

Test Prime

ALL EXAMS, ONE SUBSCRIPTION

70,000+ Mock Tests

600+ Exam Covered

Personalised Report Card

Previous Year Papers

Unlimited Re-Attempt

500% Refund

ATTEMPT FREE MOCK NOW

 ······
 INDIAN SPACE RESEARCH ORGANISATION
 Page:

 इसरो डिन्छ
 2 OF 10

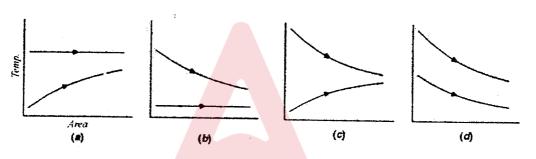
 2010
 MECHANICAL ENGINEERING - II

GET IT ON

Google Play

9. The heat flow rate through parallel walls of thickness L_1 , L_2 and L_3 and having surface areas A_1, A_2 and A_3 , thermal conductivities k_1, k_2 , and k_3 , respectively and first and last walls maintained at temperatures t_1 and t_2 will be

(a)


$$\frac{t_1 - t_2}{\frac{L_1}{A_1 k_1} + \frac{L_2}{A_2 k_2} + \frac{L_3}{A_3 k_3}}$$
(b)

$$\frac{t_1 - t_2}{\frac{k_1}{A_1 L_1} + \frac{k_2}{A_2 L_2} + \frac{k_3}{A_3 L_3}}$$
(c)

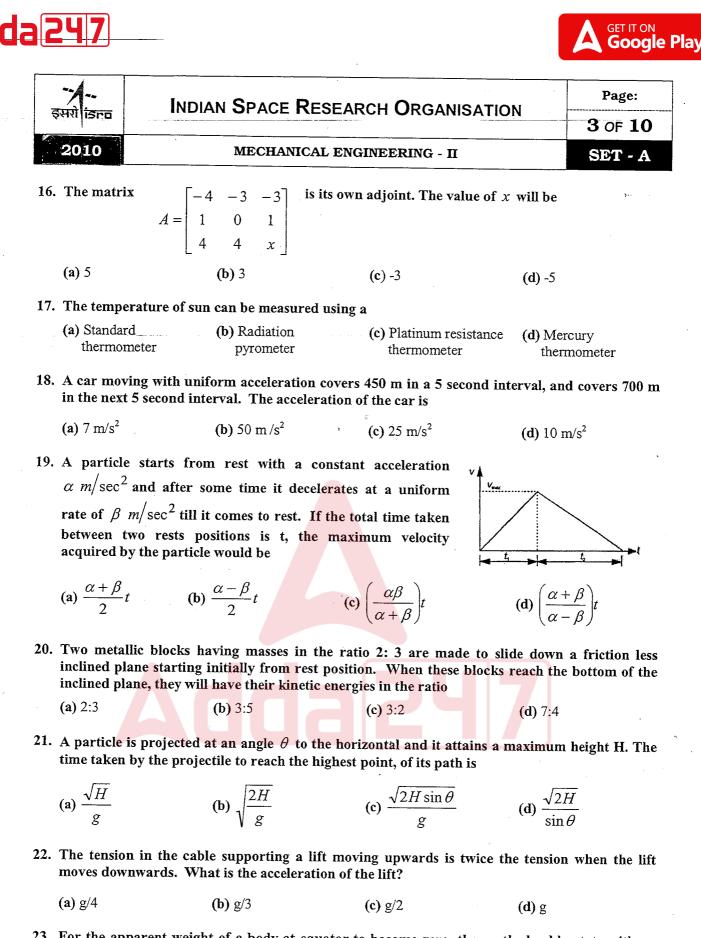
$$\frac{t_1 - t_2}{\frac{k_1 A_1}{L_1} + \frac{k_2 A_2}{L_2} + \frac{k_3 A_3}{A_3 L_3}}$$
(d)

$$\frac{t_1 - t_2}{\frac{L_1 A_1}{L_1} + \frac{L_2}{L_2} + \frac{L_3}{L_3}}$$

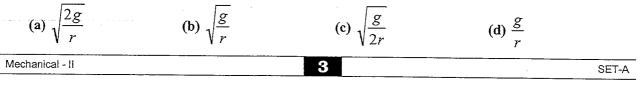
- 10. Which of the following property of air does not increase with rise in temperature?
 - (a) Specific gravity (b) Kinematic viscosity (c) Thermal conductivity (d) Thermal diffusivity
- 11. Choose the correct figure representing gas to gas heat transfer in parallel flow heat exchanger?

