Adda 247 प्राटमायक एव कोन्च (मा॰ झि॰ वि॰) प्रतिमोगी यरी छा, २०३५ A Google Play

इस प्रश्न पुस्तिका को तब तक न खोलें जब तक कहा न जाए।/Do not open this Question Booklet until you are asked to do so.

No. of Questions in Booklet : 150 Paper Code : 35	SL-25 SL-25 aper-II
Subject : Mathematics	ABT- 25 06 2025 2 5 4
समय : 03:00 घण्ट + 10 मानट आतारक्त*	आधकतम अकः 300
Time : 03:00 Hours + 10 Minutes Extra*	Maximum Marks: 300
प्रश्न पुस्तिका के पेपर की सील / पॉलिथिन बैग को खोलने पर प्रश्न पत्र हल	
• प्रश्न पुस्तिका संख्या तथा ओ.एम.आर. उत्तर-पत्रक पर अंकित बारकोड र	तख्या समान ह। ही मुद्रित हैं। समस्त प्रश्न जैसा कि ऊपर वर्णित है, उपलब्ध हैं तथा कोई भी पृष्ठ
 प्रश्न पुरितका एव आ.एन.आर. उत्तर-पत्रक क समा पृष्ठ व समा प्रश्न सर कम नहीं है/मुद्रण त्रुटि नहीं है। 	हा मुद्रित है। समस्त प्रश्न जसा कि ऊपर पाणत है, उपलब्द हे तथा काइ ना पृथ्व
किसी भी प्रकार की विसंगति या दोषपूर्ण होने पर परीक्षार्थी वीक्षक से दूसरी प्र	ाश्न पुस्तिका प्राप्त कर लें। यह सुनिश्चित करने की जिम्मेदारी अभ्यर्थी की होगी।
परीक्षा प्रारम्भ होने के 5 मिनट पश्चात् ऐसे किसी दावे/आपत्ति पर कोई विचा	
On opening the paper seal/polythene bag of the Question Booklet befor • Question Booklet Number and Barcode Number of OMR Answer	
All pages & Questions of Question Booklet and OMR Answer SI	heet are properly printed. All questions as mentioned above are available
and no page is missing/misprinted.	stion Booklet from Invigilator. Candidate himself shall be responsible for
ensuring this. No claim/objection in this regard will be entertained after	
परीक्षार्थियों के लिए निर्देश	INSTRUCTIONS FOR CANDIDATES
1. प्रत्येक प्रश्न के लिये एक विकल्प भरना अनिवार्य है।	1. It is mandatory to fill one option for each question.
2. सभी प्रश्नों के अंक समान हैं।	2. All questions carry equal marks.
 प्रत्येक प्रश्न का मात्र एक ही उत्तर दीजिये। एक से अधिक उत्तर देने की दशा में प्रश्न के उत्तर को गलत माना जाएगा। 	 Only one answer is to be given for each question. If more than one answers are marked, it would be treated as wrong answer.
4. OMR उत्तर-पत्रक इस प्रश्न पुस्तिका के अन्दर रखा है। जब आपको प्रश्न	4. The OMR Answer Sheet is inside this Question Booklet. When you are
पुस्तिका खोलने को कहा जाए, तो उत्तर-पत्रक निकाल कर ध्यान से केवल नीले	directed to open the Question Booklet, take out the Answer Sheet and fill in the particulars carefully with BLUE BALL POINT PEN only.
बॉल प्वाइंट पेन से विवरण भरें। 5. कृपया अपना रोल नम्बर ओ.एम.आर. उत्तर–पत्रक पर सावधानीपूर्वक सही भरें।	 Please correctly fill your Roll Number in OMR Answer Sheet. Candidate will himself/herself be responsible for filling wrong Roll Number.
गलत रोल नम्बर भरने पर परीक्षार्थी स्वयं उत्तरदायी होगा।	6. Use of Correction Pen/Whitener in the OMR Answer Sheet is strictly
 ओ.एम.आर. उत्तर-पत्रक में करेक्शन पेन/व्हाईटनर/सफेदा का उपयोग निषिद्ध है। 	forbidden. 7. 1/3 part of the mark(s) of each question will be deducted for each
7. प्रत्येक गलत उत्तर के लिए प्रश्न अंक का 1/3 भाग काटा जायेगा। गलत उत्तर	wrong answer. A wrong answer means an incorrect answer or more than
से तात्पर्य अशुद्ध उत्तर अथवा किसी भी प्रश्न के एक से अधिक उत्तर से है। 8. प्रत्येक प्रश्न के पांच विकल्प दिये गये हैं, जिन्हें क्रमशः 1, 2, 3, 4, 5 अंकित	one answers for any question. 8. Each question has five options marked as 1, 2, 3, 4, 5. You have to
 प्रत्यक प्रश्न के पांच विकल्प दिय गये हैं, जिन्ह क्रमशः 1, 2, 3, 4, 5 आकत किया गया है। अभ्यर्थी को सही उत्तर निर्दिष्ट करते हुए उनमें से केवल एक 	darken only one circle (bubble) indicating the correct answer on the
गोले (बबल) को उत्तर-पत्रक पर नीले बॉल प्वाइंट पेन से गहरा करना है।	9. If you are not attempting a question, then you have to darken the
 यदि आप प्रश्न का उत्तर नहीं देना चाहते हैं, तो उत्तर—पत्रक में पांचवें (5) विकल्प को गहरा करें। यदि पांच में से कोई भी गोला गहरा नहीं किया जाता है, तो ऐसे 	circle '5'. If none of the five circles is darkened, one third (1/3) part of
प्रश्न के लिये प्रश्न अंक का 1/3 भाग काटा जायेगा।	the marks of question shall be deducted. 10.* After solving the question paper, candidate must ascertain that he/she
10.*प्रश्न पत्र हल करने के उपरांत अभ्यर्थी अनिवार्य रूप से ओ.एम.आर. आंसर शीट	has darkened one of the circles (bubbles) for each of the questions. Extra time of 10 minutes beyond scheduled time is provided for this.
जांच लें कि समस्त प्रश्नों के लिये एक विकल्प (गोला) भर दिया गया है। इसके लिये ही निर्धारित समय से 10 मिनट का अतिरिक्त समय दिया गया है।	11. A candidate who has not darkened any of the five circles in more than
11. यदि अभ्यर्थी 10% से अधिक प्रश्नों में पांच विकल्पों में से कोई भी विकल्प अंकित	10% questions shall be disqualified. 12. If there is any sort of ambiguity/mistake either of printing or factual
नहीं करता है, तो उसको अयोग्य माना जायेगा। 12. यदि किसी प्रश्न में किसी प्रकार की कोई मुद्रण या तथ्यात्मक प्रकार की त्रुटि हो,	nature, then out of Hindi and English Version of the question, the English
तो प्रश्न के हिन्दी तथा अंग्रेज़ी रूपान्तरों में से अंग्रेज़ी रूपान्तर मान्य होगा।	Version will be treated as standard. 13. Mobile Phone or any other electronic gadget in the examination hall
13. मोबाइल फोन अथवा इलेक्ट्रॉनिक यंत्र का परीक्षा हॉल में प्रयोग पूर्णतया वर्जित है। यदि किसी अभ्यर्थी के पास ऐसी कोई वर्जित सामग्री मिलती है, तो उसके	is strictly prohibited. A candidate found with any of such objectionable material with him/her will be strictly dealt by the
विरुद्ध आयोग द्वारा नियमानुसार कार्यवाही की जायेगी।	Commission as per rules.
चेतावनी : अगर कोई अभ्यर्थी नकल करते पकड़ा जाता है या उसके पास से कोई	Warning : If a candidate is found copying or if any unauthorized material is found in his/her possession, F.I.R. would be lodged against him/her in the
अनधिकृत सामग्री पाई जाती है, तो उस अभ्यर्थी के विरुद्ध पुलिस में प्राथमिकी दर्ज कराते हुए और राजस्थान सार्वजनिक परीक्षा (भर्ती में अनुचित साधनों की रोकथाम	Police Station and he/she would liable to be prosecuted under Rajasthan Public Examination (Measures for Prevention of Unfair Means in
अध्युपाय) अधिनियम, 2022 तथा अन्य प्रभावी कानून एवं आयोग के नियमों–प्रावधानों	Recruitment) Act, 2022, other laws applicable and Commission's
के तहत कार्यवाही की जाएगी। साथ ही आयोग ऐसे अभ्यर्थी को भविष्य में होने वाली आयोग की समस्त परीक्षाओं से विवर्जित कर सकता है।	Regulations. Commission may also debar him/her permanently from all future examinations.
	। •
स्वयं कार्बन प्रति अलग नहीं करें। वीक्षक उत्तर-पत्रक की मूल प्रति को अपने पास	जमा कर, कार्बन प्रति को मूल प्रति से कट लाईन से मोड़कर सावधानीपूर्वक अलग कर
	त्रक की कार्बन प्रति चयन प्रक्रिया पूर्ण होने तक सुरक्षित रखनी होगी एवं आयोग द्वारा
मांगे जाने पर प्रस्तुत करनी होगी।	

35 - ⊕

Page 1 of 32

Test Prime

ALL EXAMS, ONE SUBSCRIPTION

70,000+ Mock Tests

600+ Exam Covered

Personalised Report Card

Previous Year Papers

Unlimited Re-Attempt

500% Refund

ATTEMPT FREE MOCK NOW

2. If

1. 2, 5, 8, पचास पदों तक तथा 3, 5, 7, 1. 2, 5, 8, up to fifty terms and 3, 5, 7, साठ पदों तक दो समान्तर श्रेणियाँ हैं। इन दो समांतर up to sixty terms are two arithmetic progressions. In these two arithmetic progressions, how many श्रेणियों में कितने पद मानों में समान हैं? terms are identical in values? (2) 20 (1) 25 (1) 25 (2) 20 (3) 21 (4) 22 (3) 21 (4) 22 (5) अनूत्तरित प्रश्न (5) Question not attempted 2. यदि रेखा $x + \frac{y}{2} = \sqrt{2}$, दीर्घवृत्त $x^2 + \frac{y^2}{4} = 1$ को line $x + \frac{y}{2} = \sqrt{2}$ touches the ellipse $x^2 + \frac{y^2}{4} = 1$, then the eccentric angle of the point स्पर्श करे, तो सम्पर्क बिन्दु का उत्केन्द्र कोण है of contact is -(1) $\frac{\pi}{2}$ (2) $\frac{\pi}{2}$ (1) $\frac{\pi}{3}$ (2) $\frac{\pi}{2}$ (4) $\frac{\pi}{2}$ (3) $\frac{\pi}{4}$ (4) $\frac{\pi}{6}$ (3) $\frac{\pi}{4}$ (5) अनुत्तरित प्रश्न (5) Question not attempted 3. यदि एक फलन f(x) का फूरिये ज्या रूपान्तर $\phi(p)$ है, 3. If $\phi(p)$ is the Fourier sine transform of a function f(x) for p > 0, then for p < 0, $F_s \{f(x); p\}$ is equal जहां p > 0, तब p < 0 के लिए F_s {f(x);p} बराबर है to -(2) $-\phi(-p)$ (1) $-\phi(p)$ (2) $-\phi(-p)$ (1) $-\phi(p)$ (4) (p) (3) $\phi(-p)$ (4) (p) (3) $\phi(-p)$ (5) अनुत्तरित प्रश्न (5) Question not attempted 4. यदि r एक स्थिति सदिश तथा ब, b अचर सदिश हों, 4. If \vec{r} is the position vector and \vec{a} , \vec{b} are constant vectors, then which of the following identity is तो निम्न सर्वसमिकाओं में से कौनसी सत्य नहीं है? not true? (1) curl $[(\vec{r} \times \vec{a}) \times \vec{b}] = \vec{b} \times \vec{a}$ (1) curl $[(\vec{r} \times \vec{a}) \times \vec{b}] = \vec{b} \times \vec{a}$ (2) div $[(\vec{r} \times \vec{a}) \times \vec{b}] = -2\vec{a}.\vec{b}$ (2) div $[(\vec{r} \times \vec{a}) \times \vec{b}] = -2\vec{a}.\vec{b}$ (3) curl $[\vec{r} \times (\vec{a} \times \vec{r})] = 2\vec{r} \times \vec{a}$ (3) curl $[\vec{r} \times (\vec{a} \times \vec{r})] = 2\vec{r} \times \vec{a}$ (4) grad $(\vec{a} \cdot \vec{r}) = \vec{a}$ (4) grad $(\vec{a} \cdot \vec{r}) = \vec{a}$ (5) अनुत्तरित प्रश्न (5) Question not attempted 5. समूह G = [{1, 2, 3, 4}, x₅] के अवयव 5. Normalizer set of an element 3 of group 3 का प्रसामान्यक समुच्चय होगा – $G = [\{1, 2, 3, 4\}, x_5], will be -$ (1) {1, 2, 3} (2) {1, 2, 3, 4} (1) {1, 2, 3} (2) {1, 2, 3, 4} (4) ((3) {1, 3} (3) {1, 3} (4) ((5) अनुत्तरित प्रश्न (5) Question not attempted 6. सभी द्विरैखिक रूपान्तरण जिनके निश्चर बिन्दु - 1 6. All bilinear transformations, whose fixed points तथा 1 हैं, हैं – are - 1 and 1, are -(2) w = $\frac{a+bz}{a-bz}$ (4) w = $\frac{az+b}{bz+a}$ (2) w = $\frac{a+bz}{a-bz}$ (4) w = $\frac{az+b}{bz+a}$ (1) w = $\frac{az-b}{bz-a}$ (1) w = $\frac{az-b}{bz-a}$ (3) w = $\frac{az+b}{-bz+a}$ (3) w = $\frac{az+b}{-bz+a}$ (5) अनूत्तरित प्रश्न (5) Question not attempted

Toffer H (Ala al and) a

GET IT ON Google Play

Page 2 of 32

7. R ³ (R) की उपसमष्टि S = {(a, a, a) a ∈ R} की विम
anna <mark>हे −</mark> seasanna an marzar ta asgartis
(1) 3 (2) 2
(3) 1 (4) ∞
(5) अनुत्तरित प्रश्न
8. अवकल समीकरण $\frac{dy}{dx} = \frac{2xy}{x^2 - 2y - 1}$ का सामान्य हल
हे –
(1) $x^2 + 2y \log_e y - cy - 1 = 0$
(2) $x^2 + y \log_e y + cy + 1 = 0$
(3) $x^2 - 2y \log_e y + cy - 1 = 0$
(4) $y^2 + 2x \log_e y - cx - 1 = 0$
(5) अनुत्तरित प्रश्न
9. माना A = {x∈N1x ≤9} तथा A पर परिभाषित सन्बन्ध
R इस प्रकार है कि $xRy \Leftrightarrow 2x - y = 1$, तब F का
परिसर है –
(1) {2, 3, 4, 5}
$(2) \ \{1, 3, 5, 7, 9\}$
(3) {1, 2, 3, 4, 5}
(4) {1, 2, 3, 4, 5, 6, 7, 8, 9}
(5) अनुत्तरित प्रश्न
10. समुच्चय $S = \{a + ib, c + id\}$ सदिश समष्टि $C(R)$
(जहाँ C(R) सम्मिश्र संख्याओं का क्षेत्र है), का एक
आधार समुच्चय है, यदि और केवल यदि –
(1) $ad - bc \neq 0$ (2) $ad + bc \neq 0$
(3) $ac - bd \neq 0$ (4) $ad + bc = 0$
(5) अनुत्तरित प्रश्न
11. फलन $f(x, y) = 16 - x^2 - y^2$ का उच्चिष्ठ मान जबकि
x + 2y = 6 हो, है —
(1) $\frac{44}{5}$ (2) $\frac{44}{25}$ (3) $\frac{6}{5}$ (4) $\frac{4}{5}$
(3) $\frac{6}{5}$ (4) $\frac{4}{5}$
(5) अनुत्तरित प्रश्न
12. यदि f(x) = [x] (महत्तम पूर्णांक फलन) हो, तो वह
अन्तराल जिसमें f लाग्रांज मध्यमान प्रमेय के सभी
प्रतिबन्धों को सन्तुष्ट करता है, होगा –
(1) $\left[\frac{1}{2}, \frac{3}{2}\right]$ (2) $\left[\frac{-1}{2}, \frac{1}{2}\right]$
(3) $[0, 2]$ (4) $\begin{bmatrix} \frac{1}{4}, \frac{1}{2} \end{bmatrix}$
(5) अनुत्तरित प्रश्न

