	ndrical concrete sample.
29		Commention factor test *	B)	Le Chatelier's test
	A)	Compaction factor test *	D)	A second control of the control of t
	C)	Splitting test	D)	Autociave test
			raiata	of 6 mm bars at 10 cm spacing if it is
60	. The	main reinforcement of a RC stab col	181818 ***	en enacing of 12 mm hars should be
	desi	ired to replace 6 mm bars by 12 mm ba		
	A)	10 cm	B)	
	C)	60 cm	D)	120 cm
		's a standard and and	1 1	er algrens et al (manadon)
61	. The	e void ratio of a fully saturated soil sam	ipie h	naving a porosity of 0.3 is
	A)	0.26	B)	
	C)	0.43	D) 1.0 $e = \gamma$
	-/		2\	1-1
(S	Set - A)	(1	3)	[P.T.O.

1	1771	soil has a bulk density of 55 kN/m	and w	ater content 10%	The dry density a
62.	The	Soll has a con-	D) 101 ₀ N ₁ / ₂₋₃	Ad = 1 soil
	is	E E LN1/m3		10kN/m^3	
	A)	5.5 kN/m ³	D	$)) 55 \mathrm{kN/m^3}$	1740
	C)	$50 \mathrm{kN/m^3}$, *			2.2
		effective in t	reating		1-1
63.	Lim	e stabilization is very effective in tr			
	A)	Sandy soil			
	B)	Silty soil			
	C)	Non-plastic soil			
	D)	Plastic clayey soil			
		Cartamin porticle	·c		
64.	Soil	which contains finest grain particle	,3 D)	Sand	
	A)	Fine sand	D)	man man	
	C)	Clay ···	D)	Silt	
	< T1	minimum water content at which the	ne soil i	ust begins to crun	nble when rolled into
65	thre	ads of 3 mm in diameter, is known as	S		ollu pouce illu
		Liquid limit	B)	Plastic limit ··	
	A) C)	Shrinkage limit	D)	Permeability lin	
	,			Control Miles Control	
66.	. Con	sider soil as a three-phase system, th	e ratio	of $\frac{(Liquia\ Limit\ - Natural)}{Plasticity}$	ral water Content) for the
	soil	mass is called			
	A)	Liquidity index	B)	Shrinkage ratio	Wi-W
	C)	Consistency index	D)	Toughness index	1
A	VV/L-:				
<i>J</i> 67.	wn	ich of the following is a measure of p	article s		
	A) C)	Effective size	B)	Uniformity coef	
	C)	Effective diameter	D)	Elongation index	
68.	Fron	n a laboratory proctor compaction tes	st data	the mass of the soil	and water content
				volume of the pro	ctor mould used is
		dry delisity (y. joi the	soil is	, oranic or the pro	etor moura asea is
	11)	1 g/cm².	B)	1.10 g/cm^3	
	C)	1.50 g/cm^3	D)	1.15 g/cm^3	
69.	În an	unconfined company			
	Cons	unconfined compression test, a satur sider final cross-section area (Af)	ated cla	y sample, fails und	ler a load of 150N.
	(cohe	sider final cross-section area (A_f) esion) of the sample is	= 225	0 mm ² . Then the	shear resistance
	A)	66.21 kPa			
	C)	33.33 kPa	B)	34.95 kPa	
(Sat		• /	D)	15 kPa	
(Set	-A)	(14)		
		(14	,		

70. Consider the following pairs

- i. Standard Proctor Test
- ii. Modified Proctor Test
- iii. Direct Shear Test
- Triaxial Test

- 1. [C, φ], apparent cohesion and angle of internal friction
- 2. 03 layers, 310 mm height of drop
- 03 layers, 310 mm height of drop
 05 layers, 450 mm height of drop
- 4. [C', φ '],strength parameter

Which of the pair given below is correctly matched?