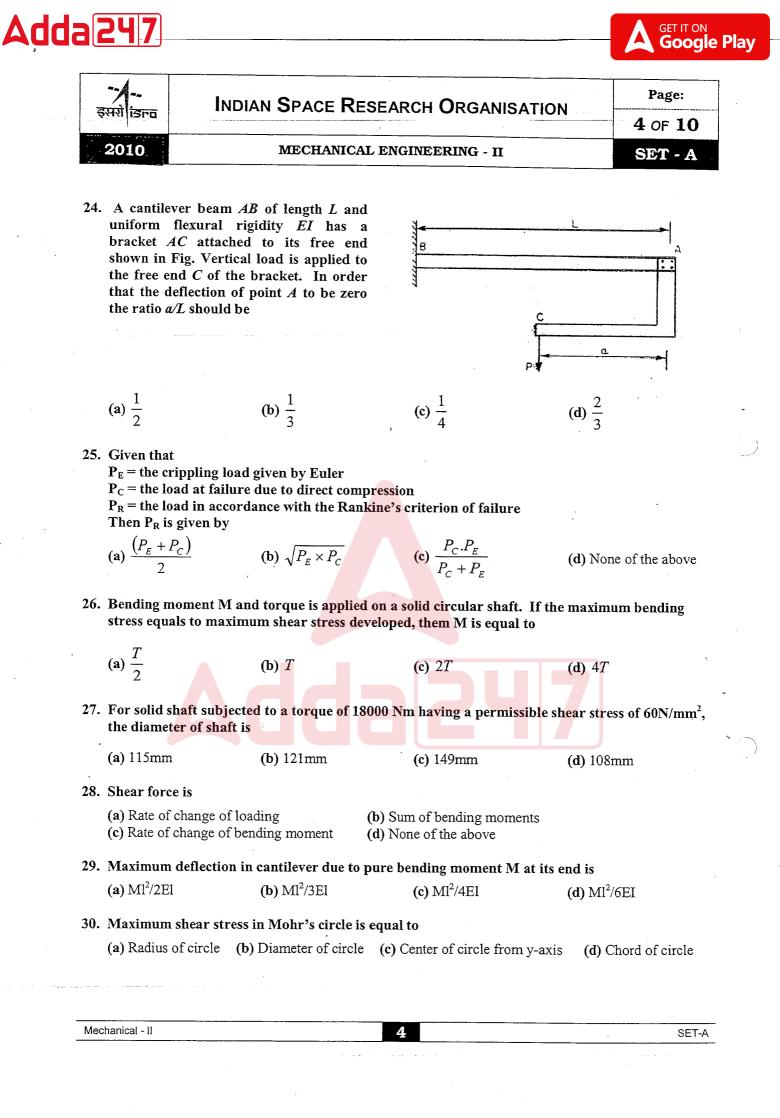
12. The value of Prandtl number for air is about

- 13. A body cools from 90°C to 80°C in 5 minutes. Under the same external conditions to cool from 80°C to 70°C the body will take
 (a) 5 minutes
 (b) 4 minutes
 (c) 2.5 minutes
 (d) More than 5 minutes
- 14. When the temperature of a solid surface changes from $227^{\circ}C$ to $1227^{\circ}C$, its total emissive power changes from E_1 to E_2 . The ratio $\left(\frac{E_2}{E_1}\right)$ will be


