

Quantitative Aptitude

Time and Work: Work and Efficiency Concepts

Concept	Formula / Explanation	Example / Note
Work	Work = Time × Efficiency	If A does 5 units/day for 6 days,
WUIK	Work - Time × Efficiency	Work = $5 \times 6 = 30$ units
Efficiency	ECC -i VAIl- / Ti	
Efficiency	Efficiency = Work / Time	If work is 60 units and A takes 10
m'	THE TAX 1 / DCC: 1	days, Efficiency = 6 units/day
Time	Time = Work / Efficiency	If work = 48 units, efficiency = 6
		units/day, Time = 8 days
Total Work	Total Work = LCM of individual times	If A takes 6 days, B takes 8 days,
		Total Work = $LCM(6.8) = 24$ units
Combined Efficiency	A's Eff + B's Eff = Total Eff	If $A = 4$ units/day, $B = 6$ units/day,
		together = 10 units/day
Efficiency Ratio (based	Efficiency $\propto 1/\text{Time} \Rightarrow E_1 : E_2 = T_2 : T_1$	If A takes 5 days, B takes 10 days
on time)		\Rightarrow E ₁ : E ₂ = 10:5 = 2:1
Work Ratio (based on	Work done ∝ Efficiency × Time	Use to split wages/amounts based
efficiency)		on contribution
Men, Days, Work	$M_1 \times D_1 = M_2 \times D_2$ (when work is same)	Used when number of men and
		days change
One day's work	1 day's work = 1 / total days	If A finishes in 10 days, 1 day work
		= 1/10
Total work from 1 day's	Total Work = 1 day's work × Total Days	Reverse of above
work		
A is 'x%' more efficient	Let B's eff = 100, then A = $100+x \Rightarrow Ratio =$	If A is 25% more efficient ⇒ Ratio
than B	A:B = (100+x):100	= 125:100 = 5:4
A is 'x%' less efficient	$A = 100-x \Rightarrow Ratio = A:B = (100-x):100$	If A is 20% less \Rightarrow Ratio = 80:100 =
than B		4:5
Alternate Work Days	Use unit method or LCM, consider number	Alternate day working is solved
	of days each person works	step-wise
Pipe & Cistern as	Leakage = negative efficiency	If pipe fills 10 units/day and leak
Negative Work		empties 2, net = 8 units/day
Work Sharing Based on	Share ∝ Efficiency × Time worked	For unequal working durations
Efficiency		
Inversely Proportional	Time ∝ 1 / Efficiency	Time taken is inversely
Time		proportional to speed or efficiency
		proportional to speed of efficiency

Time and Work - Concepts, Formulas & Shortcuts

<u>rime and work - concepts, Formulas & shortcuts</u>		
Concept / Topic	Details / Explanation	Formula / Key Point
1. Basic Work Formula	Work is directly proportional to time and	Work = Time × Efficiency
	efficiency.	
2. Unit Work Method	Total work is considered as 1 unit (or LCM of	Use unitary method: If A completes in 10
	days if needed).	days, A's 1 day work = 1/10
3. Time Taken to Complete Work	If A can do a piece of work in 'x' days.	Work done/day = $1/x \Rightarrow$ Total Time = $1 \div$
		Work done/day

4. Combined Work	If A can do a work in x days and B in y days.	(A + B)'s 1 day work = $1/x + 1/y$
		Time = xy / (x + y)
5. Efficiency and Time Relation	More efficiency means less time.	Efficiency ∝ 1 / Time
6. Ratio of Work and Time	Compare work done by different people.	$Time_1 / Time_2 = Efficiency_2 / Efficiency_1$
7. Work Done in 'n' Days	If A's 1 day work is 1/x, work done in n days =	Total Work Done = Days × Efficiency
	n/x	
8. Remaining Work	Total work - work done = Remaining work	Can use unit work method or LCM
9. A leaves the work after n days	Handle work in parts: work done with A + rest	Break the problem into phases
	by others	
10. Men, Women, and Children	Use efficiency ratio (e.g., M:W:C = 4:3:2)	Convert all to a single unit for comparison
11. LCM Method	Take LCM of individual days to assume total	Makes calculation easier
	work	
13. Work and Wages	Wages ∝ Work Done (not time)	Total Wages × (Person's Work / Total
		Work)
14. Unequal Working Days	If people work different days, calculate work	Assign wages in ratio of work done
(Wages)	individually	
15. Alternate Working Days	A & B work alternately (e.g., A-B-A)	Count days and multiply by individual 1
		day work
16. Negative Work (Leaking Pipes /	If B undoes A's work, subtract	Net work = A's work - B's work
Spoilers)		
17. Work Completion %	To find part of work <mark>completed</mark> or left	Work done = (No. of days × 1 day work)

