

Time Allowed: Two Hours

MATHEMATICS

Marks: 100

Name:

Roll No. ____

Read instructions given below before opening this booklet:

DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO

- 1. Use only BLUE Ball Point Pen.
- In case of any defect Misprint, Missing Question/s Get the booklet changed. No complaint shall be entertained after the examination.
- Before you mark the answer, read the instruction on the OMR Sheet (Answer Sheet) also before attempting the questions and fill the particulars in the ANSWER SHEET carefully and correctly.
- There are FOUR options to each question. Darken only one to which you think is the right answer. There will be no Negative Marking.
- Answer Sheets will be collected after the completion of examination and no candidate shall be allowed to leave the examination hall earlier.
- The candidates are to ensure that the Answer Sheet is handed over to the room invigilator only.
- Rough work, if any, can be done on space provided at the end of the Question Booklet itself. No extra sheet will be provided in any circumstances.
- Write the BOOKLET SERIES in the space provided in the answer sheet, by darkening the corresponding circles.
- Regarding incorrect questions or answers etc. Candidates kindly see NOTE at the last page of the Booklet.

KL-14/Maths

Series-A

Test Prime

ALL EXAMS, ONE SUBSCRIPTION

70,000+ Mock Tests

600+ Exam Covered

Personalised Report Card

Previous Year Papers

Unlimited Re-Attempt

500% Refund

ATTEMPT FREE MOCK NOW

Adda247

		.				
Q.1: If A is a (3x3)	non-singular matrix such t	that $AA^{T} = A^{T}A$ and	$R = A^{-1}A^{T} then RR^{T}$			
(A)/+B	(B) <i>I</i>	(C) A+B		(1997) (1997)		
Q.2: If A is a (2x2)	non-singular matrix, then t					
(A) A	(B) <i>I</i>	(C) A ²	(D) -/	۱.		
Q.3: Let P and Q be	(3x3) matrices with P# Q	. If P ³ =Q ³ and P ² Q=Q				
(A) I	(B) 0	(C) 2	(D) •2			
Q.4: If A & B are (n	xn) matrices, then which o	of the following staten		đ		
	Q.4: If A & B are (nxn) matrices, then which of the following statements is generally invalid (A) If A ⁴ has an inverse, so has A (B) If AB has an inverse, so has B					
$(\mathbf{C}) \boldsymbol{\alpha}\boldsymbol{A} =\boldsymbol{\alpha}$	[A], for any positive value	of α (D) A ⁻¹ B	$A^2 = A B $			
	$\begin{bmatrix} 0\\0\\1 \end{bmatrix}$. If $u_1 \& u_2$ are column	in matrices such that A	$u_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \& Au_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$	1		
then $(u_1 + u_2)$	En anteres and		121			
(A) [-1, 1, 0]			0] ^T (D)[1,	-1,-1] ^T		
Participante de la companya de la c	lar matrix then $A(adj A)$					
(A) Identity				metric matrix		
Q.7: If A is skew symmetric matrix of order (n x n), then the trace of A is						
(A) n	(B) –n	(C) 0	(D) n ²			
$Q.8: If A = \begin{bmatrix} 2x & 0 \\ x & x \end{bmatrix} i$	$\&A^{-1} = \begin{bmatrix} 1 & 0\\ -1 & 2 \end{bmatrix}, \text{ then } x$	is				
(A) 1	(B) 2	(C) ½	(D) -2			
Q.9: If sina cosß cosa sinß	$=\frac{1}{2}$, where $\alpha \& \beta$ are as	cute angels, then the vi	alue of $(\alpha + \beta)$ is			
(A) 2π/3		(C) π/6	(D) -π/6			
Q.10: If A is a non-si	ingular matrix of order 3 st		5, then A' is			
(A) 225	(B) 25	(C) 15	(D) 20			
Q.11: The largest value of a third order determinant, whose elements are 0 or 1 is						
(A) I	(B) 0	(C) 2	(D) 3			
Q.12: If P(1,2), Q(4,6	5), R(5,7) and S(a ,b) are th	he vertices of a paralle	logram PQRS, then (a,	b) is		
(A) (2, 4)	(B) (3, 4)	(C) (2, 3)	(D) (3, 5)			
Q.13: The distance between the parallel lines $y = 2x + 4$ and $6x = 3y + 5$ is						
(A) ¹⁷ / _{√3}	(B) 1	(C) 3	(D) $\frac{17\sqrt{3}}{15}$			
Q.14: If the line $y = mx + \frac{4\sqrt{3}}{m}$, $(m \neq 0)$ is a common tangent to the parabola $y^2 = 16\sqrt{3}x$ and the						
ellipse $2x^2 + y^2 = 4$, then the value of m^2 is						
(A) 4	(B) 16	(C) 2	(D) -2			
KL14/Maths	auro 🖓 — Addenica Carantell	Series- A	. 1			