(a) 3 (b) 9 (c) 81 (d) Cannot be determined on the basis of information provided

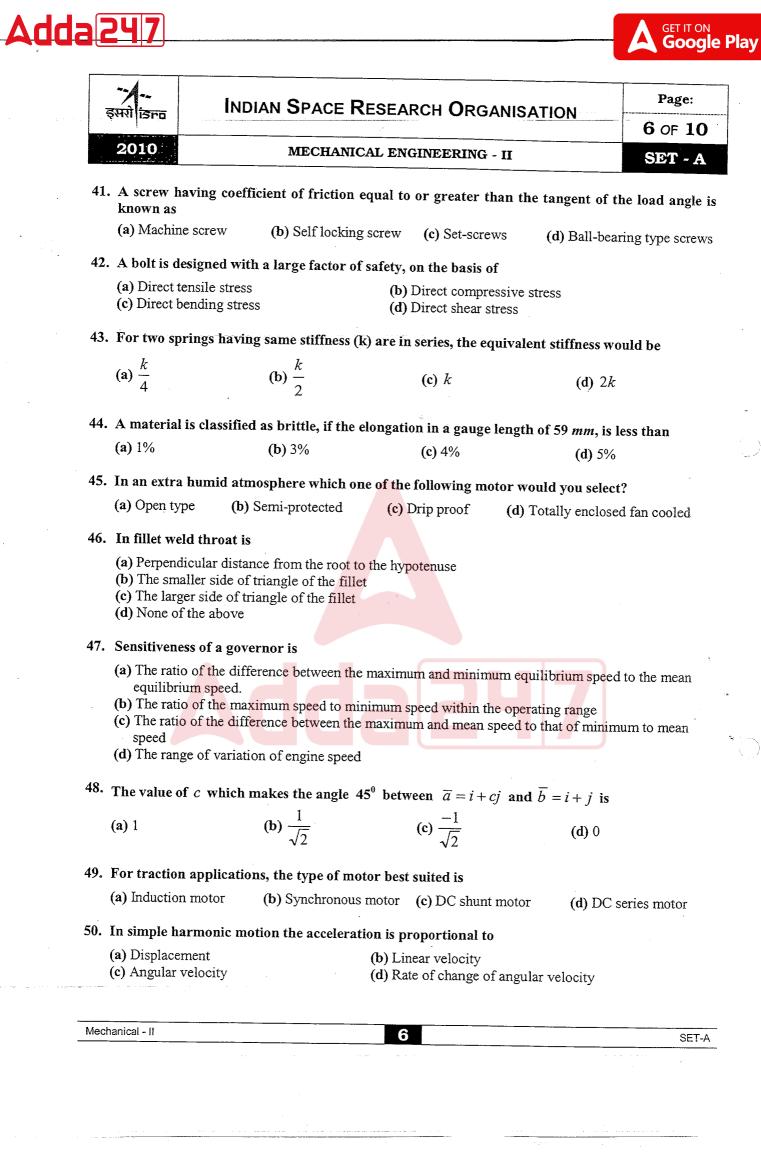
(c) $C_{p} - C_{v}$


(d) $C_{p} + C_{v}$


15. Characteristic gas constant of a gas is equal to

(a)
$$C_p / C_v$$
 (b) C_v / C_p

23. For the apparent weight of a body at equator to become zero, the earth should rotate with an angular velocity of



র্	 सरो isrc	ā	INDIAN SPA	CE RESE	ARCH ORGANIS	SATION	Page 5 OF
	2010		MEC	HANICAL E	NGINEERING - II		SET ·
31.	Hardne	ess of stee	el depends on				
	• •	ount of ca hod of fal	rbon it contains prication		shape and distribution itents of alloying eler		s in iron
32.	The mo	odulus of	$1 + \cos \alpha + i \sin \alpha$	χ is			
	(a) 2 sin	$n\frac{\alpha}{2}$	(b) 2 cos	$\frac{\alpha}{2}$	(c) $\sin^2 \frac{\alpha}{2} - 1$	(d) cos	$s^2 \frac{\alpha}{2} - 1$
33.	Hardne	es of mar	tensite is about	···· ·· ·			
	(a) RC (65	(b) RC 4	8	(c) RC 57	(d) RC	80
34.	Materia	als after o	cold working are	subjected to	following process to	o relieve stresses	5
		working	(b) Temp		(c) Normalizing	(d) Ann	
35.	In drop	o forging	the forging is do	ne by			
26	(d) Dro	opping a w	die with hammer veight on hammer achine tools can b	to produce re	equisite impact		
30.	1.	Lathe	machine				
30.	1. 2. 3.	Drilling Vertical	machine milling machine tal milling mach <mark>i</mark>	ne			
30.	1. 2. 3.	Drilling Vertical Horizon	milling machine	ne	(c) 2 and 4	(d) 1 ar	nd 2
	1. 2. 3. 4. (a) 1,2,3 The ver	Drilling Vertical Horizon	milling machine tal milling machi (b) 1,3,4		(c) 2 and 4 s face value before a		
	1. 2. 3. 4. (a) 1,2,3 The ver for	Drilling Vertical Horizon	milling machine tal milling machi (b) 1,3,4 ling should not b	e taken at it	s face value before a	n actual check	has been t
	1. 2. 3. 4. (a) 1,2,3 The ver	Drilling Vertical Horizon	milling machine tal milling machi (b) 1,3,4	e taken at it		n actual check	has been t rature