- A) (i)-(1), (ii)-(2), (iii)-(4), (iv)-(3)
- B) (i)-(2), (ii)-(3), (iii)-(1), (iv)-(4)
- C) (i)-(3), (ii)-(2), (iii)-(1), (iv)-(4)
- D) (i)-(4), (ii)-(3), (iii)-(1), (iv)-(2)

71. A fluid is said to be Newtonian fluid when its shear stress is

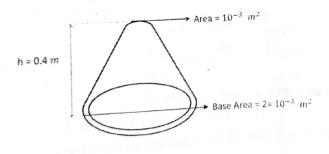
- A) Inversely proportional to the velocity gradient
- B) Proportional to the velocity gradient ...
- C) Independent to the velocity gradient x
- D) Inversely proportional to the shear stress rate *

12. Pascal-second (Pa.s) is the unit of

A) Pressure

- B) Specific gravity
- C) Dynamic viscosity * *
- D) Compressibility

73. If specific gravity of a fluid is 0.5, and dynamic viscosity is 0.5 poise, then the kinematic viscosity of that fluid is $v = \frac{11}{12}$


A) 0.25 stokes

B) 0.50 stokes

C) 1.0 stokes.

D) 25 stokes

74. A uniformly tapering vessel is filled with liquid of density 900 kg/m^3 . Then the force that act on the base of the vessel due to the liquid ($g = 10 \text{ m/sec}^2$) is

F = Sgh A = 900x16x94x2x10-3 = 36pp x2

36 pp x 2

- A) $3.6 \,\mathrm{N}$
- B) 7.2 N
- C) 9.8 N
- D) 15.4 N

The velocity of the upper layer of water in horizontal layers of water is 10 ⁻³ Nm ⁻² . C 10 ⁻² Pa-s. Then depth of the river is	a river is 36 km h ⁻¹ . Shearing stress between onsider co-efficient of viscosity of water is
10-2 Pa-8. Then department 11	

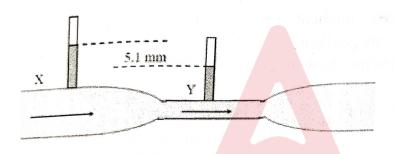
A) 100 m

B) 200 m

C) 360 m

D) 3600 m

Open tank contains 1 m deep water with 50 cm depth of oil of specific gravity 0.6 above it, then the intensity of pressure at the bottom of tank is (taken, $g = 1000 \text{ cm s}^{-2}$)


A) 3 kN/m^2

B) 13 kN/m^2

C) $30 \,\mathrm{kN/m^2}$

D) $40 \,\mathrm{kN/m^2}$

77. The following figure shows a venturimeter, through which water is flowing. The speed of water at "X" is 2 cm s⁻¹ and height difference between "X" and "Y" is 5.1 mm. Then the speed of water at "Y" is (taken, $g = 1000 \text{ cm s}^{-2}$)

- A) 23 cm s^{-1}
- B) 32 cm s^{-1}
- C) 101 cm s⁻¹
- D) 1024 cm s⁻¹

78. An open tank filled with water (density = ρ and g = 9.81 m/sec²) has a narrow hole at a depth of "h" below the water surface. Then the velocity of water flowing out is

A) $\sqrt{2gh}$.

B) ρgh

C) 2 gh

D) gh

79. The Reynold's number for fluid flow in a pipe is independent of

- A) The viscosity of the fluid
- B) The velocity of the fluid
- C) The length of the pipe
- D) The diameter of the pipe

86. The point in the immerse body through which the resultant of the total pressure of the liquid be taken to act is known as

A) Metacenter

B) Centre of gravity

C) Centre of buoyancy

Nos

D) Centre of pressure

(Set-A)

- 81. Bernouli's principle is derived from the law of conservation of
 - A) Energy

B) Mass

C) Linear momentum

- Angular momentum D)
- If a mercury droop is divided into 8 equal parts, then it's total energy
 - A) Remains same

- B) Becomes twice
- C) Decreases by a factor of 8
- Increases by a factor of 8 D)
- 83. The continuity equation is based on which of the following principle
 - A) Conservation of mass
- B) Conservation of static energy
- C) Conservation of kinetic energy
- D) Conservation of momentum
- 84. The major causes for the loss of energy in long pipe is due to
 - Sudden contraction A)

- B) Sudden enlargement
- Loss at the exit of the pipe C)
- D) Friction in the pipe
- 85. Consider the following pairs
 - Pitot tube i.
 - ii. Rheometer
 - iii. Hydrometer
 - Manometer iv.