•

O 15: An equation of	a place parallel to th	e plane $x = 2x + 2z =$	5 and at a unit distance from origin is
(A) x - 2y +		(B) $x - 2y + 2z$	
(C) $x - 2y +$		(D)x - 2y + 2z	
· · · · · · · · · · · · · · · · · · ·		cle which touches the x	axis at the point (1,0) and passes
through the po	int (2,3) is		
(A) 10/3	(B) 3/5	(C) 6/5	(D) 5/3
Q.17: An ellipse is dr	awn by taking a diam	eter of the circle $(x - 1)$	$x^2 + y^2 = 1$, as its semi minor axis
and a diameter	of the circle $x^2 + (y)$	- 2) ² = 4, as semi maj	or axis. If the centre of the ellipse is
the origin and its	axis are the coordina	te axis, then the equation	n of the ellipse is
$(A)4x^2 + y^2 =$	= 4	$(B)x^{2} + 4y^{2} = 8$	B
$(C)4x^2 + y^2 =$	8	$(D)r^2 + 4y^2 = 2$	16
Q.18: The equation	of the tangent to the c	urve $y = x + \frac{4}{x^2}$, that is	parallel to x axis is
(A) y=1	(B) y=2	(C) y=3	(D) y=0
Q.19: If two tangent	s are drawnfrom a po	int P to the parabola y2=	4x are at right angles, then the locus
of P is			
	(B) x=-1	(C) 2x-1=0	• •
Q.20: If the vectors	$\bar{a} = i - j + 2k, \bar{b} = 3$	$2i+4j+k, \bar{c}=\lambda i+j$	+ μk are mutually orthogonal,
then (λ, μ) is			
	(B) (-2,3)	(C) (32)	0.000.000000000000000000000000000000000
Q.21: The line L is g	given by $\frac{x}{5} + \frac{y}{b} = 1$.	passes through the point	(13,32). The K is parallel to L and
has the equat	$ion \frac{x}{c} + \frac{y}{3} = 1$, then	the distance between L	and K is
(A)√17	(B)√17/12	(C)23/√17	(D)√17/√15
Q.22: The circle x^2 .	$+y^2 = 4x + 8y + 5$,	intersect the line $3x - 4$	y = m at two distinct points if
(A) -35 <	m < 15 (B) 1	5 < m < 65 (C) 3	5 < m < 85 (D) -85 < m < -35
Q.23: Let \hat{a} and \hat{b} ar	e two unit vectors. If	the vectors $\hat{c} = \hat{a} + 2\hat{b}$ as	nd $d = 5a - 4b$ are perpendicular to
each other, the	n the angles between	à and b is	
(A)π/6	(B) π/2	(C) π/3	(D)π/4
Q.24: Let the line $\frac{x}{3}$	$\frac{-2}{1} = \frac{y-1}{-5} = \frac{z+2}{2}$ li	es in the plane x + 3y -	$\alpha z + \beta = 0$, then (α, β) is
(A) (6,-17)	(B) (-6,7)	(C) (5,-15)	(D) (5,-15)

KL14/Maths

....

Series- A

Q.25: If $\bar{a}, \bar{b}, \bar{c}$ are three mutually perpendicular vectors each of magnitude unity, then $|\bar{a} + \bar{b} + \bar{c}|$ is

equal to

Q.26: If θ is the angle between \bar{a} and \bar{b} such that $\bar{a} \cdot \bar{b} > 0$, then '

$$(A)0 \le \theta \le \pi \quad (B)\pi/2 \le \theta \le \pi \quad (C)0 \le \theta \le \pi/2 \quad (D)0 \le \theta \le 2\pi$$

Q.27: The point of intersection of the curves $r^2 = 4 \cos\theta$ and $r = 1 - \cos\theta$ is

(A)
$$(2\sqrt{2} - 2, 80^{\circ})$$
 (B) $(2, 60^{\circ})$ (C) $(3, 70^{\circ})$ (D) $(-2\sqrt{2}, 80^{\circ})$