- 13. A fair coin is tossed again and again in a fixed number of times. If the probability of getting seven heads is equal to that of getting nine heads, then probability of getting two heads is -
 - (1) $\frac{21}{(2)^{13}}$ (2) $\frac{15}{(2)^{13}}$ (4) $\frac{5}{(2)^{13}}$

(3)
$$\frac{9}{(2)^{13}}$$

(5) Question not attempted

- 14. Value of $\int_1^e \int_1^e \int_1^e \log_e r \log_e s \log_e t dr ds dt$ is -
 - (2) e (1) 0
 - (3) 1 (4) (1-e)
 - (5) Question not attempted
- 15. The equation of the cylinder, whose generators are parallel to the line $\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}$ and whose guiding curve is the ellipse $x^2 + 2y^2 = 1$; z = 0, is -
 - (1) $9(x^2 + 2y^2 + z^2) 6xz + 12yz = 1$
 - (2) $9(x^2 + y^2 + z^2) 6xz + 12yz = 1$
 - (3) $9(x^2 + y^2 + z^2) 6xz + 12yz = 9$
 - (4) $9(x^2 + 2y^2 + z^2) 6xz + 24yz = 9$

(5) Question not attempted

- 16. Complete integral of the partial differential equation (xy - zx) p + (yz - xy) q = (xz - yz)is -
 - (1) $f(x + y + z, x^2 + y^2 + z^2) = 0$
 - (2) f(x + y + z, x y + z) = 0
 - (3) $f(x^2 + y^2 + z^2, xyz) = 0$
 - (4) f(x + y + z, xyz) = 0
 - (5) Question not attempted
- 17. Singular solution of the differential equation

$$p = \log_{e}(px - y) \text{ (where } p = \frac{dy}{dx}\text{) is -}$$
(1) $y = x \log_{e} x + 1$ (2) $y = x \log_{e} x - 1$
(3) $y = x \log_{e} x + x$ (4) $y = x(\log_{e} x - 1)$
(5) Question not attempted

13. एक निष्पक्ष सिक्के को निश्चित संख्या में बार-बार उछाला जाता है। यदि सात चित्त आने की प्रायिकता, नौ चित्त आने की प्रायिकता के बराबर हो, तो दो चित्त आने की प्रायिकता होगी -

(1)
$$\frac{21}{(2)^{13}}$$
 (2) $\frac{15}{(2)^{13}}$
(3) $\frac{9}{(2)^{13}}$ (4) $\frac{5}{(2)^{13}}$

- (5) अनूत्तरित प्रश्न
- 14. $\int_{1}^{e} \int_{1}^{e} \int_{1}^{e} \log_{e} r \log_{e} s \log_{e} t \, dr \, ds \, dt$ का मान है -
 - (2) e (1) 0 (3) 1 (4) (1-e)
 - (5) अनुत्तरित प्रश्न

15. उस बेलन का समीकरण, जिसकी जनक रेखा $\frac{x}{1} = \frac{y}{r^2} = \frac{z}{3}$ के समान्तर है तथा जिसका निर्देशक वक्र दीर्घवत्त $x^2 + 2y^2 = 1; z = 0$ है, है -(1) $9(x^2 + 2y^2 + z^2) - 6xz + 12yz = 1$ (2) $9(x^2 + y^2 + z^2) - 6xz + 12yz = 1$ (3) $9(x^2 + y^2 + z^2) - 6xz + 12yz = 9$ (4) $9(x^2 + 2y^2 + z^2) - 6xz + 24yz = 9$ (5) अनुत्तरित प्रश्न 16. आंशिक अवकल समीकरण (xy - zx) p + (yz - xy) q = (xz - yz) का पूर्ण समाकल है -(1) $f(x + y + z, x^2 + y^2 + z^2) = 0$ (2) f(x + y + z, x - y + z) = 0(3) $f(x^2 + y^2 + z^2, xyz) = 0$ (4) f(x + y + z, xyz) = 0(5) अनुत्तरित प्रश्न 17. अवकल समीकरण $p = \log_e(px - y) \left(\overline{\text{जहt}} \, p = \frac{dy}{dx} \right)$ का विचित्र हल है -

- (2) $y = x \log_e x 1$ (1) $y = x \log_e x + 1$
- (3) $y = x \log_e x + x$ (4) $y = x(\log_e x - 1)$
- (5) अनूत्तरित प्रश्न

35 - ⊕

- 18. Consider the following two statements -
 - If Linear Programming Problem have feasible solution, then it also has a basic feasible solution.
 - (II) There exists only finite number of feasible solutions of L.P.P.
 - Which one is true?
 - (1) Only (I)

- (2) (I) and (II) both
- (3) Only (II)
- (4) (I) and (II) both are false
- (5) Question not attempted

19. Bilinear transformation $w = \frac{az+b}{cz+d}$ which has one finite invariant point α and the other invariant point ∞ can be expressed in usual notations as $\left(\text{where } \lambda = \frac{a}{d}\right)$ -

- (1) $w = \lambda (z \alpha)$
- (2) $w \alpha = \lambda (z \alpha)$
- (3) $cz^2 + (d-a)z b = 0$
- (4) $\frac{1}{w-\alpha} = \frac{1}{z-\alpha} + \lambda$
- (5) Question not attempted
- 20. If system of linear equations -

 $\mathbf{x} + \lambda \mathbf{y} + 3\mathbf{z} = \mathbf{0}$

 $3x + \lambda y - 2z = 0$ 2x + 4y - 3z = 0

has a non-trivial solution (x, y, z), then $\frac{xy}{z^2}$ is

equal to -

- (1) $\frac{-4}{5}$ (2) $\frac{-5}{4}$ (3) $\frac{5}{4}$ (4) 11
- (5) Question not attempted
- **21.** For the Legendre function $P_n(x)$ of first kind, $\int_{-1}^{+1} P_3^2(x) dx$ is equal to -

(1) $\frac{2}{7}$ (2) $\frac{3}{7}$ (3) $\frac{2}{7}$ (4) $\frac{4}{7}$

(5) Question not attempted

- (I) यदि किसी रैखिक प्रोग्रामन समस्या का सुसंगत हल विद्यमान हो, तो उसका एक आधारी सुसंगत हल भी होगा।
- (II) रैखिक प्रोग्रामन समस्या के केवल परिमित संख्या
 में सुसंगत हल विद्यमान होते हैं।

कौनसा सत्य है?

- (1) केवल (I)
- (2) (I) तथा (II) दोनों
- (3) केवल (II)
- (4) (I) तथा (II) दोनों ही असत्य हैं

(5) अनुत्तरित प्रश्न

19. द्विरैखिक रूपान्तरण $w = \frac{az+b}{cz+d}$ जिसका एक परिमित निश्चर बिन्दु α तथा दूसरा निश्चर बिन्दु ∞ हो, को सामान्य संकेतन में किस रूप में लिखा जा सकता है? (जहाँ $\lambda = \frac{a}{d}$)

(1)
$$w = \lambda (z - \alpha)$$

- (2) $w \alpha = \lambda (z \alpha)$
- (3) $cz^2 + (d-a)z b = 0$

(4)
$$\frac{1}{w-\alpha} = \frac{1}{z-\alpha} + \lambda$$

(5) अनूत्तरित प्रश्न

20. यदि रैखिक समीकरण निकाय –

 $x + \lambda y + 3z = 0$

 $3x + \lambda y - 2z = 0$ 2x + 4y - 3z = 0

का एक शून्येतर हल (x, y, z) हो, तो $\frac{xy}{z^2}$ बराबर है –

- (1) $\frac{-4}{5}$ (2) $\frac{-5}{4}$
- (3) $\frac{5}{4}$ (4) 11
- (5) अनुत्तरित प्रश्न
- **21.** प्रथम प्रकार के लेजेंड्रे फलन $P_n(x)$ के लिए, $\int_{-1}^{+1} P_3^2(x) dx$ बराबर है – (1) $\frac{2}{7}$ (2) $\frac{3}{7}$ (3) $\frac{2}{5}$ (4) $\frac{4}{7}$
 - (5) अनुत्तरित प्रश्न

Page 5 of 32

- 22. Three forces of magnitude 8 Newton, 5 Newton and 4 Newton respectively acting at a point are in equilibrium, then angle between the forces of magnitude of 5 Newton and 4 Newton is -
 - (1) $\frac{\pi}{2}$

 - (2) $\cos^{-1}\left(\frac{55}{64}\right)$ (3) $\cos^{-1}\left(\frac{13}{40}\right)$ (4) $\cos^{-1}\left(\frac{23}{40}\right)$
 - (5) Question not attempted
- 23. For following pay off matrix, the value of game is -

- (5) Question not attempted
- 24. A tensor, which has the same set of components relatively to every system of coordinate axes, is called -
 - (1) a mixed tensor
 - (2) an isotropic tensor
 - (3) a contravariant tensor
 - (4) an invariant
 - (5) Question not attempted
- 25. Which of the following statement is not true?
 - (1) If guiding curve is a conic then equation of cone need not be a quadratic.
 - (2) Degree of equation of a cone depends on degree of equation of guiding curve.
 - (3) Every homogeneous equation of second degree of three variables represents an equation of cone with vertex at origin.
 - (4) A cone whose equation is quadratic is called quadratic cone.
 - (5) Question not attempted

22. एक कण पर क्रियाशील 8 न्यूटन, 5 न्यूटन तथा 4 न्यूटन परिमाण के क्रमशः तीन बल साम्यावस्था में हैं, तो 5 न्यूटन तथा 4 न्यूटन परिमाण वाले बलों के मध्य कोण हे -

GET IT ON Google Play

(1)
$$\frac{\pi}{2}$$
 (2) $\cos^{-1}\left(\frac{55}{64}\right)$
(3) $\cos^{-1}\left(\frac{13}{40}\right)$ (4) $\cos^{-1}\left(\frac{23}{40}\right)$

(5) अनुत्तरित प्रश्न

23. निम्न भुगतान मैट्रिक्स वाले खेल का मान है -

		खिलाड़ी B					
			I	11	- 111		
	a sugar	1	1	7	2]		
	खिलाड़ी A,		6	2	7		
		III	_5	2	6]		
(1)	4		(2)	3			
(3)	6		(4)	7			
(5)	अनुत्तरित प्रश्न						

24. एक प्रदिश, जिसके घटकों के समुच्चय प्रत्येक निकाय के निर्देशी अक्षों के साप्रेक्षतः समान होते हैं, कहलाता 2 - 3

- (1) एक मिश्रित प्रदिश
- (2) एक समदैशिक प्रदिश
- (3) एक प्रतिपरिवर्ती प्रदिश
- (4) एक निश्चर

(5) अनुत्तरित प्रश्न

25. निम्नलिखित में से कौनसा कथन सत्य नहीं है?

- (1) यदि निर्देशक वक्र एक शांकव है, तो शंकु का समीकरण द्विघाती होना जरूरी नहीं है।
- (2) शंकु के समीकरण की घात, निर्देशक वक्र के समीकरण की घात पर निर्भर करती है।
- (3) प्रत्येक तीन चरों का समद्विघाती समीकरण मूल बिन्दु वाले शंकु का समीकरण होता है।
- (4) वह शंकु जिसका समीकरण द्विघाती हो, उसे द्विघाती शंकु कहते हैं।
- (5) अनुत्तरित प्रश्न

da[24 7]	
26. If wis a function of y such that has (as a) 2	26
26. If y is a function of x such that $\log_e(y - x) = 3xy$, then y'(0) is equals to -	26. यदि y, x का ऐसा फलन है कि log _e (y - x) =
(1) - 4 (2) 4	तब y'(0) बराबर है –
(3) 2 (4) 3	(1) - 4 (2) 4 (3) 2 (4) 3
(5) Question not attempted	(3) 2 (4) 3 (5) अनुत्तरित प्रश्न
27. Two dice are thrown together, the probability	같은 일상 것 같은 것 같아요? 이 가지 않는 것 같아요. 말했다. 것 같은 것 같아요. 그는 것 같아요. 것 같아요? 것 같아요? 것 같아요? 것 같아요?
that the sum of digits obtained is a multiple of 4,	27. दो पासों को एक साथ फेंका जाता है, तो प्राप्त के योग का 4 का गुणक होने की प्रायिकता है -
is -	
(1) $\frac{1}{4}$ (2) $\frac{1}{2}$	(1) $\frac{1}{4}$ (2) $\frac{1}{2}$
	(3) $\frac{1}{8}$ (4) $\frac{3}{4}$
8 4	
(5) Question not attempted	(5) अनुत्तरित प्रश्न
28. A and B are two finite sets such that $n(A) = 3$ and	28. A तथा B ऐसे दो परिमित समुच्चय हैं, कि n(A
n(B) = 5, then maximum number of elements in	तथा n(B) = 5, तब (AUB) में अवयवों की अधि
$(A \cup B)$ can be -	संख्या हो सकती है –
(1) 3 (2) 8	(1) 3 (2) 8
(3) 5 (4) 7	(3) 5 (4) 7
(5) Question not attempted	(5) अनुत्तरित प्रश्न
29. If matrix A is orthogonal and involutory, then A	29. यदि आव्यूह A लांबिक एवं अन्तर्वलनीय हो, त
is -	
(1) Symmetric matrix	(1) सममित आव्यूह
(2) Nilpotent matrix	(2) शून्यभावी आव्यूह
(3) Skew symmetric matrix	(3) विषम सममित आव्यूह
(4) Scalar matrix	(4) अदिश आव्यूह
(5) Question not attempted	(5) अनुत्तरित प्रश्न
30. The angle between the line $\vec{r} = (\hat{i} + 2\hat{j} - \hat{k}) + \hat{k}$	30. सरल रेखा $\vec{r} = (\hat{i} + 2\hat{j} - \hat{k}) + \lambda(\hat{i} - \hat{j} + \hat{k})$
$\lambda(\hat{i} - \hat{i} + \hat{k})$ and the plane $\vec{z} = (1 + 2\hat{j} - \hat{k}) + 1$	
$\lambda(\hat{i} - \hat{j} + \hat{k})$ and the plane $\vec{r} \cdot (2\hat{i} - \hat{j} + \hat{k}) = 4$ is given by	समतल $\vec{r} \cdot (2\hat{i} - \hat{j} + \hat{k}) = 4$ के मध्य कोण जाता है –
given by -	
(1) $\sin^{-1}\left(\frac{2\sqrt{2}}{3}\right)$ (2) $\sin^{-1}\left(\frac{\sqrt{2}}{3}\right)$	(1) $\sin^{-1}\left(\frac{2\sqrt{2}}{3}\right)$ (2) $\sin^{-1}\left(\frac{\sqrt{2}}{3}\right)$
(3) $\cos^{-1}\left(\frac{\sqrt{2}}{3}\right)$ (4) $\cos^{-1}\left(\frac{2\sqrt{2}}{3}\right)$	(3) $\cos^{-1}\left(\frac{\sqrt{2}}{3}\right)$ (4) $\cos^{-1}\left(\frac{2\sqrt{2}}{3}\right)$
(5) Question not attempted	(5) अनुत्तरित प्रश्न
31. The number of generators of an infinite cyclic	31. एक अपरिमित चक्रीय समूह के जनकों की र
group is -	है —
(1) 2 (2) 3	(1) 2 (2) 3
(3) $_{\infty}$ (4) 1	(3) ∞ (4) 1
(5) Question not attempted	(5) अनुत्तरित प्रश्न
32. Infinite series $1 + \frac{1}{4} + \frac{1.3}{48} + \frac{1.3.5}{4812} + \dots$ is	
equal to -	32. अनन्त श्रेणी $1 + \frac{1}{4} + \frac{1.3}{4.8} + \frac{1.3.5}{4.8.12} + \dots$ ब हे -
(1) $2^{\frac{-1}{2}}$ (2) $2^{\frac{1}{2}}$	(1) $2^{\frac{-1}{2}}$ (2) $2^{\frac{1}{2}}$
(3) $3^{\frac{1}{2}}$ (4) $2^{\frac{1}{3}}$	
	(3) $3^{\frac{1}{2}}$ (4) $2^{\frac{1}{3}}$
(5) Question not attempted	(5) अनुत्तरित प्रश्न