- Flow and viscous property of fluid 1.
- Flowing fluid velocity at any point 2.
- Pressure of the pipeline 3.
- 4. Specific gravity or density of a liquid

Which of the pair given below is correctly matched?

- (i)-(1), (ii)-(2), (iii)-(3), (iv)-(4)
- (i)-(1), (ii)-(4), (iii)-(3), (iv)-(2) B)
- C) (i)-(2), (ii)-(1), (iii)-(4), (iv)-(3)
- D) (i)-(4), (ii)-(3), (iii)-(2), (iv)-(1)
- If N = Number of layers, W = Weight of the hammer, H = Height of fall, then which of the following option is correct for California Bearing Ratio (CBR) Test using heavy compaction?
 - N = 3, W = 4.89 kg and H = 31 cm A)
 - N = 3, W = 4.89 kg and H = 45 cm B)
 - N = 5, W = 4.89 kg and H = 45 cm . . . C)
 - N = 5, W = 4.89 kg and H = 31 cm D)
- The coefficient of uniformity is defined as 87.

 $Cu = \frac{D_{60}}{D_{10}}$ B)

A) $Cu = \frac{D_{30}}{D_{10}}$ C) $Cu = \frac{[D_{30}]^2}{D_{10}}$

D) $Cu = \frac{D_{30}}{D_{10} \times D_{60}}$

	Da	or a vehicle negotiating a curve, centrifugal force "P", is
88		Directly proportional to the weight of vehicle
1	1.	Inversely proportional to square of velocity &
	ii.	Inversely proportional to radius of curve
	iii.	hich of the above statements are true?
		23 and (11)
	A)	(i) and (ii)
	B)	(ii) and (iii)
	C)	(i) and (iii)
	D)	(i), (ii) and (iii)
	771	e penetration test of bitumen is conducted at X, measuring the penetration of needle
89	loa	ded with Y load for Z time.
	The	e correct values are
	A)	$X = 25^{\circ}C$; $Y = 100 \text{ gm}$; $Z = 5 \text{ sec}$
	B)	$Y = 25^{\circ}$ C; $Y = 100$ gm; $Z = 10$ sec
	C)	$Y = 27^{\circ}C$: Y = 50 gm; Z = 60 sec
	D)	$X = 27^{\circ}\text{C}$; $Y = 100 \text{ gm}$; $Z = 10 \text{ sec}$
	,	carrying out bituminous patch work during rainy season, the most suitable binder is B) Bituminous emulsion
90.	For	carrying out bituminous paten work during B) Bituminous emulsion
	A)	Bitumen
	C)	Cutback bitumen
		the right sequence of the different layers of a flexible pavement construction
91.	Pick	the right sequence of the different layers of
	i.	Base course construction
	ii.	Subbase course construction
	iii.	Surface course and seal coat application
	iv.	Natural subgrade and compacted subgrade construction
	V.	Prime coat, binder course and tack coat application
		ose the correct answer from the options given below
	A)	(i), (ii), (iii), (iv), (v)
	B)	(i), (iii), (v), (ii), (iv)
	C)	(iv), (ii), (i), (v), (iii) *
	D)	(iv), (v), (i), (ii), (iii)
(92)	Allig	ator or map cracking is the most common type of failure in
		Bituminous surfacing · · ·
	B)	Water Bound Macadam (WBM) surfacing
	C)	Wet Mix Macadam (WMM) surfacing
		Telford and Macadam surfacing 🖟
93.	A	
	A ven	icle was stopped in 2 second by fully jamming the break and skid marks measured
	20 m	then average skid resistance is (consider $\alpha = 10 \text{ m/sec}^2$)
	11)	B) 0.50
	~) ·	D) 2.2 $c = \mu^{N}$
(Set-	,	7 19 0
	37	(18)
7	an W	(18) (18) (20) (20) (20)
2	76	B) 0.50 D) 2.2 (18)

_94.	The wall which are necessary on the hill side of road	lway where natural earth has to b	e
	retained from sliding is known as	ange Wi	
	A) Poteini shung is known as		

- Retaining wall A)
- B) Breast wall ...
- C) Parapet wall
- D) Cavity wall

Consider the following pairs

- i. Los angeles abrasion
- ii. Size
- Durability iii.
- iv. Impact

- Gradation 1.
- Toughness 2.
- Hardness 3.
- Soundness 4.