Q.28: If $f: R \rightarrow R$ is given by f(x) = 3x - 5, then $f^{-1}(x)$ is

$$(A)\frac{1}{3x-5}$$
 (B) $\frac{x+5}{3}$

(C) Does not exist because f(x) is not one-one (D) Does not exist because f(x) is not on to

Q.29: If
$$f(x) = sin^2 x + sin^2 \left(x + \frac{\pi}{3}\right) + cosx. cos \left(x + \frac{\pi}{3}\right) and g\left(\frac{3}{4}\right) = 1, then gof(x) is$$

(A) 1 (B) 0 (C) sin x (D) cos x

Q.30: If the non-zero numbers x, y, z are in A.P. and tan⁻¹(x), tan⁻¹(y), tan⁻¹(z) are also in A.P., then

(A)
$$x = y = z$$
 (B) $xy = yz$ (C) $x^2 = yz$ (D) $z^2 = xy$

Q.31: If ax = by = cx and a, b, c are in G.P., then x, y, z are in

Q.32: The HM of two numbers is 4. If the arithmetic mean A and geometric mean G satisfy the

relation 2A+G2=27, then the numbers are

(A) AP

(A) 1

Q.33: If $\lim_{n \to \infty} \left(\frac{x^2}{x+1} - ax - b \right) = 0$, then the value of (a, b) is equal to (A) (1,-1) (B) (2,-1) (C) (-1,2) (D)(2)

Q.34: The value of $\lim_{x\to 0} \{\tan\left(\frac{\pi}{4} + x\right)\}^{1/x}$ is

Q.35: If $f(x) = a|sinx| + be^{|x|} + c|x|^3$ and if f(x) is differentiable at x=0, then

(C)e2

Q.36: Let $f(x) = \begin{cases} \frac{1}{|x|} & |x| \ge 1 \\ ax^2 + b, |x| < 1 \end{cases}$; if f(x) is continuous and differentiable at any point, then

Q.37: Let f(x) be a twice differentiable function such that f''(x) = -f(x) and f'(x) = g(x),

$$h(x) = {f(x)}^2 + {g(x)}^2$$
, if h (5) = 11, then h (10) is equal to

KL14/Maths

3

(D)e

Q.38: If $f(x + y) = f(x)$.	(v), for all x, y €	R, & f(5) = 2, f'(0) =	3, then f'(5) is		
(A) 6	(B) 3	(C) 5	(D) 7		
Q.39: If $y = 4x - 5$ is a t	angent to the curve)	$r^2 = px^3 + q$ at (2, 3), the	hen (p, q) is equal to		
(A) (27)	(B) (-2, 7)	(C) (-2,-7)	(D) (2, 7)		
Q.40: The length of the n	ormal at t on the curr	e x = a(t + sint), y =	a(1 – cost) is		
(A) $a \sin(t)$	(B) $2asin^3\left(\frac{t}{2}\right)$	$sec(t)$ (C)2 $asin\left(\frac{t}{2}\right)$	$tan\left(\frac{t}{2}\right)$ (D)a cos (t)		
$Q.41: \ln f(x) = a \ln x + \frac{1}{2}$	+ bx^2 + x has its ext	tremum values at x=-1, x	=2, then (a, b) is equal to		
(A) (2,-1)	(B) (2,-1/2)	(C) (-2, 1/2)	(D)(1,1)		
Q.42: Let $f(x) = x - 1 $	+ x-2 , then the	derivative of f(x) at x=1	/2 is		
(A)-2	(B) -1/2	(C) ½	(D) 2		
Q.43: If 2a+3b+6c=0, the	n at least one root of	the equation $ax^2 + bx$	+ c = 0, lies in the interval		
(A) (0, 1)	(B)(1,2)	(C) (2, 3)	(D) (3, 4)		
Q.44: If $\int \frac{2x^3+3}{(x^2-1)(x^2+4)} dx$	$= a \ln \frac{x+1}{x-1} + b \tan x$	$-1\left(\frac{x}{2}\right) + C$, then (a, b)			
(A) (-1/2, ½)	(B)(1/2, ½)	(C) -1, 1)	(D) (1, -1)		
Q.45: The integral $\int [1 + x - 1/x] e^{x+1/x} dx$ is equal to					
			$(x+1/x) + C (D)e^{(x+1/x)} + C$		
Q.46: The value of the ir	ntegral $\int_0^{\pi} \sqrt{(1+4s)}$	$\sin^2 x/2 - 4\sin x/2) dx$	is		
$(A)\pi - 4$	$(B)\frac{2\pi}{3} - 4 -$	- 4√3 (C)-4 + 4√3	$(D) - \frac{\pi}{3} - 4 + 4\sqrt{3}$		
Q.47: The value of the integral $\int_{-1}^{1} \sqrt{(1+x)/(1-x)} dx$ is					
(A) π	(B) - π	(C) #	(D) Does not exist		
Q.48: The line segment	$x = \sin^2(t), y = co$	$s^2(t); 0 \le t \le \pi/2$, is	revolved about the y axis, Then the		
surface area of	the solid generated is				
(A) <i>π</i> √2	(B) 2√π	(C) √2π	(D) 2π		
Q.49: The curvature of t	he curve $r = sin26$	$\theta at \theta = \pi/4$ is			
(A) 5	(B) -5	(C) 5/2	(D) 2/5		
Q.50: The area bounded	between the parabol	as $x^2 = \frac{y}{4}$ and $x^2 = 9y_1$	and the straight line y=2 is		
$(A)\frac{10\sqrt{2}}{3}$		(C)(10√2			
Q.51: An asymptote to t	the curve $x^3 + y^3 = 1$	3xy = 0 is $x + y + a = 0$, th	en the value of a is		
(A) -1	(B) 1	(C) ½	(D) 2		
Q.52: The order and de	Q.52: The order and degree of differential equation $\left[\frac{d^2y}{dx^2} + y\right]^{3/2} = \left[\frac{dy}{dx}\right]^{2/3} + yx$ is				
(A) 2, 3	(B) 2, 9	(C) 2, ¾	(D) not defined		
KL14/Maths		Series- A	4		