37.	1. 2. 3. 4. (a) 1,2,3 The ver for (a) Zero	Drilling Vertical Horizon a rnier read	milling machine tal milling machi (b) 1,3,4 ling should not b	e taken at it n (c) Flat	s face value before a ness of measuring jav	n actual check (d) Tempe	has been t rature
37.	1. 2. 3. 4. (a) 1,2,3 The ver for (a) Zero	Drilling Vertical Horizon anier read o error	milling machine tal milling machi (b) 1,3,4 ding should not b (b) Its calibration	e taken at it (c) Flat percentage	s face value before a ness of measuring jav	n actual check vs (d) Tempe equaliz	has been t rature
37.	1. 2. 3. 4. (a) 1,2,3 The ver for (a) Zerco High ca (a) 0.1 t	Drilling Vertical Horizon anier read o error arbon stee to 0.3%	milling machine tal milling machi (b) 1,3,4 ding should not b (b) Its calibration el carries carbon (b) 0.3 to	e taken at it (c) Flat percentage	s face value before a ness of measuring jav of	n actual check vs (d) Tempe equaliz (d) 0.8	has been t rature ation to 1.5%
37.	1. 2. 3. 4. (a) 1,2,3 The ver for (a) Zerco High ca (a) 0.1 t In orde (a) Acou	Drilling Vertical Horizon anier read o error arbon stee to 0.3%	milling machine tal milling machi (b) 1,3,4 ding should not b (b) Its calibration el carries carbon (b) 0.3 to sure/detect mater ssion	e taken at it (c) Flat percentage 0.6% ials by non-	s face value before a ness of measuring jav of (c) 0.6 to 0.8%	n actual check vs (d) Tempe equaliz (d) 0.8 he method gener	has been t rature ation to 1.5%
37. 38. 39.	1. 2. 3. 4. (a) 1,2,3 The ver for (a) Zero High ca (a) 0.1 t In orde (a) Acou (c) Liqu	Drilling Vertical Horizon and crnier read o error arbon stee to 0.3% or to meas ustic emis ustic emis did crystal	milling machine tal milling machi (b) 1,3,4 ding should not b (b) Its calibration el carries carbon (b) 0.3 to sure/detect mater ssion	e taken at it (c) Flat percentage 0.6% fials by non-	s face value before a ness of measuring jav of (c) 0.6 to 0.8% destructive testing th b) Infrared radiometer	n actual check vs (d) Tempe equaliz (d) 0.8 he method gener	has been t rature ation to 1.5%