Which of the pair given below is correctly matched?

- (i)-(2), (ii)-(1), (iii)-(3), (iv)-(4)
- B) (i)-(2), (ii)-(4), (iii)-(3), (iv)-(1)
- C) (i)-(3), (ii)-(1), (iii)-(4), (iv)-(2) -
- (i)-(3), (ii)-(4), (iii)-(1), (iv)-(2) D)

The fundamental relationship between space-mean speed (u), traffic density (k) and traffic flow (q) is

 $q = u \times k$ A)

 $q = \frac{k}{u}$ C)

97. Which of the following rails is most preferred by Indian railway

Flat footed rails A)

Bull head rails B)

Double headed rails C)

Thin headed rails

Gauge is the horizontal distance measured between

- Centre to center of two rails
- Inner or running faces of two rails -
- A) Outer to inner face of two rails
- Inner to Outer face of two rails D)

Two major constituents in the composition of steel used in rail are

Carbon and Silicon A)

- Carbon and Sulphur
- Carbon and Manganese
- Carbon and Lithium D)

160. The rising gradient on which a moving train takes the advantage of the preceding falling gradient, usually referred as Neutral gradient

- Pusher gradient
- B)

Ruling gradient C)

Momentum gradient . - -D)

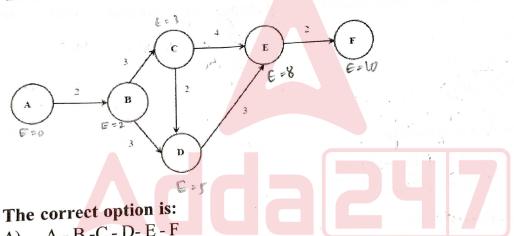
106	The	longitudinally movement of rails	s in a tra	ck	is technically referred as
191.				B)	Buckling
	A)			D)	Tilting
	C)	Creeping			
	T1	sleeping of driving wheels of loc	omotive	es o	n the rail surface causes,
102.		sleeping of driving whose	J	B)	Hogging of rail
	A)	Wheel burns	1	D)	Buckling of rail
	C)	Corrugation of rail .			
	T.	wear of the rail is maximum at			
103.		wear of the rail is maximum.	E	3)	Sharp curve
•	A)	Tunnel Coastal area	I))	Square crossing
	C)	Coastal alca			(2.5) wing
404	1176	ich among the following organizati	on is the	Re	search and Development (R&D) wing
1114.	will off.	ndian Railways			
		IRCTC			
	A) B)	DRDO			
	C)	RDSO .			
	D)	CRIS	11		
185.	Con	sider the following pairs	Λ	_:1 +	fastenings with concrete sleeper
700.	i.	Ballast		all	old the rail in proper gauge
	ii.	Sleeper	2 T	ha	nd the rail
	iii.	Jim crow	 To To) DC	ovide cushion effect to the track
	iv.	Pandrol clip	eractly i	การเ	ched?
	Whi	ich of the pair given below is con	recuy i	LHION	
	A)	(i)-(2), (ii)-(1), (iii)-(3), (iv)-(4)	7		
	B)	(i)-(2), (ii)-(4), (iii)-(3), (iv)-(1)-(i)-(3), (ii)-(1), (iii)-(4), (iv)-(2)			
	C)	(i)-(4), (ii)-(2), (iii)-(3), (iv)-(1)	1		
	D)	(1)-(4), (11)-(2), (111) (3), (11)			u u i i ta tara agual
10%	W/ha	t is the portion of a brick obtained b	y cutting	g th	e brick longitudinally into two equal
100.	parts	7			
	A)	Queen closer	B)		King closer
	C)	Half bat ·	D)		Bewelled closer
			antion t	ha	length of long wall is the center to
167.	In lo	ng and short wall method of estin	nation, t	ne	length of long wall is the center to
,	cente	r distance between the wall and			
	A)	breadth of the wall	de .		
	B)	half breadth of the wall on each sid	ich side		
	C)	one forth breadth of the wall on ea	ch side		
	D)	one fifth breadth of the wall on each	on side		
100	The s	Danne Brook Course (D.P.C.) is mea	asure in		
		Damp Proof Course (D.P.C) is mea	B)	S	Square meter -
	,	Cubic meter Meters	D)		Rupees per meter
		IVICIOIS	<i>D</i>)	1	captoo per motor
(Set -	A)		20)		