1

1

Q.53: The general sol	lution of the first order of	equation $x^2y' - 2xy = 3$	is				
(A) $3/2 + \frac{c}{x^2}$	(B) -3/2+ c	(C) $cx^2 - 1/x$	(D) $cx^2 + 1/x$				
Q.54: The particular	integral of $y'' + y = ta$	in (x) is					
$(A) - \cos(x)$	ln(secx + tanx)	(B) cos (x) ln(:	secx + tanx)				
$(C) - \sin(x) l$	$(C) - \sin(x)\ln(secx + tanx) $ (D) sin (x) ln(secx + tanx)						
Q.55: The singular se	olution of the differentia	al equation $y = xy' + {y'}^{3}$	is				
$(A)x^{2} + 4y =$	$= 0$ (B) $x^2 - 4y =$	0 (C) $-x^2 - 4y =$	0 (D) $-x^2 + 4xy = 0$				
Q.56: The curve in	which the slope of the t	angent at any point equal t	to the ratio of abscissa to the				
ordinate of the	point is an						
(A) Ellipse	(B) Parabola	(C) Rectangular hyper	bola (D) Circle				
Q.57: If $f'(x) = f(x)$	f(1) = 2, then $f(3)$) is equal to					
(A) e ²	(B)2e ²	(C)3e ²	(D) 3e ³				
Q. 58: The value of i1	* + i ²⁰ + i ³³³ + i ⁴⁰³ (where $i = \sqrt{-1}$) is					
(A) 1	(B)-1	(C) 0 (D)	2				
Q. 59: The number of	real solutions of the equ	ution $ x ^2 + 2 x + 2 = 0$) are				
(A) 4	(B) 3	(C) 2 (D)	0				
Q. 60: If the ratio of the roots of the equation $ax^2 + bx + c = 0$ is r then $\frac{(r+1)^2}{r}$ is equal to							
$(A)\frac{a^2}{bc}$	(B) ^{b²} _{ca}	(C) c?	$(D)\frac{1}{abc}$				
Q. 61: If Z is a complex number, then the greatest and lowest value of $ Z + 1 $, if $ Z + 1 \le 3$ are							
(A) 5, 0	(B) 8, 0	(C) 6, 0 (D)	9.0				
Q. 62: The smallest pos	sitive integral value of n	for which $\left(\frac{1+t}{1-t}\right)^n = 1$ is					
(A)8	(B) 12	(C) 16 (D)	14				
	A CONTRACTOR OF	the n, no roots of unity, th					
$(1-\omega)(1-\omega^2)$							
(A) 0	(B) 1	(C)n (D)m ²				
Q. 64: The complex num	nbers Sin x + ; Cos2x ar	nd Cos x - ; Sin2x are conj	ugate to each other for				
(A) x = (n-	$(B) x = \pi/2$	2 (C) x = 0	(D) no value of x				
Q. 65: Let $f(x) = \sqrt{2}$	$x^2 + 3x - \sqrt{3}$ and $g(x)$	$x = x - \sqrt{2}$ are two polynomials $x = \sqrt{2}$	mials in x with real				
coefficients, when $f(x)$ is divided by $g(x)$ the remainder is $5\sqrt{2} - \sqrt{3}$. The quotient is given by							
(A) √2x	-5 (B)√2	$x + 5$ (C) $\sqrt{2}x - 3$	(D) $\sqrt{2}x + 3$				
Q. 66: Let $(a^{\circ}(B)^2 = a^{2 \circ}b^2$ for 'a' and 'b' are in a group G, then a b equals							
(A) b*a	(B) e	(C) a*e	(D) b*c				