33. In a divided difference table $A_{y_1=14}, A_{g_3=64}, A_{10}, $	33. एक विभाजित अंतर सारणी में $\triangle_3^{y_1} = 14, \triangle_6^{y_3} = 64,$ $\triangle_{10}^{y_6} = 197, \ da = \Delta_{2y_1}^{2} an$ मान बराबर है –
(1) 19	
(1) 19 (2) $\frac{25}{3}$	5,0
(3) $\frac{50}{3}$ (4) 10	(1) 19 (3) $\frac{50}{3}$ (2) $\frac{25}{3}$ (4) 10
(5) Question not attempted	(5) अनुत्तरित प्रश्न
34. If the value of a function at m be denoted by	34. यदि एक फलन के m पर मान को $\lambda_m = \frac{c+d_m}{1-d} (d \neq 1)$
$\lambda_{\rm m} = \frac{c + d_{\rm m}}{1 - d} (d \neq 1)$ then value of $\frac{\Delta \lambda_{\rm m}}{\Delta m}$ is equal	से व्यक्त किया जाये तो $\frac{\Delta \lambda_m}{\Delta m}$ का मान बराबर है –
to - (1) d (2) $\frac{d}{d}$	(1) d (2) $\frac{d}{1-d}$
(/ 1-d	(3) $\frac{-d}{1-d}$ (4) $\frac{1-d}{0}$
(3) $\frac{1}{1-d}$	
(5) Question not attempted	(5) अनुत्तरित प्रश्न
35. If the line joining the points $(-2, 6)$ and $(4, 8)$ is perpendicular to the line joining the points	35. यदि बिन्दुओं (-2, 6) तथा (4, 8) को मिलाने वाली रेखा, बिन्दुओं (8, 12) तथा (x, 24) को मिलाने वाली रेखा
(8, 12) and (x, 24), and $x = \frac{-\lambda^2}{4}$, then λ is equal	पर लम्ब है, तथा $x = \frac{-\lambda^2}{4}$ हो, तो λ बराबर है –
to -	(1) -4 (2) -3i
(1) -4 (2) $-3i$ (3) $2\sqrt{2}$ (4) $+4i$	(3) $2\sqrt{3}$ (4) $\pm 4i$
(3) $2\sqrt{3}$ (4) $\pm 4i$ (5) Outstion not attempted	(5) अनुत्तरित प्रश्न
(5) Question not attempted 36. Number of all the cosets of $H = \{0, 3, 6, 9\}$ in the	36. समूह G = (Z ₁₂ , + ₁₂) में H = {0, 3, 6, 9} के सभी
group $G = (Z_{12}, +_{12})$ is -	सहसमुच्चयों की संख्या है –
(1) 6 (2) 3	(1) 6 (2) 3
(3) 2 (4) 4	(3) 2 (4) 4
(5) Question not attempted	(5) अनुत्तरित प्रश्न
37. In usual notations, if $f(z) = u + iv$, is an analytic	37. सामान्य संकेतन में, यदि $f(z) = u + iv$, एक विश्लेषिक
function and $v = y^2 - x^2$, then $f(z) =$	फलन हो तथा $v = y^2 - x^2$, तो $f(z) =$
(1) $iz + C$ (2) $-iz^2 + C$	(1) $iz + C$ (2) $-iz^2 + C$
(3) $-iz + C$ (4) $iz^2 + C$	(3) $-iz + C$ (4) $iz^2 + C$
(5) Question not attempted	(5) अनुत्तरित प्रश्न
38. The number of common tangents to the circles $x^2 + x^2 = 4$ and $x^2 + x^2$. For $8x = 24$ in	38. वृत्तों x ² + y ² = 4 तथा x ² + y ² - 6x - 8y = 24 की उभयनिष्ठ स्पर्श रेखाओं की संख्या है –
$x^{2} + y^{2} = 4$ and $x^{2} + y^{2} - 6x - 8y = 24$ is - (1) 3 (2) 4	(1) 3 (2) 4
(1) 5 (2) 4 (3) 1 (4) 0	$\begin{array}{c} (1) \\ (3) \\ 1 \\ (4) \\ 0 \\ \end{array}$
(5) Question not attempted	(5) अनुत्तरित प्रश्न
	PALLS SHOT BUILT TO A SHOT AND A
39. If $\frac{\partial M(x, y)}{\partial y} = \frac{\partial N(x, y)}{\partial x}$, then using Green's Theorem,	39. यदि $\frac{\partial M(x, y)}{\partial y} = \frac{\partial N(x, y)}{\partial x}$, तब ग्रीन प्रमेय के उपयोग से
the value of $\int_{c} (M dx + N dy)$ (where c is a	$\int_{c} (M dx + N dy) $ (जहाँ c, xy–तल में एक नियमित
regular closed curve in xy-plane) is -	बन्द वक्र है) का मान है –
(1) 1 (2) 3	(1) 1 (2) 3
(3) 0 (4) -1	(3) 0 (4) -1
(5) Question not attempted	(5) अनुत्तरित प्रश्न

- **40.** How many words can be made from the letters of the word "SATDEN", in which the vowels appear in alphabetical order?
 - **(1)** 120 **(2)** 360
 - **(3)** 480 **(4)** 240
 - (5) Question not attempted
- **41.** If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ and $|\vec{a}| = 3$, $|\vec{b}| = 5$, $|\vec{c}| = 7$, then angle between \vec{a} and \vec{b} is -
 - (1) 45° (2) 90°
 - **(3)** 60° **(4)** 75°
 - (5) Question not attempted
- 42. Which of the following statements is correct?
 - (1) If any primal problem has no feasible solution, then its dual problem will also have no feasible solution.
 - (2) If any primal problem has a feasible solution, then its dual will also have a feasible solution.
 - (3) If primal problem has no feasible solution, then its dual problem will have an unbounded solution.
 - (4) If both primal and dual problems have feasible solution, then both will have bounded optimal solution.
 - (5) Question not attempted

43. The inverse Laplace transform of $\log_e \left(\frac{1+p}{p}\right)$ is -

- (1) $\frac{1-e^{-x}}{x}$ (2) $\frac{1}{x}-e^{-x}$ (3) $1-e^{-x}$ (4) $1-\frac{e^{-x}}{x}$
- (5) Question not attempted
- 44. A body moving with S.H.M. has an amplitude 'a' and time period 'T'. If the velocity is tripled, when the distance from the mean position is $\left(\frac{2}{3}\right)a$ and the period remains unaltered, then its new amplitude is -
 - (1) $\left(\frac{7}{3}\right)a$ (2) $\left(\frac{7}{2}\right)a$ (3) $\left(\frac{5}{2}\right)a$ (4) $\left(\frac{9}{4}\right)a$
 - (5) Question not attempted

- 40. "SATDEN" शब्द के अक्षरों से बनाए जाने वाले कितने शब्दों में स्वर वर्णमाला के क्रमानुसार आते हैं?
 - (1) 120
 (2) 360

 (3) 480
 (4) 240

 (5) अनुत्तरित प्रश्न
- **41.** यदि $\vec{a}, \vec{b}, \vec{c}$ तीन सदिश इस प्रकार हैं कि $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ तथा $|\vec{a}| = 3, |\vec{b}| = 5, |\vec{c}| = 7,$ तब \vec{a} तथा \vec{b} के मध्य कोण है –
 - (1) 45° (2) 90°
 - **(3)** 60° **(4)** 75°
 - (5) अनुत्तरित प्रश्न
- 42. निम्नलिखित कथनों में से कौनसा सही है?
 - (1) यदि किसी आद्य समस्या का सुसंगत हल नहीं हो, तो इसकी द्वैती समस्या का भी सुसंगत हल विद्यमान नहीं होगा।
 - (2) यदि किसी आद्य समस्या का सुसंगत हल हो, तो इसकी द्वैती का भी सुसंगत हल होगा।
 - (3) यदि आद्य समस्या का सुसंगत हल विद्यमान नहीं हो, तो इसकी द्वैती समस्या के हल अपरिबद्ध होंगे।
 - (4) यदि आद्य तथा द्वैती दोनों समस्याओं के सुसंगत हल विद्यमान हों, तो दोनों के हल परिबद्ध इष्टतम हल होंगे।
 - (5) अनुत्तरित प्रश्न
- 43. $\log_{e}\left(\frac{1+p}{p}\right)$ on प्रतिलोम लाप्लास रूपान्तर है
 - (1) $\frac{1-e^{-x}}{x}$ (2) $\frac{1}{x}-e^{-x}$ (3) $1-e^{-x}$ (4) $1-\frac{e^{-x}}{x}$
 - (5) अनुत्तरित प्रश्न
- **44.** सरल आवर्त गति से चलने वाले किसी कण का आयाम 'a' तथा आवर्तकाल 'T' है। यदि कण की माध्य स्थिति से $\left(\frac{2}{3}\right)a$ दूरी होने पर इसका वेग तिगुना कर दिया जाए एवं आवर्तकाल अपरिवर्तित रहे, तो इसका नया आयाम है –
 - (1) $\left(\frac{7}{3}\right)a$ (2) $\left(\frac{7}{2}\right)a$

 (3) $\left(\frac{5}{2}\right)a$ (4) $\left(\frac{9}{4}\right)a$

 (5) अनुत्तारित प्रश्न

35 - ⊕

Page 9 of 32

- **45.** If three points with position vectors $60\hat{i} + 3\hat{j}, 40\hat{i} 8\hat{j}$ and $a\hat{i} 52\hat{j}$ respectively are collinear, then value of a is -
 - (1) 40 (2) -40
 - **(3)** 100 **(4)** 160
 - (5) Question not attempted
- **46.** Let T_n be the number of all possible triangles formed by joining vertices of a n-sided regular polygon. If $T_{n+1} T_n = 21$, then the value of n is -
 - **(1)** 8 **(2)** 10
 - **(3)** 7 **(4)** 5
 - (5) Question not attempted
- 47. Equation of the asymptotes of the conic $\frac{l}{r} = 1 + e \cos\theta$ (where e>1) is -
 - (1) $lr = e(e^2 1)\cos\theta \pm e\sqrt{(e^2 1)}\sin\theta$
 - (2) $el = r(e^2 1)\cos\theta \pm r\sqrt{(e^2 1)}\sin\theta$
 - (3) $le = r(e^2 + 1)\cos\theta \pm r\sqrt{(e^2 + 1)}\sin\theta$
 - (4) $el = r(e^2 1)\sin\theta \pm r\sqrt{(e^2 1)}\cos\theta$
 - (5) Question not attempted
- **48.** A variable plane passes through a fixed point (a, b, c) and cuts the co-ordinate axes at points A, B and C. Locus of the centre of sphere OABC, where O is origin, is -
 - (1) $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ (2) $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 2$ (3) $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 2$ (4) $\frac{a}{y} + \frac{b}{y} + \frac{c}{z} = 1$
 - (5) Question not attempted
- **49.** If J_0 (x) is Bessel's function, then value of $\int_0^\infty x e^{-3x} J_0(4x) dx$ is -

125

(1)
$$\frac{2}{125}$$
 (2)

- (3) $\frac{3}{25}$ (4) $\frac{3}{125}$
- (5) Question not attempted
- 50. $\int_{-1}^{1} \log_{e}(x + \sqrt{x^{2} + 1}) dx$ equal to -
 - (1) $\log_{e}\left(\frac{1}{2}\right)$ (2) 0
 - (3) log_e2
 (4) 2log_e2
 (5) Question not attempted
- 35 ⊕

45. यदि तीन बिन्दु जिनके स्थिति सदिश क्रमशः 60î + 3ĵ, 40î – 8ĵ तथा aî – 52ĵ हैं, संरेखीय हैं, तो a का मान है –

- (1) 40
 (2) -40

 (3) 100
 (4) 160
- (5) अनुत्तरित प्रश्न
- 46. माना T_n, n-भुजाओं वाले एक समबहुभुज के शीर्षों को जोड़ने पर बनने वाले सभी संभावित त्रिभुजों की संख्या
 - है। यदि T_{n+1} T_n = 21 हो, तो n का मान है –
 - (1) 8 (2) 10 (3) 7 (4) 5
 - (5) अनुत्तरित प्रश्न
- **47.** शांकव $\frac{l}{r} = 1 + e \cos \theta$ (जहाँ e>1) के अनन्तस्पर्शी का समीकरण है
 - (1) $lr = e(e^2 1)\cos\theta \pm e\sqrt{(e^2 1)}\sin\theta$
 - (2) $el = r(e^2 1)\cos\theta \pm r\sqrt{(e^2 1)}\sin\theta$
 - (3) $le = r(e^2 + 1)\cos\theta \pm r\sqrt{(e^2 + 1)}\sin\theta$
 - (4) $el = r(e^2 1)\sin\theta \pm r\sqrt{(e^2 1)}\cos\theta$
 - (5) अनुत्तरित प्रश्न
- 48. एक चर समतल एक स्थिर बिन्दु (a, b, c) से गुजरता है तथा निर्देशी अक्षों को बिन्दुओं A, B और C पर काटता है। गोले OABC के केन्द्र का बिन्दुपथ होगा, जहाँ O मूल बिंदु है –
 - (1) $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ (2) $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 2$ (3) $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 2$ (4) $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 1$ (5) अनुत्तरित प्रश्न

49. $ulg = J_0$ (x) बेसल फलन हो, तो

 $\int_0^\infty x e^{-3x} J_0(4x) dx$ का मान है –

 (1) $\frac{2}{125}$ (2) $\frac{4}{125}$

- (3) $\frac{3}{25}$ (4) $\frac{3}{125}$
- (5) अनुत्तरित प्रश्न
- 50. $\int_{-1}^{1} \log_{e}(x + \sqrt{x^{2} + 1}) dx$ बराबर है (1) $\log_{e}(\frac{1}{2})$ (2) 0
 - (3) $\log_{e}2$ (4) $2\log_{e}2$
 - (5) अनुत्तरित प्रश्न

Page 10 of 32

- (1) $k = k_1$ and A_{ij} is skew symmetric.
- (2) $k = k_1$ and A_{ij} is symmetric.
- (3) $k = -k_1$ and A_{ij} is symmetric.
- (4) k is never equal to k_1 .

