



| दूर्म<br>इसरो डिन्ट | INDIAN SPACE RESEARCH ORGANISATION | Page 1 of 18 |
|---------------------|------------------------------------|--------------|
|                     |                                    |              |

## Test Prime

ALL EXAMS, ONE SUBSCRIPTION



70,000+ Mock Tests



600+ Exam Covered



Personalised Report Card



Previous Year Papers



Unlimited Re-Attempt



500% Refund

















ATTEMPT FREE MOCK NOW





SET-A

|   | A signal source with    |                      |               |             |               |                  |
|---|-------------------------|----------------------|---------------|-------------|---------------|------------------|
|   | transmission line term  | inated in its charac | teristic impe | dance. The  | phase differe | ence between the |
|   | voltages at two ends of | the transmission li  | ne in steady- | state condi | tion is :     | •                |
| - | 2) 2-                   |                      | h)            | 3 #         |               |                  |

| a) | $2\pi$ | b) | 3 π |
|----|--------|----|-----|
| c) | 4 π    | d) | π   |

A charge  $Q_2 = 8.854 \times 10^{-9}$  C is located in a vacuum at  $P_2$  (2,3,1). The force on  $Q_2$  due to a charge  $Q_1 = 4\pi \times 10^{-3}$  C at  $P_1$  (2,2,1) is: (Note: All the coordinates are measured in Meters.  $a_x$ ,  $a_y$  and  $a_z$  are unit vectors in X. Y and Z direction respectively.)

| a) | a <sub>v</sub> N                                    | b) | -a <sub>v</sub> N                                    |
|----|-----------------------------------------------------|----|------------------------------------------------------|
| c) | 4a <sub>x</sub> +5a <sub>y</sub> +2a <sub>z</sub> N | d) | -4a <sub>x</sub> -5a <sub>y</sub> -2a <sub>z</sub> N |

A low pass filter as shown in following figure is built using an operational amplifier having unity gain bandwidth of 1MHz. What is the bandwidth of this circuit?



| . 1 | 1  |         |    |   |        |  |
|-----|----|---------|----|---|--------|--|
|     | a) | 1 KHz   | b) | 1 | 0 KHz  |  |
|     | c) | 100 KHz | d) | 5 | 00 KHz |  |

What is the frequency and duty cycle of output Y, when CLK frequency is 1MHz @ 50% duty cycle?



| a) = | 500 KHz @ 50% duty cycle | b) | 500 KHz @ 25% duty cycle |
|------|--------------------------|----|--------------------------|
| c)   | 250 KHz @ 50% duty cycle | d) | 250 KHz @ 25% duty cycle |



INDIAN SPACE RESEARCH ORGANISATION

Page 2 of 18



· SET-A

| 6 |             | n isotropic radiator, electric field inte        |          | t a distance R is measured as 3V/m. What    |
|---|-------------|--------------------------------------------------|----------|---------------------------------------------|
|   | a)          | 1 V/m                                            | b)       | $\frac{1}{3}$ V/m                           |
|   | c)          | $\frac{1}{9}$ V/m                                | d)       | 3V/m                                        |
| 7 | The l       | ogic function implemented by following           | g 4:1 M  | UX is                                       |
|   |             | $X \longrightarrow I_0$ $Y \longrightarrow I_1$  |          |                                             |
|   |             | Y —— 1 <sub>1</sub>                              |          | _                                           |
|   |             | - · · X — I <sub>2</sub> ·                       |          | Z                                           |
|   |             | 0 <del></del> 1 <sub>3</sub>                     |          | •                                           |
|   |             | ı L                                              |          |                                             |
|   |             |                                                  |          |                                             |
| · | a)          | Z = X and $Y$                                    | (b)      | Z = X  or  Y                                |
|   | c)          | Z = X  xor  Y                                    | d)       | Z = X  xnor  Y                              |
| 8 |             |                                                  |          | ion line at 10KHz is 200-j50 ohms. Line is  |
| ļ |             |                                                  |          | 28.28V p-p signal is measured at its input. |
|   | a)          | rmine the real power supplied by the sign. 0.5 W | b)       | 0.485W                                      |
|   | c)          | 0.47 W                                           | d)       | 0.25 W                                      |
| 9 | <del></del> | ch is the correct waveform across capac          | itor in  | ·                                           |
|   |             |                                                  |          |                                             |
|   |             | 5 Vrms 50 Hz                                     | <b>*</b> | 10nF 1K                                     |
|   | a)          |                                                  | b)       |                                             |
|   | c)          |                                                  | d)       |                                             |

| इसरो डिन्ट | INDIAN SPACE RESEARCH ORGANISATION | Page 3 of 18 |
|------------|------------------------------------|--------------|
|            |                                    |              |