KL14/Maths

Series- A

.

|--|

-

Q. 67: The sum of 23 and 3 (A) 5	(B) 6	(C) 7	(D) 9	
Q. 68: If 'a' is a generator	of a finite cyclic gro	up G of order n, then	the other generators o	f G are the
elements of the form				
(A) Prime nur		osite number (C) R	elatively prime to n	(D) Zero
Q. 69: What is the order of	the cyclic (1, 4, 5, 7	D		
(A) 4	(B) 1	(C) 3	(D) 2	
Q. 70: How many differen	t signals can be give	m with 5 different flag	gs by hosting any num	ber of them at
a time				
(A) 325	(B) 626	(C) 253	(D) 352	
Q. 71: What is the chance of	of getting multiple o	f 2 on one and multip	le of 3 on the other in	a single throw
of dice				
(A) 1/3	(B) 7/36	(C) 11/36	(D) 13/36	
Q. 72: A person draws two	cards with replacer	nent from a pack of S	2 cards. What is the pr	obability that
he gets both the card				
(A) 1/4	(B) 3/13	(C) 1/16	(D) 5/16	
Q. 73: The value of P(x=2)	in a binomial distril	bution when p= 1/6 ar	nd n= 5 is	
///6	(B) ²⁵⁰ /7776		1116	$\frac{25}{7776}$
Q.74: A purse contains 4				
and 2 silver coins. A	coin is taken out of a	any purse, the probabi	lity that it is a copper of	coin is
(A) 4/7	(B) 3/4	(C) 3/7	(D) 37/56	
Q.75: If the probability of	a defective bolt is	then the moment	of coefficient of ske	wness is
(A) 0.0178	(B) 0.178	(C) 1.78	(D) 0.00178	
Q.76: A car hire firm has		out day by day. The n	umber of demands for	a car on each
			he value of the propor	
which neither car is				
(A) 0.2231	(B) 0.2131	(C) 0.2321	(D) 0.223	
Q.77: Area of the normal	curve between mea	n ordinate and ordinat	es at 3 sigma distances	from the
mean percentage of	f the total area is			
(A) 48.865	(B) 49.865	(C) 47.865	(D) 46.865	
Q.78: The numbers 3.2, 5	5.8, 7.9, and 4.5 have	e the frequencies x, (x	+2), (x-3) and (x+6) re	spectively. If
the arithmetic mean	is 4.876, then the v	olume of x is		