- (5) Question not attempted
- 52. The Laplace transform of $x^n e^{ax}$, where n is a positive integer, is (p > a) -
 - (1) $\frac{n!}{(p+a)^{n+1}}$ (2) $\frac{n!}{(p-a)^n}$ (3) $\frac{(n+1)!}{(p-a)^{n+1}}$ (4) $\frac{n!}{(p-a)^{n+1}}$
 - (5) Question not attempted
- 53. In usual notations, the acceleration of a point moving in a simple curve with uniform speed is -
 - (1) ρe^{ψ} (2) $\rho \psi^2$ (3) $\rho^2 \psi$ (4) $\rho \psi$
 - (5) Question not attempted
- 54. Assuming Stirling interpolation formula up to second order, value of $\frac{d(y_0)}{dx}$ is equal to -(1) $\frac{2}{3}(y_1 + y_{-1})$ (2) $\frac{2}{3}(y_1 - y_{-1})$ (3) $\frac{1}{2}(y_1 - y_{-1})$ (4) $\frac{1}{2}(y_0 - y_{-1})$
 - (5) Question not attempted
- 55. The minimum value of $y = 64 \sec x + 27 \csc x$ for the interval $0 < x < \frac{\pi}{2}$ is -
 - (1) 125
 (2) 80

 (3) 45
 (4) 64
 - (3) 45
 - (5) Question not attempted
- 56. The value of $\lim_{x\to 0} (\csc x)^{1/\log_e x}$ is equal to -(1) -1 (2) $\frac{1}{e}$
 - (3) 1 (4) e(5) Question not attempted

- 51. यदि A_{ij} ≠ 0, (0, 2) प्रकार के प्रदिश के घटक हों तथा यदि k A_{ij} + k₁ A_{ij} = 0, तब निम्न में से कौनसा असत्य कथन है?
 - (1) k = k1 तथा Aij विषम सममित है।
 - (2) k = k1 तथा Aij सममित है।
 - (3) k = -k1 तथा A_{ij} सममित है।
 - (4) k तथा k1 कभी समान नहीं हैं।
 - (5) अनुत्तरित प्रश्न
- 52. xⁿ e^{ax}, जहां n एक धनात्मक पूर्णांक है, का लाप्लास रूपान्तर है (p > a) –
 - (1) $\frac{n!}{(p+a)^{n+1}}$ (2) $\frac{n!}{(p-a)^n}$ (3) $\frac{(n+1)!}{(p-a)^{n+1}}$ (4) $\frac{n!}{(p-a)^{n+1}}$
 - (3) _{(p-a)ⁿ⁺¹} (4) _{(p-a)ⁿ⁺} (5) अनुत्तरित प्रश्न
- 53. सामान्य संकेतनों में, एक सामान्य वक्र में एक सनान चाल से चलने वाले बिन्दू का त्वरण है –
 - (1) ρe^{ψ} (2) $\rho \psi^2$
 - (3) ρ²ψ
 (4) ρψ
 - (5) अनुत्तरित प्रश्न

 54. द्वितीय क्रम तक के अन्तर लेते हुए स्टरलिंग के

 अन्तर्वेशन सूत्र से, $\frac{d(y_0)}{dx}$ का मान बराबर है –

 (1) $\frac{2}{3}(y_1 + y_{-1})$ (2) $\frac{2}{3}(y_1 - y_{-1})$

 (3) $\frac{1}{2}(y_1 - y_{-1})$ (4) $\frac{1}{2}(y_0 - y_{-1})$

 (5) अनुत्तरित प्रश्न

 55. अन्तराल $0 < x < \frac{\pi}{2}$ के लिए, y = 64 sec x + 27 cosec x का न्यूनतम मान है –

 (1) 125
 (2) 80

 (3) 45
 (4) 64

 (5) अनुत्तरित प्रश्न

 56. $\lim_{x \to 0} (\operatorname{cosec} x)^{1/\log_e x}$ का मान बराबर है –

- 6. $\lim_{x \to 0} (\cos e^{-x})^{1/3} \sin e^{-x} (1) = 1$ (2) $\frac{1}{e}$ (3) 1 (4) e
- (5) अनुत्तरित प्रश्न

	For Legendre polynom		57.		के लिए, $\frac{3}{5}P_1(x) + \frac{2}{5}P_3(x)$
	$P_n(x), \frac{3}{5}P_1(x) + \frac{2}{5}P_3(x)$			बराबर है –	
	(1) _X			(1) x	
	(3) x ³	(4) x^4		(3) x ³	(4) X ⁺
	(5) Question not attempt	pted		(5) अनुत्तरित प्रश्न	
58.	Eigen values of the mai		58.	आव्यूह $A = \begin{bmatrix} 1 & 1 \\ 0 & i \end{bmatrix} \vec{\Phi}$	
	(1) –1, i	(2) 0, i		(1) -1, i	(2) 0, 1
	(3) 0, 1	(4) 1, i		(3) 0, 1	(4) 1,1
	(5) Question not attem	pted	200	(5) अनुत्तरित प्रश्न	and the second second
59.		he internal bisector of the	59.	सदिशों $\vec{a} = (\hat{i} + 2\hat{k})$ त	ाथा $\vec{b} = (-\hat{j} - 2\hat{k})$ के म
	angle between vec	tors $\vec{a} = (\hat{i} + 2\hat{k})$ and			क के अनुदिश इकाई सवि
	$\vec{\mathbf{b}} = (-\hat{\mathbf{j}} - 2\hat{\mathbf{k}})$ is -			हे –	and the state of the
	(1) $\sqrt{\frac{5}{2}}(\hat{1}-\hat{j})$	(2) $\frac{1}{\sqrt{2}}(\hat{i}-\hat{j})$		(1) $\sqrt{\frac{5}{2}(\hat{1}-\hat{j})}$ (3) $\frac{\hat{1}-\hat{j}+4\hat{k}}{\sqrt{5}}$	(2) $\frac{1}{\sqrt{5}}(\hat{1}-\hat{j})$
	$\sqrt{\frac{1}{2}}(1-1)$	(-) $\sqrt{5}$		$\sqrt{\frac{1}{2}}$	(-/ V3
	(3) $\frac{\hat{1}-\hat{j}+4\hat{k}}{\sqrt{5}}$	(4) $\frac{1}{\sqrt{2}}(\hat{i}-\hat{j})$		(3) $\frac{\hat{1}-\hat{j}+4\hat{k}}{\sqrt{\pi}}$	(4) $\frac{1}{\sqrt{2}}(\hat{1}-\hat{j})$
	V S			(5) अनुत्तरित प्रश्न	
60	(5) Question not attem				<u> 19 19 19 19 19 19 19 19 19 19 19 19 19 </u>
00.		nt $(1, 0, 2)$ from the point x^{-2} y^{+1} z^{-2}	60.	5 1 10	तथा समतल x - y + z =
	of intersection of the	line $\frac{x-2}{3} = \frac{y+1}{4} = \frac{z-2}{12}$ and		के प्रतिच्छेद बिन्दु से बिन	न्दु (1, 0, 2) की दूरी है –
	the plane $x - y + z = 16$	is -		(1) 13 इकाई	(2) 3√21 डकाई
	(1) 13 units			(3) 8 इकाई	
	(3) 8 units	(4) $2\sqrt{14}$ units			2014 \$401\$
	(5) Question not attem	pted		(5) अनुत्तरित प्रश्न	
	[1 α 3]		61.	यदि 3×3 क्रम की आव	यूह A का सहखंडज आव
61.	If $P = \begin{bmatrix} 1 & 3 & 3 \end{bmatrix}$ is	the adjoint matrix of a		[1 α 3]	ग A = 4 हो, तो α का म
				P = 1 3 3 है तथ	ग <mark> A =</mark> 4 हो, तो α का म
		and $ A = 4$, then α is equal			
	to - (1) 5	(2) 11		हे –	(2) 11
	(3) 4	(4) 6		(1) 5	(2) 11 (4) 6
	(5) Question not attem		8	(3) 4(5) अनुत्तरित प्रश्न	(+) 0
60	Shall the second second	電気に とうぼう おんし おりやし 気限で ふみがれ	62)) का गान है
02.		action $f(x) = (2^x + 2^y - 2)$		फलन $f(x) = (2^x + 2^y - 1)^{-1}$	
	is -	(2) $0 < x \le 1$		(1) $1 < x \le 2$	(2) $0 < x \le 1$
				(3) 1 < x < ∞	(4) $-\infty < x < 1$
		(4) $-\infty < x < 1$		(5) अनुत्तरित प्रश्न	
	(5) Question not attem		62	and the second second second second	
63.		ne lines whose direction	03.	रेखाएं, जिनकी	दिक्कोज्याएँ समीकर
		uations $l + m + n = 0$,		i + m + n = 0, i + m के मध्य कोण है –	$-n^2 = 0$ को सन्तुष्ट करती
	$l^2 + m^2 - n^2 = 0$ is -	π			(α) π
	(1) $\frac{\pi}{4}$	(2) $\frac{\pi}{3}$		(1) $\frac{\pi}{4}$	(2) $\frac{\pi}{3}$
	(3) $\frac{\pi}{6}$	(4) $\frac{\pi}{2}$		(3) $\frac{\pi}{6}$	(4) $\frac{\pi}{2}$
· · · ·				(5) अनुत्तरित प्रश्न	

35 - ⊕

M

- 64. For a three-dimensional coordinate system (x¹, x², x³) the components of unit tangent vector along x¹ curve are -
 - (1) $\left(\frac{1}{\sqrt{g_{11}}}, 0, 0\right)$ (2) $\left(\frac{1}{\sqrt{g^{11}}}, 0, 0\right)$
 - (3) $\left(\sqrt{g^{11}}, 0, 0\right)$ (4) $\left(\sqrt{g_{11}}, 0, 0\right)$
 - (5) Question not attempted
- **65.** The general integral of the partial differential equation xzp + yzq = xy is -

(1)
$$\varphi\left(\frac{y}{x}, xy + z^2\right) = 0$$

Adda 24 7

(2)
$$\phi(x - y, xy - z^2) = 0$$

(3) $\varphi\left(\frac{x}{y}, xy - z^2\right) = 0$

(4)
$$\phi\left(\frac{x}{y}, xz - y^2\right) = 0$$

- (5) Question not attempted
- 66. Which of the following statements is not true?
 - The set I of integers is only a subring but not an ideal of the ring (Q, +, •) of a rational numbers.
 - (2) The set Q of rational numbers is only a subring but not an ideal of the ring of real numbers (R, +, •).
 - (3) A commutative ring with identity is a field if it has proper ideals.
 - (4) If U is an ideal of a ring R with unity such that I ∈ U, then U=R.
 - (5) Question not attempted
- 67. If x, y, z \in [-1, 1] such that $\cos^{-1}x + \cos^{-1}y + \cos^{-1}z = 0$, then value of x + y + z is -
 - (1) 0 (2) 2 (3) 1 (4) 3
 - (3) 1 (4) 3 (5) Question not attempted
 - (5) Question not attempted
- **68.** Equation of a common catenary is (where c is a parameter) -

(1)
$$y = \frac{c}{2} \left(e^{\frac{+ix}{c}} - e^{\frac{-ix}{c}} \right)$$
 (2) $y = \frac{c}{2i} \left(e^{\frac{ix}{c}} + e^{\frac{-ix}{c}} \right)$
(3) $y = \frac{c}{2} \left(e^{\frac{x}{c}} + e^{\frac{-x}{c}} \right)$ (4) $y = \frac{c}{2} \left(e^{\frac{x}{c}} - e^{\frac{-x}{c}} \right)$

(5) Question not attempted

64. एक त्रिविम निर्देशांक निकाय (x¹, x², x³) के लिए x¹ – वक्र के अनुदिश इकाई स्पर्श सदिश के घटक हैं –

- (1) $\left(\frac{1}{\sqrt{g_{11}}}, 0, 0\right)$ (2) $\left(\frac{1}{\sqrt{g^{11}}}, 0, 0\right)$ (3) $\left(\sqrt{g^{11}}, 0, 0\right)$ (4) $\left(\sqrt{g_{11}}, 0, 0\right)$
- (5) अनुत्तरित प्रश्न
- 65. आंशिक अवकल समीकरण xzp + yzq = xy का सामान्य समाकल है –

(1)
$$\phi\left(\frac{y}{x}, xy + z^2\right) = 0$$

(2)
$$\phi(x - y, xy - z^2) = 0$$

(3)
$$\varphi\left(\frac{x}{y}, xy - z^2\right) = 0$$

(4)
$$\phi\left(\frac{x}{y}, xz - y^2\right) = 0$$

- (5) अनुत्तरित प्रश्न
- 66. निम्नलिखित कथनों में से कौनसा कथन सत्य नहीं है?
 - (1) पूर्णांकों का समुच्चय I परिमेय संख्याओं की वलय (Q, +, •) की केवल एक उपवलय है परन्तु एक गुणजावली नहीं है।
 - (2) परिमेय संख्याओं का समुच्चय Q वास्तविक संख्याओं की वलय (R, +, •) की केवल एक उपवलय है परन्तु एक गुणजावली नहीं है।
 - (3) एक तत्समकी क्रमविनिमेय वलय एक क्षेत्र होती है, यदि इसकी उचित गुणजावली हो।
 - (4) यदि एक तत्समकी वलय R में U एक ऐसी गुणजावली है कि I ∈ U, तो U=R है।

(5) अनुत्तरित प्रश्न

- **67.** यदि x, y, z ∈ [-1, 1] इस प्रकार से हैं कि cos⁻¹x + cos⁻¹y + cos⁻¹z = 0, तो x + y + z का मान है
 - (1) 0 (2) 2
 - (3) 1 (4) 3
 - (5) अनुत्तरित प्रश्न
- 68. सामान्य कैटेनरी का समीकरण है (जहां c एक प्राचल है) –

(1)
$$y = \frac{c}{2} \left(e^{\frac{+ix}{c}} - e^{\frac{-ix}{c}} \right)$$
 (2) $y = \frac{c}{2i} \left(e^{\frac{ix}{c}} + e^{\frac{-ix}{c}} \right)$
(3) $y = \frac{c}{2} \left(e^{\frac{x}{c}} + e^{\frac{-x}{c}} \right)$ (4) $y = \frac{c}{2} \left(e^{\frac{x}{c}} - e^{\frac{-x}{c}} \right)$
(5) अनुत्तरित प्रश्न