- SET -A

|      | Input                        | voltage applied to a circuit is 1V rm                                                                                                                                                                                                                                | is and the                  | output is 1mV rms. Net gain of the circuit                                                                                                                    |
|------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | a)                           | + 30dB                                                                                                                                                                                                                                                               | b)                          | - 30dB                                                                                                                                                        |
|      | c)                           | - 60dB                                                                                                                                                                                                                                                               | d)                          | + 60dB                                                                                                                                                        |
| 11   | A: 5<br>powe<br>B: 8<br>powe | r<br>bit Quantizer with input dynamic ra                                                                                                                                                                                                                             | range of -1                 | eations: IV to +1V with Q1 as quantization noise SV to +0.5V with Q2 as quantization noise                                                                    |
|      | .a).                         | 16                                                                                                                                                                                                                                                                   | b).                         | 256                                                                                                                                                           |
|      | c) .                         | 64                                                                                                                                                                                                                                                                   | d)                          | 128                                                                                                                                                           |
| 12   | The                          | livergence of magnetic field intensity                                                                                                                                                                                                                               | is                          |                                                                                                                                                               |
| •    | a)                           | Electric charge density                                                                                                                                                                                                                                              | b)                          | Electric field intensity                                                                                                                                      |
|      | c)                           | Zero                                                                                                                                                                                                                                                                 | d)                          | Conduction current density                                                                                                                                    |
| 14   | the b a) c) A tra 100K       | Baud rate = 9600, Data = 55h Baud rate = 19200, Data = FFh  nsmission line having characteristic                                                                                                                                                                     | b) d) impedance             | Baud rate = 19200, Data = 55h  Baud rate = 9600, Data = AAh  of 50ohms has to deliver 10KW power at as current anywhere along the line is 20A.                |
|      | Wha                          |                                                                                                                                                                                                                                                                      | tolerated o                 | on this line?                                                                                                                                                 |
|      | 1                            | t is the maximum VSWR that can be                                                                                                                                                                                                                                    |                             | on this line?                                                                                                                                                 |
|      | a)                           |                                                                                                                                                                                                                                                                      | tolerated of b)             | 1 2.5                                                                                                                                                         |
| . 15 | a)<br>c)                     | t is the maximum VSWR that can be 2                                                                                                                                                                                                                                  | b)<br>. d)                  | 1                                                                                                                                                             |
| 15   | a)<br>c)                     | t is the maximum VSWR that can be 2 3.                                                                                                                                                                                                                               | b)<br>. d)                  | 1 2.5 Time response of the system                                                                                                                             |
|      | a) c) Rout a) c)             | t is the maximum VSWR that can be  2 3.  h Hurwitz criterion is used to determ  Relative stability of the system  Absolute stability of the system                                                                                                                   | b) . d) aine b) d)          | Time response of the system  Roots of the characteristic equation graphically                                                                                 |
| 15   | a) c) Rout a) c) The c signa | t is the maximum VSWR that can be  2 3.  th Hurwitz criterion is used to determ Relative stability of the system  Absolute stability of the system  decoding circuit shown in the figure is                                                                          | b) d) aine b) d) s has been | Time response of the system Roots of the characteristic equation                                                                                              |
|      | a) c) Rout a) c) The c signa | t is the maximum VSWR that can be  2 3.  th Hurwitz criterion is used to determ Relative stability of the system  Absolute stability of the system  decoding circuit shown in the figure is of memory interfaced to 8 bit microse and size of memory?  A15  A14  A13 | b) d) aine b) d) s has been | Time response of the system Roots of the characteristic equation graphically used to generate active low chip select with 16 bit address bus. What is address |

| इसमे डिन्ट | INDIAN SPACE RESEARCH ORGANISATION | Page 4 of 18 |
|------------|------------------------------------|--------------|
|------------|------------------------------------|--------------|





- ELECTRONICS - 2013.