Play

-

Ę	इसरो ह	Sro	INDI	AN SPAC	E RESE	ARCH ORGANISATIO	N Page: 7 OF 10
	201	0		MECH	ANICAL E	CNGINEERING - II	SET - A
51.	. A vi	bro mete	r				
				. 1:4 J -		· • • • • • •	
			vibration ap mature of v		(b) (d)	Indicates vibration frequency Only indicates second and at	/ pove harmonics
52.	At n	ode of th	ie shaft				
	(a)]	The vibrat	tions are mi	nimum	(b) The	e vibrations are maximum	
	(c) T	he vibrat	ions are av	erage		e vibrations are zero	
53.	List A. M B. H C. R	1 (Match Ialleabil Iardness Resilience	1 property _. lity	and select t	Lis 1. Wi 2. Im 3. Co	t answer using the codes.giv st II (Related to) ire drawing pact loads ld rolling	ven below the lists.
	D. 19	sotropy				lentation	
		А	В	С	5. Dir D	ection	
	(a)	4	2	1	3		
	(b)	3	4	2	5		
	(c)	5	4	2	3		
	(d)	3	2	1	5		
54.	The	cutting s	peed of the	e tool in a m	lechanical	shaper is	
	(b) N (c) N	Aaximum Iaximum	at the end at the midd	nning of the of the cuttin dle of the cu dle of the cu	g stroke tting stroke		
55.	Whi	ch is not	correct sta	itement abo	ut the fun	ction of flux in brazing	
	(a) T (b) T (c) T bi	o avoid t o dissolv o prevent azing ma	hermal dist e surface o t oxides fro uterial	ortion and c xide coating m forming d	racking s which ha uring the b	we formed prior to brazing brazing operation on both the l	base metal and the
56					by reducing	g the viscosity of the melt	
	(a) S (b) M (c) S	hapes wh Iass prod hapes wh	uction ich are very	le by difficu	nd intricate	omplex patterns in sand castir e and can't be cast by any othe	-
57.	Inter	nal and o	external th	reads can b	e produce	d on tapered surfaces conve	niently by
	(a) U	niversal r	nilling mac nilling mac	hine (b)	Plano mill lathe		
					•		
Mer	hanical	- 11				7	
	. ioninoal	**				7	SET-A

इ	सरो ंडल्व	INE	DIAN SPACE	Rese	ARCH ORGANIS	ATION	Page:
	2010		······································				8 OF 10
÷	2010		MECHAN	[CAL E]	NGINEERING - II		SET - A
58.	Optical squa	are is					
	(b) A constant ray, equal(c) A constant ray, equal	nt deviati to 90° nt deviati to 45°	•	he angle ne angle	t at 90 ⁰ of deviation between of deviation between		
59	A master ga	uge is					
	(c) A standar	ational re d gauge	eference standard for checking accur experienced techni		auges used on shop f	loors	
60.	Dimension o	f the hole	e is $50^{+0.02}_{-0.00}$ m	, im and :	shaft is $50^{+0.02}_{+0.00}$ m	nm. The mini	mum clearance
	is						
	(a) 0.02 mm		(b) 0.00 mm		(c) -0.02 mm	(d) 0.0	01 mm
61.	Two cutters	are mou	nted on the arbo	r so that	two faces are machi	ined simultan	eously in
	(a) Gang mill	ing	(b) Straddle n	uilling	(c) Pendulum mil	ling (d) Pr	ofile milling
62.	The main all	oving ele	ements in high sn	eed stee	l in order of increasi	ing proportion	ara
	(a) Vanadium(c) Chromiun	i, chromi	um, tungsten		(b) Tungsten, titaniur (d) Tungsten, chromi	n, vanadium	
63.	Surface roug	hness on	a dra <mark>wi</mark> ng is r <mark>e</mark> r	resente	d by		
	(a) Triangles		(b) Circles		(c) Squares	(d) Re	ectangles
64	A husband a	nd wife	nn [*] on in on into				
			1		<mark>r two vacanc</mark> ies for s bility of wife getting	1	
			5 ne of them gettin		· · ·	7	· I nen the
		uat anyo	-	ig select	1	34	4
	(a) $\frac{11}{35}$		(b) $\frac{12}{35}$		(c) $\frac{1}{35}$	(d) $\frac{34}{32}$	5
65.	Cylindrical p	arts are	held on planer b	У		,	
	(a) V-blocks(c) V-block, 7	and arres	tors	(b) Angle plates) T-bolt and clamps		
66.	Expressing a	ı dimens	ion as 25.3 ^{±0.05} m	m is the	case of		
	(a) Unilatera (c) Limiting			•) Bilateral tolerance) All of the above		
Mech	nanical - II				8		SET