1

Page 13 of 32

69. Characteristic of the ring $(Z_2, +_2, \times_2)$ is -	69. वलय (Z2, +2, ×2) का अभिलक्षण है –
(1) 2 (2) ∞	(1) 2 (2) ∞
(3) 0 (4) 1	(3) 0 (4) 1
(5) Question not attempted	(5) अनुत्तरित प्रश्न
70. $\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 + \cos x}$ is equal to -	70. $\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1+\cos x}$ बराबर है -
(1) 2 (2) -2	(1) 2 (2) -2
(3) $\frac{-1}{2}$ (4) $\frac{1}{2}$	(3) $\frac{-1}{2}$ (4) $\frac{1}{2}$
(5) Question not attempted	(5) अनुत्तरित प्रश्न
71. The solution of simultaneous differential	71. युगपत अवकल समीकरणों –
equations -	$2\frac{dx}{dt} - \frac{dy}{dt} + 2x + y = 11t$
$2\frac{dx}{dt} - \frac{dy}{dt} + 2x + y = 11t$	· · · · · · · · · · · · · · · · · · ·
$2\frac{dx}{dt} + 3\frac{dy}{dt} + 5x - 3y = 2$, has the value of x is	$2\frac{dx}{dt} + 3\frac{dy}{dt} + 5x - 3y = 2$ के हल से x का मान बराबर है –
equal to - -11	(1) $c e^{\frac{11}{8}t} - 3t + 2$ (2) $c e^{\frac{-11}{8}t} + 3t - 2$
(1) $c e^{\frac{11}{8}t} - 3t + 2$ (2) $c e^{\frac{-11}{8}t} + 3t - 2$	
(3) $c e^{\frac{-8}{11}t} + 3t - 2$ (4) $c e^{\frac{11}{8}t} + 3t + 2$	(3) $c e^{\frac{-8}{11}t} + 3t - 2$ (4) $c e^{\frac{11}{8}t} + 3t + 2$
(5) Question not attempted	(5) अनुत्तरित प्रश्न
² . The approximate value of y'(2) from the data	72. नीचे दिये गए आँकड़ों से y'(2) का सन्निकट मान
below is –	हे —
x 0 1 2 3 4 5 y -0 1 8 27 64 125	x 0 1 2 3 4 5 y 0 1 8 27 64 125
(1) 6 (2) 24	(1) 6 (2) 24
(3) 18 (5) 0	(3) 18 (4) 12
(5) Question not attempted	(5) अनुत्तरित प्रश्न
3. In which interval, the function $f(x) = \frac{1}{3}x^3 + $	73. किस अन्तराल में फलन $f(x) = \frac{1}{3}x^3 + \frac{1}{2}x^2 - 6x + 8$
$\frac{1}{\sqrt{2}}x^2 - 6x + 8$ is strictly decreasing?	निरन्तर ह्रासमान है?
(1) $-3 < x < 2$ (2) $1 < x < 6$	(1) $-3 < x < 2$ (2) $1 < x < 6$
(3) $x < -3$ (4) $2 < x < \infty$	(3) $x < -3$ (4) $2 < x < \infty$
(5) Question not attempted	(5) अनुत्तरित प्रश्न
^{24.} The image of the lines $x = 1$ and $y = 1$ under the	74. प्रतिचित्रण $w = \frac{1}{z}$; $z = x + iy$ के अन्तर्गत रेखाओ
mapping $w = \frac{1}{z}$; $z = x + iy$ is -	x = 1 तथा $y = 1$ का प्रतिबिम्ब है –
(1) both bilinear transformation and conformal	
mapping	(1) द्विरैखिक रूपान्तरण तथा अनुकोण प्रतिचित्रण दोने
(2) neither bilinear transformation nor	(2) न तो द्विरैखिक रूपान्तरण ना ही अनुकोण
conformal mapping	प्रतिचित्रण
(3) a conformal mapping only	(3) केवल एक अनुकोण प्रतिचित्रण
(4) a bilinear transformation only	(4) केवल एक द्विरैखिक रूपान्तरण
(5) Question not attempted	(5) अनुत्तरित प्रश्न

75	• The eccentricity of asymptotes $3x + 4y =$	of the hyperbol 2 and 4x - 3y = 2	
	(1) 2	하는 영양에 가지 않는 것이 같은 영양과	10
		(2) $\frac{1}{\sqrt{2}}$	
	(3) $\frac{1}{2}$	(4) √2	
	(5) Question not atten	mpted	10
76.	If $\frac{3z_1}{5z_2}$, (where z_1 , z_2 :	are complex numb	ers) is a
	purely imaginary nur	mber, then $\left \frac{z_1-z_2}{z_1+z_2}\right $	is equal
	to -	the state of	
	(1) 3	(2) 5	KANE .
	(3) 1	(4) 2	長節
	(5) Question not atter	npted	A Controller of Franks
77.	The equation of the	cone whose verte	x is the
	origin and guiding cu	urve is $x = \frac{-1}{\sqrt{2}}$, f(y	(z) = 0,
	is –	¥ 4	
	(1) $f\left(\frac{-x}{\sqrt{2}z}, \frac{-y}{\sqrt{2}z}\right) = 0$	····· ··· · · · · · · · · · · · · · ·	
	(3) $f\left(\frac{x}{\sqrt{2}y}, \frac{z}{\sqrt{2}y}\right) = 0$	(4) $f\left(\frac{-y}{\sqrt{2}x}, \frac{-z}{\sqrt{2}x}\right)$	= 0
	(5) Question not atten	npted	
78.	$\int_0^3 x J_0(2x) dx \text{ is equa}$	l to -	
		(2) $\frac{2}{3} J_1(6)$	
8729 . J	26. 제안영 · · · · · · · · · · · · · · · · · · ·		
	(3) $\frac{3}{2} J_1(6)$	(4) $\frac{3}{2} J_0(6)$	· ·
	(5) Question not atten	npted	
79.	Which of the followin	g statements is true	e?
	(1) Canter's set is not	compact set.	
	(2) Every compact s	ubset of a metric	c space
	(X, d) is closed.		
	(3) If d is usual me	tric in R, then (F	R, d) is
	compact metric sp		
		The second second second	

- (4) Every finite subset in a metric space is not compact.
- (5) Question not attempted
- **80.** $\nabla^2 (xy\hat{i} + yz\hat{j} + xz\hat{k})$ equal to (where ∇^2 is Laplacian operator) -
 - (2) $\hat{i} + \hat{j} + \hat{k}$ (1) 3
 - (4) 0 (3) 1
 - (5) Question not attempted

75. अतिपरवलय की उत्केन्द्रता, जिसकी अनन्तस्पर्शियाँ 3x + 4y = 2 तथा 4x - 3y = 2 हैं, है -(1) 2 (2) $\frac{1}{\sqrt{2}}$ (4) $\sqrt{2}$ (3) $\frac{1}{2}$ (5) अनुत्तरित प्रश्न **76.** यदि $\frac{3z_1}{5z_2}$, (जहाँ z_1, z_2 सम्मिश्र संख्याएं हैं), एक विशुद्ध काल्पनिक संख्या है, तो $\begin{vmatrix} z_1 - z_2 \\ z_1 + z_2 \end{vmatrix}$ बराबर है –

GET IT ON Google Play

- (1) 3 (2) 5 (3) 1 (4) 2
- (5) अनुत्तरित प्रश्न
- 77. उस शंकु का समीकरण, जिसका शीर्ष मूल बिन्दु तथा निर्देशक वक्र $x = \frac{-1}{\sqrt{2}}, f(y, z) = 0$ हो, है –
 - (1) $f\left(\frac{-x}{\sqrt{2}z}, \frac{-y}{\sqrt{2}z}\right) = 0$ (2) $f\left(\frac{-y}{\sqrt{2}x}, \frac{-z}{\sqrt{2}x}\right) = 1$ (3) $f\left(\frac{x}{\sqrt{2}y}, \frac{z}{\sqrt{2}y}\right) = 0$ (4) $f\left(\frac{-y}{\sqrt{2}x}, \frac{-z}{\sqrt{2}x}\right) = 0$

(5) अनूत्तरित प्रश्न

- **78.** $\int_0^3 x J_0(2x) dx$ बराबर है −
 - (1) $\frac{-3}{2}$ J₁(6) (2) $\frac{2}{2}$ J₁(6) (3) $\frac{3}{2} J_1(6)$ (4) $\frac{3}{2} J_0(6)$

 - (5) अनुत्तरित प्रश्न
- 79. निम्नलिखित कथनों में से कौनसा कथन सत्य है?
 - (1) केन्टर का समुच्चय संहत समुच्चय नहीं है।
 - (2) दूरीक समष्टि (X, d) का प्रत्येक संहत उपसमुच्चय संवृत है।
 - (3) यदि d, R में साधारण दूरीक हो, तो (R, d) संहत दूरीक समष्टि है।
 - (4) एक दूरीक समष्टि में प्रत्येक परिमित उपसमुच्चय संहत नहीं होता।
 - (5) अनुत्तरित प्रश्न
- **80.** $\nabla^2 (xy\hat{i} + yz\hat{j} + xz\hat{k})$ ∇^2 बराबर है (जहाँ लाप्लासियन संकारक है) –
 - (2) $\hat{i} + \hat{j} + \hat{k}$ (1) 3
 - (3) 1 (4) 0
 - (5) अनूत्तरित प्रश्न

Page 15 of 32

35 - ⊕

Adda247

81.	Area bounded by the ordinates $x = 0, x = 2$	curve $y = x \sin x$, x-axis and π is -	81.	वक्र y = x sin x, x-अक्ष, से परिबद्ध क्षेत्र का क्षेत्रफ	तथा कोटियों x = 0, x = 21 ज्ल है –	π
	(1) π square unit	(2) 4π square unit		 π aví statis 	(2) 4π वर्ग इकाई	
	(3) 3π square unit	(4) 2π square unit		(3) 3π वर्ग इकाई	(4) 2π वर्ग इकाई	
	(5) Question not atter	mpted		(5) अनुत्तरित प्रश्न	$(1, 1, \dots, 1, p) > (1, 1, 2)^{n}$	
82.	If A_1 denotes the area	a of the region bounded by	82.	यदि $y^2 = 4x$ तथा $x = 4$	। से परिबद्ध क्षेत्र का क्षेत्रफत	ल
		$1 A_2$ denotes the area of the		A_1 से व्यक्त करें एवं y^2	= 4x तथा x = 1 से परिबद	द्व
		= $4x$ and $x = 1$, then $A_1:A_2$		क्षेत्र का क्षेत्रफल A2 से	व्यक्त करें, तो A1:A2 बराब	र
	is equal to -			हे –		
	(1) 2:1	(2) 16:1		(1) 2:1	(2) 16:1	
	(3) 4:1	(4) 8:1		(3) 4:1	(4) 8:1	
	(5) Question not atten	mpted		(5) अनुत्तरित प्रश्न	out to many and	
83.	If S _n is the symmetric	group of n-symbols and An	83.	यदि Sn n-प्रतीकों का ए	क सममित समूह है और A	-n
	is its alternating grou	up, then index of A _n in S _n		इसका एकान्तर समूह है	, तो Sn में An का सूचकांव	न
	is -			हे –		
MERE	(1) 2n	(2) 2		(1) 2n	(2) 2	
R.C.	(3) 3	(4) n		(3) 3	(4) n	
	(5) Question not atte	mpted		(5) अनुत्तरित प्रश्न		
84.	Two spheres $x^2 + y^2$	$+ z^{2} + 6y + 2z + 8 = 0$ and	84.	दो गोले $x^2 + y^2 + z^2$	² + 6y + 2z + 8 = 0 तथ	ग
	$x^2 + y^2 + z^2 + 6x$	+ 8y + 4z + 20 = 0 cut		$x^2 + y^2 + z^2 + 6x + 8y$	+ 4z + 20 = 0 लाम्बिक रू	ч
	orthogonally, then t	he radius of the common		से काटते हैं, तो उभयनि		
	circle is -			Constant and the	Pola Lada to ALEAR	
	(1) $\frac{3\sqrt{2}}{\sqrt{11}}$ units	(2) $\frac{2\sqrt{3}}{\sqrt{11}}$ units		(1) $\frac{3\sqrt{2}}{\sqrt{11}}$ इकाई	(2) ^{2√3} इकाई	
		自己的 医原子的 医原因 医原因		(3) √2/3 इकाई	(4) √3 इकाई	
: :	(3) $\frac{\sqrt{2}}{\sqrt{11}}$ units	(4) $\frac{\sqrt{3}}{\sqrt{11}}$ units		•••	√11	
	(5) Question not atte	mpted		(5) अनुत्तरित प्रश्न		
85.	If the iteration form	mula $x = x + b(x^2 - 3)$	85.	यदि पुनरावृत्ति सूत्र x =	x + b(x ² - 3) एक अच्छे द	र
	converges at a good r	tate (given that $x = a$, $(a > 0)$		से अभिसरित हो (दिया	है x = a, (a > 0) मूल क	স
	is an initial approxi	mation for the root), then		प्रारंभिक सन्निकटन है),	तो निम्न में से कौनसा सत	य
	which of the following	ng is true?		8? or three		
	(1) $b \in \left(0, \frac{1}{a}\right)$	(2) $b \in (-a, 0)$		(1) $b \in \left(0, \frac{1}{a}\right)$		
	(3) $b \in \left(-\infty, \frac{1}{a}\right)$	(4) $b \in \left(\frac{-1}{a}, 0\right)$		(3) $b \in \left(-\infty, \frac{1}{a}\right)$	(4) $b \in \left(\frac{-1}{a}, 0\right)$	
		and the second se				

(5) Question not attempted

35 - ⊕

V

Page 16 of 32

(5) अनुत्तरित प्रश्न

86. For usual metric d(x, y) = |x - y| for [0, 1] value of $S\left[\frac{1}{4}, \frac{1}{4}\right]$ (closed sphere with centre $\frac{1}{4}$ and radius $\frac{1}{4}$) exactly is -(1) $\left[0, \frac{1}{4}\right]$ (2) $\left[0, \frac{1}{2}\right]$ (3) $\left(0, \frac{1}{2}\right)$ (4) $\left[\frac{1}{4}, \frac{1}{2}\right]$

(5) Question not attempted

87. If permutation

σ	$= \begin{pmatrix} 1 \\ 3 \end{pmatrix}$	2 1	3	4 2	5 8	6 6	7 9	8 7	9 5)	•	then
	order										
(1)	3					(2)	2				
(3)	6					(4)	4 .				1
(5)	Ques	tion	not	atte	emp	ted					i ale

- 88. The derivative of function $f(z) = \frac{1+z}{1-z}$; $z \neq 1$ where z = x + iy, $x, y \in \mathbb{R}$, $i = \sqrt{-1}$, at z = 2, is -(1) -2 (2) 2
 - (3) 2i (4) 2i
 - (5) Question not attempted
- 89. If x-axis is the axis of a right circular cylinder and radius is $\sqrt{3}$ and its equation is $ax^2 + by^2 + cz^2 = 3$, then $\left(\frac{a}{b} - \frac{b}{c}\right)$ is equal to -

(2) 1

(4) -1

- (1) ∞
- (3) 0
- (5) Question not attempted
- **90.** Two balls are projected from the same point with angles of projection 30° and 60° respectively. If they attain the same greatest height, then ratio of their velocities of projection is -

(1) 1:1	(2) 2:1
(3) $\sqrt{3}:1$	(4) 3:1

- (5) Question not attempted
- **91.** Number of real asymptotes of the curve $v^3 x^2 3x = 0$ are -

5			
(1)		(2) 0	
(3) 3	3	(4) 2	
(5) (Duestion not atte	empted	

86. सामान्य दूरीक d(x, y) = lx - yl, [0, 1] के लिए, $S\left[\frac{1}{4},\frac{1}{4}\right]$ (केंद्र $\frac{1}{4}$ तथा त्रिज्या $\frac{1}{4}$ का संवृत गोला है) का सटीक मान है -(1) $\left[0, \frac{1}{4}\right]$ (2) $\left[0,\frac{1}{2}\right]$ (3) $(0,\frac{1}{2})$ (4) $\begin{bmatrix} \frac{1}{4}, \frac{1}{2} \end{bmatrix}$ (5) अनुत्तरित प्रश्न 87. यदि क्रमचय $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 1 & 4 & 2 & 8 & 6 & 9 & 7 & 5 \end{pmatrix}, \ \vec{n} \ \sigma \ \vec{\sigma}$ कोटि है -(1) 3 (2) 2 (3) 6 (4) 4 (5) अनुत्तरित प्रश्न 88. फलन f(z) = $\frac{1+z}{1-z}$; z≠1 जहाँ z = x + iy, x, y∈ ℝ, $i = \sqrt{-1}$, का z = 2 पर अवकलज है – (1) - 2(2) 2 (4) – 2i (3) 2i (5) अनुत्तरित प्रश्न 89. यदि एक लम्बवृत्तीय बेलन की अक्ष x–अक्ष हो तथा त्रिज्या √3 हो एवं इसका समीकरण $ax^{2} + by^{2} + cz^{2} = 3$ हो, तो $\left(\frac{a}{b} - \frac{b}{c}\right)$ बराबर है -(1) ∞ (2) 1 (4) -1 (3) 0 (5) अनुत्तरित प्रश्न 90. एक ही बिन्दु से दो गेंदें क्रमशः 30° तथा 60° के कोणों पर प्रक्षेपित की जाती हैं। यदि उनके द्वारा प्राप्त महत्तम ऊँचाई समान हों, तो प्रक्षेप वेगों का अनुपात है – (1) 1:1 (2) 2:1

- (3) $\sqrt{3}:1$ (4) 3:1
- (5) अनुत्तरित प्रश्न
- 91. वक्र y³ x² 3x = 0 के वास्तविक अनन्तस्पर्शियों की संख्या है (1) 1
 (2) 0
 (3) 3
 (4) 2
 (5) अनुत्तरित प्रश्न

35 - ⊕

GET IT ON Google Play

- **98.** $dS^2 = g_{ij} dx^i dx^j$ is invariant, then which of the following is true?
 - (1) g_{ij} is a symmetric covariant tensor of rank 2.
 - (2) g_{ij} is a skew-symmetric contravariant tensor of rank 2.
 - (3) g_{ij} is a symmetric contravariant tensor of rank 2.
 - (4) g_{ij} is a skew-symmetric covariant tensor of rank 2.
 - (5) Question not attempted
- 99. The coordinates of the pole of a plane 2x - 3y + z = 12 with respect to the sphere $x^2 + y^2 + z^2 = 16$ are -
 - (1) $\left(\frac{8}{3}, -4, \frac{-4}{3}\right)$ (2) $\left(\frac{8}{3}, 4, \frac{-4}{3}\right)$ (3) $\left(\frac{8}{3}, -4, \frac{4}{3}\right)$ (4) $\left(\frac{8}{3}, 4, \frac{4}{3}\right)$

 - (5) Question not attempted
- 100. If the entry (2, 2) is a saddle point for the following game -

		Ρ	layer	В	
		B ₁	B ₂	B ₃	
	A ₁	2	4	5	
Player A,	A ₂	10	7	y	
	A ₃	4	x	6	

then which of the following is true?