Work and Wages Specific Concepts

World with the desired delice but		
Case	Explanation	Formula / Example
Equal Wages	All do equal work	Divide equally
Unequal Efficiency	More efficient person gets more wage	Wages ∝ Work Done
Different Time Periods	Different days of work	Wages ∝ (Days × Efficiency)
Ratio-Based Wages	If A:B:C work ratio = 2:3:5	Divide total wages in 2:3:5
Wages with Partial Work	If total work = 60 units	A's Wage = (20/60) × Total Wage
	A: 20 units, B: 40 units	

Time and Work - (Man-Day Based)

S.No.	Concept	Explanation / Formula	Example / Note
1.	Work and Time Relationship	More men \rightarrow less time; More time \rightarrow more work	Work ∝ Men × Days
2.	Basic Formula	Work = Men × Days × Hours (if hourly rate given)	If 5 men do a work in 4 days, total work = $5 \times 4 = 20$ man-days
3.	Combined Work Rate	A's 1-day work + B's 1-day work = (A + B)'s 1-day work	If A = 1/10, B = 1/15, together = 1/10 + 1/15 = 1/6
4.	Total Work in Units	If A completes in x days, then total work = x units	Used to avoid fractions
5.	Work Efficiency Ratio	If A: B = efficiency ratio, then Time ratio = 1: efficiency	If A is twice as efficient as B \rightarrow Time ratio = 1 : 2
6.	More Men, Less Time	$M_1 \times D_1 = M_2 \times D_2$ (if work constant)	Men × Days = Constant
7.	A and B together, but A leaves after some days	Use A + B's rate × days + B's rate × remaining days	Useful for replacement problems
8.	Inversely Proportional Rule	Work is constant → Men and Days are inversely proportional	$M_1: M_2 = D_2: D_1$
9.	Negative Work (Leakage, Destruction)	Net work = Work done – Work undone	Pipes filling and leakage
10.	LCM Method	Assume total work as LCM of days taken by individuals	Simplifies fraction-based calculations
11.	One finishes a fraction, rest completes	Find part done, remaining part and respective time	Very common in SSC exams

Type of Question	Example Scenario	How to Approach
1. A starts, B next, alternate	A can do a work in 6 days, B in 12 days. They	Find A's and B's 1-day work. Add both for 2-day
till completion	work alternately starting with A. In how many	cycle. Repeat till total work is done. If work left
	days will the work be completed?	after full cycles, assign last day accordingly.
2. Total work given, who	Work is 20 units. A does 4 units/day, B does 2.	Find how much work is done in each 2-day cycle
works on last day?	A starts alternately. Who works on last day?	(A+B), divide total work, check remaining.
		Remaining work tells who works last.
3. B starts instead of A	B starts first, works alternate days with A.	Same logic as above, but reverse the sequence.
	Who finishes last?	Start cycle with B.
4. Work completed in N	A and B work on alternate days starting with	Count A's and B's days in sequence: A works on
days, how many days did A	A. Total work done in 7 days. How many days	odd days, B on even. Split 7 days accordingly: A = 4
and B work?	did each work?	days, B = 3 days.
5. Unequal Efficiency /	A does 5 units/day, B does 3 units/day. A	2-day work = A+B = 8 units. Divide 35 by 8. After
Units Given	starts, they work alternately. Total work = 35	full cycles, assign leftover work to A or B as per
	units. Find days needed.	day.

For more study material and quizzes check out SSC CGL Target 150+ Success Series