			· · ·		
	র	••• सरो isra	INDIAN SPACE RESE	ARCH ORGANISAT	ION Page:
			MECHANICALE	NGINEERING - II	9 OF 10
		2010			SET - A
	67.	In comparison to	o an open-loop system a close	d loop system is	
		(a) More stable	(b) More accurate	(c) More complex	(d) All of the above
	68.		gram is shown in Fig. The fri w in a smooth pipe is given b		
		(a) A	(b) B		C C
		(c) E	(d) C		R _e
	69.	750 m and 600 n	consists of three pipes arran n and diameters 750 mm, 600 ystem to an equivalent 450 m) mm, 450 mm respectiv	
		(a) 671.3m	(b) 771.3m	(c) 871.3m	(d) 971.3m
	70.	Friction drag is	generally larger than the pre	ssure drag in	
		(a) Flow past a sphere	(b) Flow past a thin she	et (c) Flow past an airfoil	(d) Flow past a cylilnde
	71.	If D is the diame	eter of impeller at <mark>inlet, w is</mark>	the width of impeller at	inlet and V_f is the velocity
			hen discharge t <mark>hrough a cen</mark>		•
		(a) πDV_f	(b) $DV_f w$	(c) $\pi DV_f W$	(d) πDw
	72.	Cavitation para	meter is defined by		
		(a) $\frac{P_v - P}{\rho V^2 / 2}$	(b) $\frac{P_{atm} - P_v}{\rho V^2 / 2}$	(c) $\frac{P-P_{atm}}{P-P_{atm}}$	(d) $\frac{P-P_{v}}{P-P_{v}}$
		$\rho V^2/2$	$\rho V^{2}/2$	(c) $\frac{P - P_{atm}}{\rho V^2}$	(d) $\frac{P - P_v}{\rho V^2}$
			, ,	2	2
	73.	The maximum t	hickness of boundary layer in	n a pipe of radius R is	
		(a) 0.1 R	(b) 0.22 R	(c) 0.5 R	(d) R
	74.		a pipe lilne carrying water, th At a point B, 2 m higher tha flow would be		
		(a) A to B (b)	B to A (c) Cannot be asce	ertained from data	(d) None of these
4 N. M. S.					