(1) $x \le 6, y > 5$ (2) $x \ge 7, y > 7$ (4) $x \le 5, y > 7$ (3) $x \le 7, y > 7$

(5) Question not attempted

101. If the lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$ and $\frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1}$ intersect, then the value of k is -

(1) $\frac{3}{2}$ $(2) = \frac{1}{2}$ (4) $\frac{-9}{2}$ (3) $\frac{-2}{2}$

(5) Question not attempted

98. यदि $dS^2 = g_{ij} dx^i dx^j$ निश्चर है, तब निम्न में से कौनसा सत्य है?

- (1) gii कोटि 2 का सममित सहपरिवर्ती प्रदिश है।
- (2) gii कोटि 2 का विषम सममित प्रतिपरिवर्ती प्रदिश
 - है।
- (3) gii कोटि 2 का सममित प्रतिपरिवर्ती प्रदिश है।
- (4) gij कोटि 2 का विषम सममित सहपरिवर्ती प्रदिश है।
- (5) अनुत्तरित प्रश्न

99. गोले $x^2 + y^2 + z^2 = 16$ के सापेक्ष समतल

- 2x 3y + z = 12 के ध्रुव के निर्देशांक हैं -
 - (1) $\left(\frac{8}{3}, -4, \frac{-4}{3}\right)$ (2) $\left(\frac{8}{3}, 4, \frac{-4}{3}\right)$ (3) $\left(\frac{8}{3}, -4, \frac{4}{3}\right)$ (4) $\left(\frac{8}{3}, 4, \frac{4}{3}\right)$

(5) अनूत्तरित प्रश्न

100. निम्न खेल में यदि कोष्ठिका (2, 2) का अवयव पल्याण बिन्दु है -

	(2)	रि	बलाड़ी	В	
	Taria .	B ₁	B ₂	B ₃	
	22 BIO 1985		4		
खिलाड़ी A	, A ₂	10	7	y	
in the second second in the	A ₃	4	X	6	g i staass
तो निम्न में से कौ	नसा र	सत्य है	?		
(1) $x \le 6, y > 5$	101	(2)	x ≥ 7	, y >7	
(3) $x \le 7, y > 7$		(4)	x ≤ 5	, y > 7	
(5) अनुत्तरित प्रश्न	Vaia				
101. यदि रेखाएँ x-1 =	$=\frac{y+1}{3}$	$=\frac{z-z}{4}$	1 तथा	$\frac{x-3}{1} =$	$\frac{y-k}{2} = \frac{z}{1}$
परस्पर प्रतिच्छेद व	रती ह	हैं, तो	k का	मान है	-
(1) $\frac{3}{2}$		(2)	9 2		
(3) $\frac{-2}{9}$		(4)	<u>-9</u> 2		(P)
(5) अनुत्तरित प्रश्न	Som			intratit.	

Page 19 of 32

- 102. If H is a subgroup of a group G and N is a normal subgroup of G. Then consider the following statements –
 - (i) $H \cap N$ is a normal subgroup of H.
 - (ii) HN is a subgroup of G.
 - (iii) N is a normal subgroup of HN.

Which of the above statement/s is/are correct?

(1) Only (ii) and (iii)

Adda247

- (2) Only (i) and (ii)
- (3) Only (i) and (iii)
- (4) (i), (ii) and (iii) all
- (5) Question not attempted
- 103. The equation of the plane that has three point contact at the origin with the curve $x = t^4-1$, $y = t^3-1$, $z = t^2-1$, is -
 - (1) 3x + 8y + 6z = 0 (2) 3x 8y 6z = 0
 - (3) 3x 8y + 6z = 0 (4) 3x y + 6z = 0
 - (5) Question not attempted

104. The equation of the tangent line at the point t = 1to the curve x = 1+t, $y = t^2$, $z = 1+t^3$ is -

(1) $\frac{x-2}{1} = \frac{y+1}{2} = \frac{z+2}{3}$ (2) $\frac{x+2}{1} = \frac{y-1}{2} = \frac{z-2}{3}$ (3) $\frac{x-2}{1} = \frac{y-1}{2} = \frac{z-2}{3}$ (4) $\frac{x-2}{1} = \frac{y-1}{-2} = \frac{z-2}{3}$ (5) Question not attempted

105. Complementary function of differential equation

 $x^{2} \frac{d^{2}y}{dx^{2}} + 3x \frac{dy}{dx} + y = \frac{1}{(1-x)^{2}} \text{ is } -$ (1) $(1+c_{1}x) + c_{2}e^{-x}$ (2) $\frac{1}{x}(c_{1}+c_{2}\log x)$ (3) $(c_{1}+c_{2}x)e^{x}$ (4) $(c_{1}+c_{2}\log x)x$ (5) Question not attempted

106. A number is selected from first 50 natural numbers. Probability that it is a multiple of 5 or 11 is -

(1) $\frac{1}{5}$ (2) $\frac{3}{5}$ (3) $\frac{3}{25}$ (4) $\frac{7}{25}$ (5) Question not attempted 102. यदि H, समूह G का एक उपसमूह तथा N, समूह G का एक प्रसामान्य उपसमूह हो, तो निम्नलिखित कथनों पर विचार कीजिए –

- (i) H∩N, H का प्रसामान्य उपसमूह है।
- (ii) HN, G का एक उपसमूह है।
- (iii) N, HN का एक प्रसामान्य उपसमूह है।

उपरोक्त कथन / कथनों में से कौनसा / से सही है / हैं?

- (1) केवल (ii) तथा (iii)
- (2) केवल (i) तथा (ii)
- (3) केवल (i) तथा (iii)
- (4) सभी (i), (ii) तथा (iii)
- (5) अनुत्तरित प्रश्न
- **103.** उस समतल का समीकरण जो वक्र $x = t^4 - 1, y = t^3 - 1, z = t^2 - 1$ के साथ मूल बिन्दु पर त्रि-बिन्दु सम्पर्क करता है, है –
 - (1) 3x + 8y + 6z = 0 (2) 3x 8y 6z = 0
 - (3) 3x 8y + 6z = 0 (4) 3x y + 6z = 0
 - (5) अनुत्तरित प्रश्न

104. वक्र x = 1+t, $y = t^2$, $z = 1+t^3$ का बिन्दु t = 1 पर स्पर्शरेखा का समीकरण है —

(1) $\frac{x-2}{1} = \frac{y+1}{2} = \frac{z+2}{3}$ (2) $\frac{x+2}{1} = \frac{y-1}{2} = \frac{z-2}{3}$ (3) $\frac{x-2}{1} = \frac{y-1}{2} = \frac{z-2}{3}$ (4) $\frac{x-2}{1} = \frac{y-1}{-2} = \frac{z-2}{3}$ (5) अनुत्तरित प्रश्न

105. अवकल समीकरण $x^2 \frac{d^2y}{dx^2} + 3x \frac{dy}{dx} + y = \frac{1}{(1-x)^2}$ का पूरक फलन है –

(1) $(1+c_1x) + c_2e^{-x}$ (2) $\frac{1}{x}(c_1+c_2\log x)$ (3) $(c_1+c_2x)e^x$ (4) $(c_1+c_2\log x)x$ (5) अनुत्तरित प्रश्न

106. प्रथम 50 प्राकृत संख्याओं में से एक संख्या को चुना जाता है। इस संख्या के 5 या 11 के गुणक होने की प्रायिकता है –

(1)	$\frac{1}{5}$	(2) $\frac{3}{5}$
(3)	$\frac{3}{25}$	(4) $\frac{7}{25}$
	अनुत्तरित प्रश्न	

35 - ⊕

Page 20 of 32

107. If $\int \frac{x^8+4}{x^4-2x^2+2} dx = Ax^5 + Bx^3 + Cx + D$, then the	107. यदि $\int \frac{x^{8}+4}{x^{4}-2x^{2}+2} dx = Ax^{5} + Bx^{3} + Cx + D$ हो, तो
value of $5A + 3B + C$ is equal to -	5A + 3B + C का मान बराबर है -
(1) 3 (2) 5	(1) 3 (2) 5
(3) 9 (4) 7	(3) 9 (4) 7
(5) Question not attempted	(5) अनुत्तरित प्रश्न
108. The value of $\{(\sqrt{2}+1)^6 + (\sqrt{2}-1)^6\}$ is -	108. $\left\{ \left(\sqrt{2} + 1 ight)^6 + \left(\sqrt{2} - 1 ight)^6 ight\}$ का मान है –
(1) 199 (2) 208	(1) 199 (2) 208
(3) 99 (4) 198	(3) 99 (4) 198
(5) Question not attempted	(5) अनुत्तरित प्रश्न
109. The domain of the function $f(x) = \frac{1}{\sqrt{x+[x]}}$	109. फलन $f(x) = \frac{1}{\sqrt{x+[x]}}$ (जहाँ [x] महत्तम पूर्णांक फलन
(where [x] is greatest integer function) is -	है) का प्रान्त है –
(1) $(-\infty, 0]$ (2) $(-\infty, 0)$	(1) $(-\infty, 0]$ (2) $(-\infty, 0)$
(3) $(0, \infty)$ (4) $\left[0, \frac{1}{2}\right]$	(3) $(0, \infty)$ (4) $\left[0, \frac{1}{2}\right]$
(5) Question not attempted	(5) अनुत्तरित प्रश्न
 110. If A is an invertible matrix such that A³ = A + I (where I is unit matrix), then inverse of (A⁶ - A⁵) is equal to - -A⁻¹ A⁻¹ A⁻¹ (1) -A⁻¹ (2) A⁻¹ (3) I (4) A (5) Question not attempted 111. Which of the following statements is a false statement? (1) Polygons which are convex sets, have the extreme points as their vertices. (2) An extreme point is a boundary point of a convex set. (3) The open half space {x:cx>z} is not a convex set. 	110. यदि A एक व्युत्क्रमणीय आव्यूह इस प्रकार है कि $A^3 = A + I$ (जहाँ I इकाई आव्यूह है), तब $(A^6 - A^5)$ का प्रतिलोम बराबर है – (1) $-A^{-1}$ (2) A^{-1} (3) I (4) A (5) अनुत्तरित प्रश्न 111. निम्नलिखित कथनों में से कौनसा कथन असत्य है? (1) बहुमुज जो अवमुख समुच्चय हो, उनके शीर्ष ही चरम बिन्दु होते हैं। (2) अवमुख समुच्चय का एक चरम बिन्दु, एक परिसीमा बिन्दु होता है। (3) विवृत अर्ध समष्टि {x:cx>z} एक अवमुख समुच्चय नहीं होता है। (4) एक अवमुख समुच्चय के अनन्त चरम बिन्दु हो
(4) A convex set may have infinite number of extreme points.	सकते हैं।
(5) Question not attempted	(5) अनुत्तरित प्रश्न
112. Infinite series $1 + \frac{3}{2} + \frac{7}{3} + \frac{15}{4} + \dots \infty$ is equal to -	112. अनंत श्रेणी $1 + \frac{3}{2} + \frac{7}{3} + \frac{15}{4} + \dots \infty$ बराबर है –
(1) e(1-e) (2) 3e	(1) e(1-e) (2) 3e
(3) e(e-1) (4) e(e+1)	(3) e(e-1) (4) e(e+1)
(5) Question not attempted	(5) अनुत्तरित प्रश्न

)

113. If matrix $A = \begin{bmatrix} 2 & -3 \\ 1 & -1 \end{bmatrix}$, the	en A ⁹⁹⁰ - 5A ⁹⁸⁹ is	113. यदि आव्यूह A =	$\begin{bmatrix} 2 & -3 \\ 1 & -1 \end{bmatrix}$, तो $ A^{990} - 5A^{989} $
equal to -		बराबर है –	·1 -1
(1) 15 (2) 1	8	(1) 15	(2) 18
(3) 21 (4) 1		(3) 21	(4) 1
(5) Question not attempted	(House the co	(5) अनुत्तरित प्रश्न	
14. If α , β are roots of the equation	on $x^2 - a(x+1) - 3 = 0$,	114. यदि α, β समीकरण	$x^2 - a(x+1) - 3 = 0$ के मूल हों,
then $\frac{\alpha^2 + 2\alpha + 1}{\alpha^2 + 2\alpha + 3} + \frac{\beta^2 + 2\beta + 1}{\beta^2 + 2\beta + 3}$ (wh	nere α≠β) is equal	$\overline{\operatorname{ch}} \; \frac{\alpha^2 + 2\alpha + 1}{\alpha^2 + 2\alpha + 3} + \frac{\beta^2 + 2}{\beta^2 + 2}$	^{β+1} _{β+3} (जहाँ α≠β) बराबर है –
to -	the example	(1) 1	(2) a + 3
(1) 1 (2) a		(3) 0	(4) -1
(3) 0 (4) -	1 A Franki epite state	(5) अनुत्तरित प्रश्न	the Physical Physicae
(5) Question not attempted			
 For any two numbers a and b. is - 	, standard deviation	ाञः किन्हा दा संख्याआः होता है –	a तथा b के लिए मानक विचलन
	ab]		labl
(1) $\left \frac{a-b}{2}\right $ (2)	2	(1) $\left \frac{a-b}{2}\right $	1 4 1
(3) $\left \frac{a+b}{2}\right $ (4)	$\left(\frac{a-b}{2}\right)^2$	(3) $\left \frac{a+b}{2}\right $	(4) $\left(\frac{a-b}{2}\right)^2$
(5) Question not attempted		(5) अनुत्तरित प्रश्न	nist per per nya a sin
16. Three vectors $\vec{a} = \hat{i} - \hat{j}$, \vec{b}	$=\hat{j}-\hat{k},\ \vec{c}=\hat{k}-\hat{l}$	116. तीन सदिश a = 1 -	$-\hat{j}, \vec{b} = \hat{j} - \hat{k}, \vec{c} = \hat{k} - \hat{i}$ दिये
are given. If \vec{d} is a unit		गये हैं। यदि d एक	इकाई सदिश इस प्रकार से है कि
$\vec{a} \cdot \vec{d} = 0 = [\vec{b} \cdot \vec{c} \cdot \vec{d}]$, then \vec{d} is		$\vec{a}.\vec{d}=0=[\vec{b}\vec{c}\vec{d}]$	
(1) $\pm \frac{(\hat{1}+\hat{j}-2\hat{k})}{\sqrt{3}}$ (2)		(1) $\pm \frac{(\hat{i}+\hat{j}-2\hat{k})}{\sqrt{3}}$	
V V	$\pm \frac{(\hat{i}+\hat{j}+2\hat{k})}{\sqrt{3}}$	Sector and the sector and the sector and the sector and the	(4) $\pm \frac{\sqrt{6}}{\sqrt{3}}$
(5) Question not attempted		(5) अनुत्तरित प्रश्न	
17. If $ax^2 - by^2 + 3z^2 + 2(a + \lambda) x^2$	y - (b + 1) z - a = 0	117. यदि ax ² - by ² + 3z ²	$+2(a + \lambda)xy - (b + 1)z - a = 0,$
is an equation of sphere (w	here a, b, c, λ are		(जहाँ a, b, c, λ अचर हैं) हो, तो
constants), then its radius is -		इसकी त्रिज्या है –	
(1) $\sqrt{\frac{10}{3}}$ unit (2) $\frac{\sqrt{3}}{3}$	10 3 unit	(1) $\sqrt{\frac{10}{3}} \equiv 4$ $(3) \frac{2\sqrt{2}}{3} \equiv 4$	(2) $\frac{\sqrt{10}}{3}$ इकाई
(3) $\frac{2\sqrt{2}}{2}$ unit (4) $\frac{1}{3}$	unit	(3) ^{2√2} इकाई	(4) ¹ / ₂ इकाई
(5) Question not attempted		 (5) अनुत्तरित प्रश्न 	and the second sec
18. The value of $(\nabla \times \vec{A})$, where		118. बिन्दु (1, 2, 3)	पर (∇× A) का मान, जहाँ
$\vec{A} = xy\hat{i} - 2xz\hat{j} + 2yz\hat{k}$, at the	point (1, 2, 3) is –	$\vec{A} = xy\hat{i} - 2xz\hat{j} + 2y\hat{j}$	
(1) $2\hat{j} + \hat{k}$ (2) 8		(1) $2\hat{j} + \hat{k}$	
(3) $8\hat{i} + \hat{j} - 7\hat{k}$ (4) 6	î – 7k	(3) $8\hat{i} + \hat{j} - 7\hat{k}$	
(5) Question not attempted		(5) अनुत्तरित प्रश्न	