- 109. While submitting a tender the contractor is required to deposit some amount with the department, as guarantee of the tender, known as
 - Bank guarantee A)

Caution money B)

Security deposit C)

Earnest money... D)


- Estimated value of a built up property at the end of its useful life without being dismantled is known as,
 - A) Scrap value

Salvage Value --B)

C) Market value

Book value D)

- 111. In a network diagram, an activity having a dotted arrow between two activity is referred as,
 - Important activity A)
 - B) Risky activity
 - Dummy activity ---C)
 - D) Delayed activity
- 112. In the following network, choose the Critical Path from given options, (the number on the arrow shows duration of activity)

A - B - C - D - E - F

- A-B-D-E-F
- B) A - B -C- E - F C)
- A B -D C- E F
- M3. If the optimistic time (t_0) , most likely or probable time (t_m) , and pessimistic time (t_p) , for activity (A) are 2, 5 and 14 days respectively, then expected duration and variance of B) 6 and 4 days ... the activity are
 - 2 and 5 days A)

D) 16 and 5 days

114. As per Critical Path Methodology (CPM) the earliest start time for an event (I) is 10 weeks. Activity (I-J) takes 4 weeks for completion. Event (J) starts after 20 weeks. Then the total float for activity (I-J) is, 6 weeks ...

2 weeks

16 weeks D)

12 weeks C)

(21)

[P.T.O.

- 145. The difference between Late Start and Early Start Time of an activity is referred as,
 - Float ... A)
 - Progress of an activity B)
 - Task of a work C)
 - PERT task D)
- 116. A scheduled activity may begin 10 days before the predecessor activity finishes. Then it's referred as an example of,
 - Finish to start A)
 - Finish to finish B)
 - Start to finish (C)
 - Start to start D)

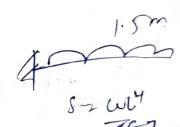
117. Following is a Rate list for an earth excavation work:

ronowing is a react not for the			11 . 11 - mate
S.No	Item: earth work	Rate	Variable rate
1		Rs.10/cum	Nil
I	Machine excavation	Rs. 4000 fixed	Rs.2 /cum
111	Machine Cacavation		C

As per above rate list, estimated quantity of earth, for which the cost of excavation by machine will be equal to the cost of manual excavation, considering variable rate is

- 500 cum A).
- 1000 cum B)
- 2500 cum C)
- 3000 cum D)
- 118. The cost slop is defined as
 - Crash cost Normal cost
 - Normal time
 - Crash cost Normal cost B)
 - Crash time
 - Crash cost C) Normal time-Crash time
 - Crash cost-Normal cost D) Normal time-Crash time
- 1) Which among the following, means statistical quality control of RCC work at civil construction site?
 - Minimizing cost for removal of defective work A)
 - Appling theory of probability to sample testing or inspection · · · B)
 - Minimizing in wastage of inspection cost C)
 - Calculating risk probably to minimize utilization D)

(Set-A)


120. Consider the following pairs

- i. Net working
- ii. Activity
- iii. Event
- iv. Dummy activity

- actual performance of the task and consume time or resources, represented by an arrow
- an arrow diagram obtained by connecting all the activities of a project in a logical sequence
- 3. sequential relationship between other activities but does not consume resources, and represented by a circle
- 4. start or completion of tasks and does not consume time or resources, and represent precedence relationship between real activities.

Which of the pair given below is correctly matched

- A) (i)-(2), (ii)-(1), (iii)-(3), (iv)-(4)
- B) (i)-(2), (ii)-(4), (iii)-(3), (iv)-(1)
- C) (i)-(3), (ii)-(1), (iii)-(4), (iv)-(2)
- D) (i)-(3), (ii)-(4), (iii)-(1), (iv)-(2)

Add By 71

LST-EST

W = 6x1.5 Pw EI 0.5x19/co

A, 2+20+14

36
6

V = 0.5 V = 0.5x 0.1 NS/

. 70 W LS (22a)

20-10)-4 IP.T.O.