	<u> </u>		998 4999 499		GET IT ON Goog
	 इसरो iडनव	INDIAN SPACE R	ESEARCH ORGANI	SATION	Page: 10 OF 1
	2010	MECHANIC	AL ENGINEERING - II		SET - A
75	. In the given	figure pressure p , in kPa ,	is		· • •
				Hgl(S=13.6)	30cm
	(a) 37	(b) 48.0	(c) 45.2	(d) 51.3	(<u>*****</u>)
76.	A small pla dumped inte	stic boat loaded with piece o the water allowing the boa	s of steel rods is floating t to float empty, the wate	g in a bathtub. I er level in the tub	f the cargo will
	(a) Rise	(b) Fall (c) Not ch:			
77.	Four cars, v How far, in (vith a mass of 1500 kg each cm will it sink in the water?	, are loaded on a 6 m w	ide, 12 m long sm	all car ferr
	(a) 15.2	(b) 11.5	(c) 10.2	(d) 8.3	
78.	Water enter reach before	s a turbine at 900kPa with r it enters the turbine rotor?	egligible velocity. What	maximum speed,	in m/s, can
					•
	(a) 42	(b) 47	(c) 45	(d) 52	
79.	Given that: Specific grav Intensity of J	vity of mercury = 13.6; pressure = 40kPa		(d) 52	
79.	Given that: Specific grav Intensity of p Express the i	vity of mercury = 13.6;	in various units (S.I) (b) 0.4 bar, 4.077	(d) 52 ' m of water, 0.299	m of
79. 80.	Given that: Specific grav Intensity of p Express the i (a) 0.3 bar, 3. (c) 0.5 bar, 5. mercury	vity of mercury = 13.6; pressure = 40kPa intensity of pressure (gauge)	in various units (S.I) ercury (b) 0.4 bar, 4.077 mercury (d) None of the a	' m of water, 0.299	m of
	Given that: Specific grav Intensity of p Express the i (a) 0.3 bar, 3. (c) 0.5 bar, 5. mercury The differen (a) $\frac{d^2 y}{dx^2} + 5\frac{d^2 y}{dx^2}$	wity of mercury = 13.6; pressure = 40kPa intensity of pressure (gauge) 077 m of water, 0.15 m of me 077 m of water, 0.339 m of tial equation satisfying $y =$ $\frac{dy}{dx} - 6y = 0$	in various units (S.I) ercury (b) 0.4 bar, 4.077 mercury (d) None of the a	' m of water, 0.299	m of
	Given that: Specific grav Intensity of p Express the i (a) 0.3 bar, 3. (c) 0.5 bar, 5. mercury The differen	wity of mercury = 13.6; pressure = 40kPa intensity of pressure (gauge) 077 m of water, 0.15 m of me 077 m of water, 0.339 m of tial equation satisfying $y =$ $\frac{dy}{dx} - 6y = 0$	in various units (S.I) frcury (b) 0.4 bar, 4.077 mercury (d) None of the a $Ae^{3x} + Be^{2x}$ is	' m of water, 0.299 bove	m of
	Given that: Specific grav Intensity of p Express the i (a) 0.3 bar, 3. (c) 0.5 bar, 5. mercury The differen (a) $\frac{d^2 y}{dx^2} + 5\frac{d^2 y}{dx^2}$	wity of mercury = 13.6; pressure = 40kPa intensity of pressure (gauge) 077 m of water, 0.15 m of me 077 m of water, 0.339 m of tial equation satisfying $y =$ $\frac{dy}{dx} - 6y = 0$	in various units (S.I) frecury (b) 0.4 bar, 4.077 mercury (d) None of the a $Ae^{3x} + Be^{2x}$ is (b) $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y$	' m of water, 0.299 bove	m of
	Given that: Specific grav Intensity of p Express the i (a) 0.3 bar, 3. (c) 0.5 bar, 5. mercury The differen (a) $\frac{d^2 y}{dx^2} + 5\frac{d^2 y}{dx^2}$	wity of mercury = 13.6; pressure = 40kPa intensity of pressure (gauge) 077 m of water, 0.15 m of me 077 m of water, 0.339 m of tial equation satisfying $y =$ $\frac{dy}{dx} - 6y = 0$	in various units (S.I) frecury (b) 0.4 bar, 4.077 mercury (d) None of the a $Ae^{3x} + Be^{2x}$ is (b) $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y$	' m of water, 0.299 bove	m of
	Given that: Specific grav Intensity of p Express the i (a) 0.3 bar, 3. (c) 0.5 bar, 5. mercury The differen (a) $\frac{d^2 y}{dx^2} + 5\frac{d^2 y}{dx^2}$	wity of mercury = 13.6; pressure = 40kPa intensity of pressure (gauge) 077 m of water, 0.15 m of me 077 m of water, 0.339 m of tial equation satisfying $y =$ $\frac{dy}{dx} - 6y = 0$	in various units (S.I) frecury (b) 0.4 bar, 4.077 mercury (d) None of the a $Ae^{3x} + Be^{2x}$ is (b) $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y$	' m of water, 0.299 bove	m of
	Given that: Specific grav Intensity of p Express the i (a) 0.3 bar, 3. (c) 0.5 bar, 5. mercury The differen (a) $\frac{d^2 y}{dx^2} + 5\frac{d^2 y}{dx^2}$	wity of mercury = 13.6; pressure = 40kPa intensity of pressure (gauge) 077 m of water, 0.15 m of me 077 m of water, 0.339 m of tial equation satisfying $y =$ $\frac{dy}{dx} - 6y = 0$	in various units (S.I) frecury (b) 0.4 bar, 4.077 mercury (d) None of the a $Ae^{3x} + Be^{2x}$ is (b) $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y$	' m of water, 0.299 bove	m of