- 119. On shifting the origin to the point $\left(\frac{1}{2}, \frac{-1}{2}\right)$ and keeping the axes parallel, the new coordinates of the point $\left(\frac{-1}{5}, \frac{1}{3}\right)$ will be -
 - (1) $\left(\frac{7}{10}, \frac{-2}{3}\right)$ (2) $\left(\frac{-1}{10}, \frac{2}{3}\right)$ (3) $\left(\frac{-7}{10},\frac{2}{3}\right)$ (4) $\left(\frac{-7}{10}, 0\right)$
 - (5) Question not attempted

- **120.** If $\mathbf{r} = |\vec{\mathbf{r}}| = |\mathbf{x}\hat{\mathbf{i}} + \mathbf{y}\hat{\mathbf{j}} + \mathbf{z}\hat{\mathbf{k}}|$, then $\nabla^2 \mathbf{r}^n$ is equal to
 - (1) $n(n+1)r^{n-2}$ (2) $n(n-1)r^{n-2}$
 - (3) $n(n+1)r^{n-1}$ (4) $n(n-1)r^{n-1}$
 - (5) Question not attempted
- 121. For vector space $V_3(R)$, where R is the field of real numbers, consider the following statements-Statements -
 - (I) $W_1 = \{(x, 2y, 3z) : x, y, z \in R\}$ is a subspace of V₃(R).
 - (II) $W_2 = \{(x, y, z) : x, y, z \text{ are rational numbers}\}$ is a subspace of $V_3(R)$.
 - (III) $W_3 = \{(x, x, x) : x \in R\}$ is a subspace of V₃(R).

Which of the above statements are true?

- (1) (I) and (II) (2) (II) and (III)
- (3) (I), (II) and (III) all (4) (I) and (III)
- (5) Question not attempted
- 122. Let G be the group of non-zero real numbers under multiplication and $G' = \{1, 2\}$ be the multiplicative group of non-zero integers of modulo 3, then the function $f: G \rightarrow G'$, defined by -

is -

 $f(x) = \begin{cases} 1, & \text{if } x \text{ is positive} \\ 2, & \text{if } x \text{ is negative} \end{cases}$

- (1) not a homomorphism
- (2) an epimorphism
- (3) a monomorphism
- (4) an isomorphism
- (5) Question not attempted

119. अक्षों को समान्तर रखते हुए, मूल बिन्दु को बिन्द $\left(\frac{1}{2}, \frac{-1}{3}\right)$ पर स्थानान्तरित कर दिया जाए, तो बिन्दु $\left(\frac{-1}{5},\frac{1}{2}\right)$ के नये निर्देशांक होंगे -(1) $\left(\frac{7}{10}, \frac{-2}{3}\right)$ (2) $\left(\frac{-1}{10}, \frac{2}{3}\right)$ (3) $\left(\frac{-7}{10}, \frac{2}{3}\right)$ (4) $\left(\frac{-7}{10}, 0\right)$ (5) अनुत्तरित प्रश्न

120. यदि $r = |\vec{r}| = |x\hat{i} + y\hat{j} + z\hat{k}|$, तो $\nabla^2 r^n$ बराबर है – (1) $n(n+1)r^{n-2}$ (2) $n(n-1)r^{n-2}$

- (3) $n(n+1)r^{n-1}$ (4) $n(n-1)r^{n-1}$
- (5) अनुत्तरित प्रश्न
- 121. सदिश समष्टि V3(R), जहां R वास्तविक संख्याओं का क्षेत्र है, के लिए निम्न कथनों पर विचार कीजिए – कथन -
 - (I) $W_1 = \{(x, 2y, 3z) : x, y, z \in R\}, V_3(R)$ of एक उपसमष्टि है।
 - V3(R) की एक उपसमष्टि है।
 - (III) $W_3 = \{(x, x, x) : x \in R\}, V_3(R)$ की एक उपसमष्टि है।

उपरोक्त कथनों में से कौनसे सही हैं?

- (2) (II) तथा (III) (1) (I) तथा (II)
- (3) (I), (II) तथा (III) सभी(4) (I) तथा (III)
- (5) अनुत्तरित प्रश्न

122. माना G गुणन के अंतर्गत अशून्य वास्तविक संख्याओं का समूह है तथा G' = {1, 2} मॉड्यूलों 3 के शून्येतर पूर्णांकों का गुणनात्मक समूह हो, तब फलन $f: G \rightarrow G'$, जो निम्न प्रकार परिभाषित है –

- $f(x) = \begin{cases} 1, \ alg x & alg r \\ 2, \ alg x & alg r \\ 2, \ alg x & alg r \\ 1, \ alg r \\ 2, \ alg r \\ 3, \ alg$
- (1) एक समाकारिता नहीं
- (2) एक आच्छादक संमाकारिता
- (3) एकैकी समाकारिता
- (4) एक तुल्याकारिता
- (5) अनुत्तरित प्रश्न

123. Curvature for the curve $r = a(1 - \cos\theta)$ at the

- point $\left(a, \frac{\pi}{2}\right)$ is -(1) $\frac{2a\sqrt{2}}{3}$ (2) $\frac{3\sqrt{2}}{4a}$ (3) $\frac{a\sqrt{2}}{3}$ (4) $\frac{3}{a\sqrt{2}}$
- (5) Question not attempted
- 124. If (0, 0) and (0, 3) are the vertex and focus of a parabola respectively, then the equation of the parabola is -
 - (1) $x^2 = -12y$ (2) $x^2 = 12y$
 - (3) $x^2 = 4y$ (4) $y^2 = 12x$
 - (5) Question not attempted
- 125. If the sum of the roots of the equation $\frac{1}{(x+a)} + \frac{1}{(x+b)} = \frac{1}{c}$ is zero, then the product of the roots is -
 - (1) $(a^2 + b^2)$ (2) $-\frac{1}{2}(a^2 + b^2)$ (3) $\frac{1}{(a^2+b^2)}$ (4) $\frac{1}{2}(a^2+b^2)$
 - (5) Question not attempted
- 126. The cosine of angle between the tangents at any point of the curve x = 3t, $y = 3t^2$, $z = 2t^3$ and the line y = z - x = 0 is -

 $(2) \frac{1}{2}$

(4) $\int_{\frac{3}{2}}^{\frac{3}{2}}$

- (1) $\frac{1}{\sqrt{2}}$
- (3) 1
- (5) Question not attempted
- 127. Which of following is false statement?
 - (1) For smooth body, friction coefficient is zero.
 - (2) When two rough bodies are in contact with one another and just to slide, then in limiting equilibrium, force of friction produced at point of contact is called dynamic friction.
 - (3) For perfectly rough bodies, coefficient of friction is one.
 - (4) Coefficient of friction = Tangent of friction angle
 - (5) Question not attempted

123. वक्र $r = a(1 - \cos\theta)$ की बिंदु $\left(a, \frac{\pi}{2}\right)$ पर वक्रता है –

- (1) $\frac{2a\sqrt{2}}{3}$ (2) $\frac{3\sqrt{2}}{4a}$ (3) $\frac{a\sqrt{2}}{3}$ (4) $\frac{3}{a\sqrt{2}}$
- (5) अनुत्तरित प्रश्न

124. यदि एक परवलय के शीर्ष तथा नाभि क्रमशः (0, 0)

तथा (0, 3) हैं, तब परवलय का समीकरण है –

- (1) $x^2 = -12y$ (2) $x^2 = 12y$ (3) $x^2 = 4y$ (4) $y^2 = 12x$
- (5) अनृत्तरित प्रश्न
- **125.** यदि समीकरण $\frac{1}{(x+a)} + \frac{1}{(x+b)} = \frac{1}{c} \vec{a}$ मूलों का योग शून्य हो, तो मूलों का गुणनफल है –
- (1) $(a^2 + b^2)$ (2) $-\frac{1}{2}(a^2 + b^2)$ (3) $\frac{1}{(a^2+b^2)}$ (4) $\frac{1}{2}(a^2 + b^2)$ (5) अनुत्तरित प्रश्न
 - **126.** वक्र x = 3t, $y = 3t^2$, $z = 2t^3$ के किसी बिन्दु पर स्पर्श रेखाओं तथा रेखा y = z - x = 0 के बीच के कोण की

(5) अनुत्तरित प्रश्न

127. निम्न कथनों में कौनसा असत्य कथन है?

- (1) चिकने पिण्ड के लिए घर्षण गुणांक शून्य होता है।
- (2) जब दो रुक्ष पिण्ड एक दूसरे को स्पर्श करते हों तथा एक दूसरे पर से फिसलने वाले ही हों तो सीमान्त सन्तुलन में स्पर्श बिन्दु पर उत्पन्न घर्षण बल को गतिक घर्षण कहते हैं।
- (3) पूर्ण रुक्ष पिण्ड के लिए घर्षण गुणांक एक होता है।
- (4) घर्षण गुणांक = घर्षण कोण की स्पर्शज्या
- (5) अनुत्तरित प्रश्न

f

35 - ⊕

- **128.** The area bounded by the curves $y^2 = x^3$ and $x^2 = y^3$ is -
 - (1) $\frac{4}{5}$ sq. units (2) $\frac{2}{5}$ sq. units
 - (3) $\frac{1}{5}$ sq. units (4) $\frac{3}{5}$ sq. units
 - (5) Question not attempted
- 129. Solution of the following assignment problem is -

Man	1911			
Tortail	1	2	3	4
ı Job	14-1			
Ι	12 -	30	21	15
II	18	33	9	31
III	44	25	24	21
IV	12 18 44 23	30	28	14

- (1) $I \rightarrow 1$, $II \rightarrow 2$, $III \rightarrow 3$, $IV \rightarrow 4$
- (2) $I \rightarrow 1$, $II \rightarrow 4$, $III \rightarrow 3$, $IV \rightarrow 2$
- (3) $I \rightarrow 1$, $II \rightarrow 3$, $III \rightarrow 4$, $IV \rightarrow 2$
- (4) $I \rightarrow 1$, $II \rightarrow 3$, $III \rightarrow 2$, $IV \rightarrow 4$
- (5) Question not attempted

130. P and Q are two unlike parallel forces (Q>P). If P is doubled, it is found that the line of action of Q comes in middle between the line of action of the new and original resultant, then which of the following is true?

(2) 4P = 3O

(4) 5P = 2O

- (1) 2P = 3Q
- (3) 4P = Q
- (5) Question not attempted
- **131.** There are three mutually perpendicular tangent planes to the cone $2ax^2 + y^2 + 2z^2 + 2ayz 2zx 6xy = 0$, then value of a is -
 - (1) -4, 2 (2) -2, -4
 - **(3)** 2, 4 **(4)** 3, -4
 - (5) Question not attempted

132. Value of $\triangle^5 \bigcirc^6$ (with usual notation of \triangle and

- as zero) is (1) 1800
 (2) 120
 (3) 720
 (4) 180
- (5) Question not attempted

128. वक्रों $y^2 = x^3$ तथा $x^2 = y^3$ से परिबद्ध क्षेत्र का क्षेत्रफल हे –

GET IT ON Google Play

(1) $\frac{4}{5}$ avi sans(2) $\frac{2}{5}$ avi sans(3) $\frac{1}{5}$ avi sans(4) $\frac{3}{5}$ avi sans(5) अनुत्तरित प्रश्न

129. निम्नलिखित नियतन समस्या का हल है –

आदर्म	100	2	3	4
i कार्य I II III IV				- <u>1</u>
Ι	12	30	21	15
II	18	33	9	31
III	44	25	24	21
IV	23	30	28	14

- (1) $I \rightarrow 1$, $II \rightarrow 2$, $III \rightarrow 3$, $IV \rightarrow 4$
- (2) $I \rightarrow 1$, $II \rightarrow 4$, $III \rightarrow 3$, $IV \rightarrow 2$
- (3) $I \rightarrow 1$, $II \rightarrow 3$, $III \rightarrow 4$, $IV \rightarrow 2$
- (4) $I \rightarrow 1$, $II \rightarrow 3$, $III \rightarrow 2$, $IV \rightarrow 4$
- (5) अनुत्तरित प्रश्न

130. P तथा Q दो विपरीत समान्तर बल हैं (Q>P)। यदि P को दुगुना कर दिया जाए, तो Q की क्रिया रेखा नये तथा मूल परिणामी की क्रिया रेखा के बीच/मध्य

में आ जाती है, तो निम्न में से कौनसा सत्य है?