KL14/Maths

Series- A

6

Q.79: If the mean and m	nedian of moderately	asymmetrical series are 2	6.8 and 27.9 respectively what
would be its most p		•	
(A) 31.1	(B) 30.1	(C) 32.1	(D) 33.1
Q.80: If mean 30, S.D =	8, Karl Pearson's co	efficient of skewness = + (
(A) 26.8	(B) 24.8	(C) 22.8	(D) 28.8
Q.81: In a frequency dis	tribution the coeffici	ents of skewness based on	quartiles is 0.6. If the sum of
		median is 38, then the valu	
(A) 50	(B) 70	(C) 60	(D) 80
Q.82: Given $\mu_1 = 0, \mu_2 =$	$=40, \mu_3 = -100, \mu_4$	= 200, then the value of	the skewness in the distribution
is			
(A) 3/64	(B) 1/64	(C) 5/64	(D) 7/64
Q.83: If the value of coeff	icient of correlation l	etween two series is + 0.9	
0.0128, what would be	the value of n		
(A) 100	(B) 10	(C) 105	(D) 95
Q.84: The coefficient of co	orrelation between the	e debenture prices and shar	re prices of a company was
+ 0.8. If the sum of the	squares of the differe	ences in ranks was 33, then	the value of n is
(A) 10	(B) 11	(C) 9	(D) 8
Q.85: Given that the regress	sion equations of 'Y'	on 'X' and 'X' on 'Y' are	
4X = 3+Y, and that the	e second moment of a	about the origin is 2. The	n the S.D of Y is
(A) 0	(B) 1	(C) 2	(D) -2
Q.86: The angle between two	o forces each equal to	"P" when their resultant is	also equal to P is
(A) 60°	(B) 180°	(C) 120°	(D) 90 ^e
Q.87: The components of a fo	arce of magnitude 10	N in the direction making	angles of 30° and 60°
on its sides are			
	(B) 5 N,	(C) 5√2 N, 5N	(D) 5√5N .5N
Q.88: Three coplanar forces a	icting on a particle an	e in equilibrium. The angle	between the first and the
second is 60° and that I	between the second a	nd the third is 150°, then th	e ratio of the magnitudes of
forces is			
(A) 1: 2 : √3	(B)1:3 : √3	(C) 1: 1 : √	3 (D) 2: 1 : √3
Q.89: The resultant of two unli	ike parallel forces of	magnitude 10N and 18N ad	ts along a line at a
distance of 12 cm. from t	the line of action of the	he smaller forces, then the	distance between the
lines of actions of the two	o forces is.		
(A) $\frac{16}{3}$ cm	(B) 17/3 cm	(C) ¹⁴ / ₃ cm	(D) ¹³ / ₃ cm

KL14/Maths

•

Series- A

Adda247

Q.90: The moment of a force of m	agnitude 25N acting a	long the positive direction of	x-axis about the
point (-1,3) is			
(A) 75 Units	(B) 65 Units	(C) 55 Units	(D) 45 Units
Q.91: A couple of moment -60 unit	is act in the plane of the	he paper. The arm of the coup	le if each force
is of magnitude 10 units is			
(A) 6 Units	(B) 5 Units	(C) 4 Units	(D) 3 Units
Q.92: The average speed of a bicy	cle over a journey of 5	50 Km, if it travels the first 10	Km. at 20 km/hr,
second 12 km in 1 hr and thir	rd 24 km at 8 km/hr. is	5	
(A) 09 km/hr	(B) 10 km/hr	(C) 08 km/hr	(D) 06 km/hr
Q.93: A particle starts with a veloc			
its velocity at the end of 6 sec	onds be 18 m/s, then t	the distance traveled by the pa	uticle before
it comes to rest is			
(A) 224m	(B) 225m	(C) 220m	(D) 215m
Q.94: A ball is projected vertically	upward with a velocity	y of 112 m/s. How high will i	
(A) 640m	(B) 630m	(C) 635m	(D) 639m
Q.95: A man walking at the rate of	6 km/h towards east.	rain appears to fall vertically	downward. Actual
direction of the rain if its actu	al velocity is 12 km/h		
(A) 50°	(B) 60°	(C) 45°	(D) 55°
Q.96: The path of projectile in vacu	um is a		
(A) Circle	(B) Straight line		(D) Ellipse
Q.97: A particle is projected with a	velocity of 24m/s. at	an angle of elevation of 60°, t	hen its time of
flight is			
(A) (2.4) $\sqrt{3}$ Seconds		(B) (2.3)√3 Secon	
(C) $(2.2)\sqrt{3}$ Seconds		(D) (2.1)√3 Secon	
Q.98: A particle is projected up a s	mooth inclined plane	of inclination 60° along the lin	e of greatest
slope. If it comes to instant	aneous nest after 2 sec	conds, then the velocity of pro	jection is (g=9.8m/s ²)
(A) 9.8 m/se	(B) 10 m/se	(C) 16.97 m/se	(D) 19.6 m/se
Q.99: Like parallel forces act at the	vertices A, B, C of a	triangle and are proportional t	to the lengths
BC, CA and AB respectively	y. The centre of the for	rces is at the	
(A) Centroid		(B) Circum Centre	
(C) In-Centre		(D) None of these	
Q.100: A horizontal rod AB is susp	ended at its ends by tw	vo vertical strings. The rod is	of length 0.6
meter and weight 3 units. It	s centre of gravity is a	t a distance 0.4 meter from for	rce A, then the
tension of the string at A in	the same unit, is		
(A) 0.2	(B) 1.4	(C) 0.8	(D) 1.0
KL14/Maths	Se	rics- A	