- (1) 2P = 3Q(2) 4P = 3Q(3) 4P = Q(4) 5P = 2Q
- (5) अनुत्तरित प्रश्न
- **131.** शंकु $2ax^2 + y^2 + 2z^2 + 2ayz 2zx 6xy = 0$ के तीन परस्पर लम्बवत् स्पर्श तल हों, तो a का मान है –

(1) _4, 2	(2) -2, -4
(3) 2, 4	(4) 3, -4
(5) अनुत्तरित प्रश्न	

132. △⁵ ○⁶ (△ के सामान्य संकेतनों तथा ○ को शून्य लेते हुए) का मान है –

(1) 1800	(2) 120	
(3) 720	(4) 180	
(5) अनुत्तरित प्रश्न		

133. The algebraic structure (M, •), where	133. बीजीय संरचना (M, •) जहाँ M = $\{a+b\sqrt{3}: a, b \in \mathbb{Z}\}$
$M = \{a+b\sqrt{3} : a, b \in \mathbb{Z}\} and `•` denotes ordinary$	तथा '•' सामान्य गुणन संक्रिया को दर्शाता है, त
multiplication operation, then (M, \bullet) is not a –	(M, •) नहीं है, एक —
(1) Quasi group (2) Group	(1) क्वासी समूह (2) समूह
(3) Semi group (4) Monoid	(3) सेमी समूह (4) मोनोएड
(5) Question not attempted	(5) अनुत्तरित प्रश्न
134. If random variate x and y are related as $4x + 3y + 11 = 0$ and mean deviation of x is 5.40, then mean deviation of y is - (1) 7.20(2) 11.20 (3) -72(3) -72(4) 19.8	 134. यदि यादृच्छिक चर x तथा y, 4x + 3y + 11 = 0 कि एक प में सम्बन्धित हों तथा x का माध्य विचलन 5.4 हो, तो y का माध्य विचलन है – (1) 7.20 (2) 11.20 (3) -72 (4) 19.8
(5) Question not attempted	(5) अनुत्तरित प्रश्न
135. $\Gamma\left(\frac{3}{2} - \mathbf{x}\right)\Gamma\left(\frac{3}{2} + \mathbf{x}\right) =$	135. $\Gamma\left(\frac{3}{2}-x\right)\Gamma\left(\frac{3}{2}+x\right) =$
(1) $\frac{\pi}{4}(1-4x^2)$ cosec πx	(1) $\frac{\pi}{4}(1-4x^2) \csc \pi x$
(2) $\frac{\pi}{4}(1-4x^2) \sec \pi x$	(2) $\frac{\pi}{4}(1-4x^2) \sec \pi x$
(3) $\frac{\pi}{4}(1+4x^2)$ cosec πx	(3) $\frac{\pi}{4}(1+4x^2)$ cosec πx
(4) $\frac{\pi}{4}(1+4x^2) \sec \pi x$	(4) $\frac{\pi}{4}(1+4x^2) \sec \pi x$
(5) Question not attempted	(5) अनुत्तरित प्रश्न
136. The particular integral of the differential	136. अवकल समीकरण (D ⁴ + D ³ + D ² - D - 2)y =
equation $(D^4+D^3+D^2-D-2)y = e^x (Where D \equiv \frac{d}{dx})$	$\left(\overline{\mathbf{J}}_{\mathbf{r}} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} $
is -	· · · · · · · · · · · · · · · · · · ·
(1) xe^x (2) $\frac{1}{8} xe^x$	8
(3) $\frac{1}{3} xe^x$ (4) $\frac{1}{8} xe^x + 1$	(3) $\frac{1}{3} xe^x$ (4) $\frac{1}{8} xe^x + 1$
(5) Question not attempted	(5) अनुत्तरित प्रश्न
137. Equation of right circular cone whose vertex is	137. शीर्ष मूल बिन्दु तथा अर्धशीर्ष कोण 30° एवं 3
origin, axis is z-axis and semi vertical angle 30°	z-अक्ष वाले लम्बवृत्तीय शंकु का समीक
is $ax^2 + by^2 + cz^2 = 0$, then $\frac{b+c}{a}$ is equal to -	$ax^2 + by^2 + cz^2 = 0$ हो, तो $\frac{b+c}{a}$ बराबर है –
(1) $\frac{4}{3}$ (2) $\frac{3}{2}$	(1) $\frac{4}{3}$ (2) $\frac{3}{2}$
(3) $\frac{1}{2}$ (4) $\frac{2}{2}$	(3) $\frac{3}{3}$ (4) $\frac{2}{3}$
	(5) अनुत्तरित प्रश्न
(5) Question not attempted 138 Length of poler sub-tangent of the curve	and the second
138. Length of polar sub-tangent of the curve $r = a(1 - \cos\theta)$ is –	138. वक़ r = a(1 - cosθ) के धुवीय अधःस्पर्शी की लम्ब है -
(1) $2a \tan\left(\frac{\theta}{2}\right)$ (2) $a \sin\theta$	(1) $2a \tan\left(\frac{\theta}{2}\right)$ (2) $a \sin\theta$
(3) $2a\sin^2\left(\frac{\theta}{2}\right)\tan\left(\frac{\theta}{2}\right)$ (4) $2a\sin\left(\frac{\theta}{2}\right)$	(3) $2a\sin^2\left(\frac{\theta}{2}\right)\tan\left(\frac{\theta}{2}\right)$ (4) $2a\sin\left(\frac{\theta}{2}\right)$
(2) (2) (1) (2) (1) (2) (1) (2) (2)	(5) अनुत्तरित प्रश्न

- **139.** A ring, which can slide on a thin smooth rod, rests at a distance 'k' from one end 'O' of the rod. The rod is then set revolving uniformly about 'O' in horizontal plane. Then the radial velocity of ring is ($\dot{\theta} = \omega$ constant) -
 - (1) $\dot{\mathbf{r}} = \omega \mathbf{k} \sinh \theta$ (2) $\dot{\mathbf{r}} = \omega \mathbf{k} \cosh \theta$
 - (3) $\dot{r} = 2k\omega \cos\theta$ (4) $\dot{r} = \omega k \cos\theta$
 - (5) Question not attempted

- **140.** If A₁, A₂ are the two arithmetic means and G₁, G₂ are the two geometric means between two numbers a and b, then $\left(\frac{A_1+A_2}{G_1G_2}\right)$ is equal to -(1) $\frac{ab}{a+b}$ (2) $\frac{a+b}{ab}$
 - (3) ab (4) a+b
 - (5) Question not attempted
- 141. Which one of the following statement about the assumptions of computer aided instruction is not correct?
 - (1) Teacher can promptly evaluate the learner's performance.
 - (2) One can learn with his/her own pace.
 - (3) One can receives delayed and personalized feedback.
 - (4) It can be arranged for large group of students.
 - (5) Question not attempted
- 142. What does an Overhead Projector (OHP) project?
 - (1) Live video
 - (2) Still visual material
 - (3) Audio files
 - (4) Animated graphics
 - (5) Question not attempted

- 139. एक छल्ला, जो कि एक पतली लम्बी चिकनी छड़ पर फिसल सकता है, छड़ के एक सिरे 'O' से 'k' दूरी पर स्थित है। छड़ को एक समान रूप से बिन्दु 'O' के सापेक्ष एक क्षैतिज तल में घुमाया जाता है। छल्ले का अरीय वेग है (θ = ω अचर) –
 - (1) $\dot{\mathbf{r}} = \omega \mathbf{k} \sinh \theta$ (2) $\dot{\mathbf{r}} = \omega \mathbf{k} \cosh \theta$
 - (3) $\dot{r} = 2k\omega \cos\theta$ (4) $\dot{r} = \omega k \cos\theta$
 - (5) अनुत्तरित प्रश्न
- **140.** यदि दो संख्याओं a तथा b के मध्य A_1, A_2 दो समान्तर माध्य तथा G_1, G_2 दो गुणोत्तर माध्य हों, तो $\left(\frac{A_1+A_2}{G_1G_2}\right)$ बराबर है –
 - (1) $\frac{ab}{a+b}$ (2) $\frac{a+b}{ab}$ (3) ab (4) a+b
 - (5) अनुत्तरित प्रश्न
- 141. कम्प्यूटर सहायक अनुदेशन की मान्यताओं के विषय में निम्नलिखित में से कौनसा कथन सही नहीं है?
 - (1) अध्यापक तत्परता से अधिगमकर्ता की निष्पत्ति का मूल्यांकन कर सकता है।
 - (2) व्यक्ति अपनी स्वयं की गति से सीख सकता / सकती है।
 - (3) इसमें विलम्बित और व्यक्तिगत पृष्ठपोषण प्राप्त कर सकते हैं।
 - (4) यह व्यवस्था बड़े समूह के विद्यार्थियों के लिए हो सकती है।
 - (5) अनुत्तरित प्रश्न
- 142. शिरोपरि प्रक्षेपी (ओ.एच.पी.) क्या प्रोजेक्ट करता है?
 - (1) जीवन्त (लाइव) वीडियो
 - (2) स्थिर दृश्य सामग्री
 - (3) श्रव्य (ऑडियो) फाइलें
 - (4) एनीमेटेड ग्राफिक्स
 - (5) अनुत्तरित प्रश्न

- 143. The use of concept attainment model not only develop the concept-learning strategies of students, but also supports inductive reasoning. As per the prescription of model, the inductive reasoning is -
 - (1) A retroactive effect

- (2) An instructional effect
- (3) A "Logo" effect
- (4) A nurturant effect
- (5) Question not attempted
- **144.** Which of the following best describes the core idea of the system approach?
 - (1) It ignores the internal patterns and relationships with the system.
 - (2) It studies the inter-related variables that form a whole, interacting and influencing one another.
 - (3) It assumes that each part of the system functions independently.
 - (4) It focuses on individual components without considering their relationships.
 - (5) Question not attempted
- **145.** Which one of the following is a characteristic of flipped classroom?
 - (1) Reading assignments come from paper textbooks.
 - (2) Lessons are delivered through online only.
 - (3) It is blending of online and in-person learning elements.
 - (4) The teachers solely provide the information.
 - (5) Question not attempted

35 - ⊕

- 143. सम्प्रत्यय सम्प्राप्ति प्रतिमान का प्रयोग न केवल विद्यार्थियों के सम्प्रत्यय–अधिगम व्यूह रचनाओं को विकसित करता है, अपितु आगमन तर्कणा में भी सहायक है। प्रतिमान के निर्धारणानुसार आगमन तर्कणा है –
 - (1) एक पूर्वव्यापी (पूर्व प्रभावी) प्रभाव
 - (2) एक अनुदेशनात्मक प्रभाव
 - (3) एक ''लोगो'' प्रभाव
 - (4) एक पोषणीय प्रभाव
 - (5) अनूत्तरित प्रश्न
- 144. प्रणाली उपागम के मुख्य विचार को निम्नलिखित में से कौनसा सबसे अच्छा वर्णित करता है?
 - (1) यह प्रणाली के आंतरिक पैटर्न और संबंधों की उपेक्षा करता है।
 - (2) यह एक संपूर्ण बनाने वाले आपस में जुड़े हुए तत्त्वों का अध्ययन करता है, जो एक—दूसरे को प्रभावित करते हैं।
 - (3) यह मानता है कि प्रत्येक भाग स्वतंत्र रूप से कार्य करता है।
 - (4) यह भागों के बीच संबंधों को बिना समझे केवल व्यक्तिगत घटकों पर ध्यान केंद्रित करता है।
 - (5) अनुत्तरित प्रश्न
- 145. निम्नलिखित में से कौनसी फिलप्ड (पलटना) कक्षा—कक्ष की विशेषता है?
 - (1) पेपर (कागज़) पाठ्यपुस्तकों से अध्ययन असाइनमेंट दिये जाते हैं।
 - (2) पाठ केवल ऑनलाइन द्वारा प्रस्तुत किये जाते हैं।
 - (3) यह ऑनलाइन और आमने-सामने (इन-पर्सन) अधिगम तत्त्वों का सम्मिश्रण है।
 - (4) केवल अध्यापक सूचनाएं प्रदान करता है।
 - (5) अनुत्तरित प्रश्न

- 146. A teacher divides the class into groups for discussion, in which each group leader moderate and regulate the discussion on the probable answers to the question in hands. Unresolved questions brought back to the whole class for further discussion. This strategy of cooperative
 - learning is called -
 - (1) Group Investigation
 - (2) Jigsaw
 - (3) Student Team Achievement Division
 - (4) Teacher Presentation Students Revision
 - (5) Question not attempted
- 147. Which one of the following Teaching-Learning Software presents the data as quickly and effectively as possible?
 - (1) Epidiascope (2) Magic lantern
 - (3) Graphs (4) Projector
 - (5) Question not attempted
- 148. While selecting software for students' learning, which one of the following will be avoided?
 - (1) It should be usable in the school.
 - (2) It should be easy to use.
 - (3) It should allow students to progress as they develop.
 - (4) All the computers must have different-user interfaces software.
 - (5) Question not attempted

146. एक अध्यापक ने कक्षा को परिचर्चा के लिए समूहों में विभाजित किया, जिसमें प्रत्येक समूह का नेतृत्वकर्ता (नेता) आने वाले प्रश्न के संभावित उत्तरों के लिए परिचर्चा का संचालन और नियमन करता है। अनिर्णीत प्रश्नों को आगे परिचर्चा के लिए वापिस सम्पूर्ण कक्षा के समक्ष लेकर आते हैं। सहकारी अधिगम की यह व्यूह

- रचना कहलती है –
- (1) समूह अन्वेषण
- (2) जिगसॉ
- (3) विद्यार्थी टीम उपलब्धि प्रभाग
- (4) अध्यापक प्रस्तुतिकरण विद्यार्थी संशोधन
- (5) अनुत्तरित प्रश्न
- 147. निम्नलिखित में से कौनसा शिक्षण—अधिगम सॉफ्टवेयर, आंकड़ों को जहां तक संभव हो सके शीघ्रता से और प्रभावी रूप में प्रदर्शित करता है?
 - (1) एपिडायस्कोप
 - (3) ग्राफ
- (4) प्रोजेक्टर

(2) मैजिक लालटेन

- (5) अनुत्तरित प्रश्न
- 148. विद्यार्थियों के अधिगम के लिए सॉफ्टवेयर का चयन करते समय निम्नलिखित में से किससे बचना चाहिए?
 - (1) यह विद्यालय में उपयोग करने योग्य होना चाहिए।
 - (2) यह उपयोग करने में सरल होना चाहिए।
 - (3) यह विद्यार्थियों को उनके विकास के साथ उन्नति करने की अनुमति देता हुआ होना चाहिए।
 - (4) सभी कम्प्यूटर में भिन्न उपयोगकर्ता इंटरफेस सॉफ्टवेयर अवश्य होना चाहिए।
 - (5) अनुत्तरित प्रश्न

- ¹⁴⁹. Which of the following is not a mode of nonverbal communication?
 - (1) Facial expression (2) Radio programme
 - (3) Body language (4) Sign language
 - (5) Question not attempted
- 150. Assertion (A) Advanced Organizer Model is also called Expository Model.
 - Reason (R) In this model, teachers provide verbal instructions and students grasp concepts as a whole.

Choose the correct option -

- (1) (A) is true but (R) is false
- (2) Both (A) and (R) are true and (R) is the correct explanation of (A)
- (3) Both (A) and (R) are true but (R) is not the correct explanation of (A)
- (4) (A) is false but (R) is true
- (5) Question not attempted

- 149. निम्नलिखित में से कौनसा अशाब्दिक सम्प्रेषण का तरीका नहीं है?
 - (1) मुख-मुद्रा (2) रेडियो कार्यक्रम
 - (3) शारीरिक भाषा (4) संकेत भाषा
 - (5) अनुत्तरित प्रश्न
- **150. कथन (A)** अग्रिम संगठक प्रतिमान को व्याख्यात्मक प्रतिमान भी कहा जाता है।
 - कारण (R) इस प्रतिमान में शिक्षक मौखिक निर्देश देते हैं और छात्र अवधारणाओं को समग्र

रूप में ग्रहण करते हैं।

- सही विकल्प का चयन कीजिए –
- (1) (A) सत्य है लेकिन (R) असत्य है
- (2) दोनों (A) और (R) सत्य हैं और (R), (A) की सही व्याख्या करता है
- (3) दोनों (A) और (R) सत्य हैं लेकिन (R), (A) की सही व्याख्या नहीं करता है
- (4) (A) असत्य है लेकिन (R) सत्य है
- (5) अनुत्तरित प्रश्न

Space for Rough Work / रफ कार्य के लिए जगह

IdaE

Space for Rough Work / रफ कार्य के लिए जगह