SET-A

| 17  | If the | e waveguide cross-section of a square wa<br>ually deformed into'a circle, then the co                                                                    | aveguide     | with TE11 propagation mode is                                              |
|-----|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------|
|     | a)     | TE11                                                                                                                                                     | b)           | TE10                                                                       |
|     | c)     | TE21                                                                                                                                                     | d)           | TE12                                                                       |
| -18 | Wha    | t could be the output current rating of f                                                                                                                |              |                                                                            |
|     |        |                                                                                                                                                          |              | saut regulator.                                                            |
|     |        | 50Ω                                                                                                                                                      |              |                                                                            |
|     |        |                                                                                                                                                          |              |                                                                            |
|     |        | 101/                                                                                                                                                     | ,            |                                                                            |
|     |        | 10V 5V T                                                                                                                                                 | 7            |                                                                            |
|     |        | 0.414                                                                                                                                                    |              |                                                                            |
|     | ,      | <u> </u>                                                                                                                                                 | <del>-</del> | r man or m.<br>Ambrida<br>com                                              |
| :   |        |                                                                                                                                                          |              |                                                                            |
|     | a)     | $0 < I_L < 100 \text{mA}$                                                                                                                                | b)           | $20 \text{mA} < I_{L} < 100 \text{mA}$                                     |
|     | c)     | $0 < I_L < 50 \text{mA}$                                                                                                                                 | d)           | 10mA < I <sub>L</sub> < 100mA                                              |
| 19  | An F   | M-CW (Frequency Modulated – Contin                                                                                                                       | iuous Wa     |                                                                            |
|     | a)     | Bistatic                                                                                                                                                 | b)           | Monostatic                                                                 |
|     |        | Can operate either as monostatic or as                                                                                                                   |              |                                                                            |
|     | c)     | bistatic                                                                                                                                                 | d)           | None of the above                                                          |
| 20  | 1 esta | flux in a magnetic core is sinusoid <mark>ally</mark> vand eddy current loss is 15 W. If the fr<br>ity reduced to 1 Tesla, the eddy <mark>current</mark> | equency      | 200 Hz. The maximum flux density is 2 is raised to 400 Hz and maximum flux |
|     | a)     | Reduce to half                                                                                                                                           | b)           | Get doubled                                                                |
|     | c)     | Reduce to one-fourth                                                                                                                                     | d)           | Remain same                                                                |
| 21  | The e  | electric field intensity E and magnetic fie                                                                                                              | eld intens   |                                                                            |
|     | free s | space in x and y direction respectively, the                                                                                                             | he Poynt     | ing vector is given by                                                     |
|     | a)     | EHx̂                                                                                                                                                     | b)           | EHŷ .                                                                      |
| )   | c)     | EHxŷ .                                                                                                                                                   | d)           | None of the above                                                          |
| 22  | If x a | nd y are two random signals with zero i                                                                                                                  |              |                                                                            |
|     | stand  | lard deviation, the phase angle between                                                                                                                  | them is      | assian distribution having identical                                       |
| • . | a)     | Zero mean Gaussian distributed                                                                                                                           | b)           | Uniform between $-\pi$ and $\pi$                                           |
|     | c)     | Uniform between $-\pi/2$ and $\pi/2$                                                                                                                     | d)           | Non-zero mean Gaussian distributed                                         |
| 23  | The    |                                                                                                                                                          | L            |                                                                            |
|     | ine (  | current flowing through a capacitor in a                                                                                                                 | n AC cir     | cuit is:                                                                   |
|     | a)     | Non-existent                                                                                                                                             | b)           | Conduction current                                                         |
|     | c)     | Displacement current                                                                                                                                     | d)           | None of the above                                                          |
|     |        |                                                                                                                                                          | <u> </u>     |                                                                            |

| 1          |  |
|------------|--|
| इसरो डिन्ट |  |

INDIAN SPACE RESEARCH ORGANISATION

Page 5 of 18





| 24 | Which of the following is the Boolean function for Majority Voting, assuming A,B,C are inputs and Y is output?      |                                                        |            |                                              |  |
|----|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------|----------------------------------------------|--|
|    |                                                                                                                     |                                                        |            | TV + D C                                     |  |
|    | a)                                                                                                                  | Y = AB + AC + CB                                       | b)         | Y = A + B + C                                |  |
|    | c)                                                                                                                  | Y= ABC                                                 | d)         | Y = AB + BC                                  |  |
| 25 | For broadside antenna array, the largest possible spacing between the antenna elements without any grating lobes is |                                                        |            |                                              |  |
|    | a)                                                                                                                  | λ/2 · · · · · · · · · · · · · · · · · · ·              | b)         | λ                                            |  |
|    | c)                                                                                                                  | 2 λ                                                    | d)         | None of the above                            |  |
| 26 | 3000<br>3002<br>3003<br>3004<br>3005                                                                                | tion of the program is MVI A, 45H MOV B, A STC CMC RAR | iven bei   | ow, the content of the accumulator after the |  |
|    |                                                                                                                     | XRA B                                                  | (b)        | 45H                                          |  |
|    | a)                                                                                                                  | 00H                                                    |            | E7H                                          |  |
|    | c)                                                                                                                  | 67H                                                    | d)         | D/11                                         |  |
| 27 | Cond                                                                                                                | luction angle of a Class AB amplifier                  | is:        |                                              |  |
|    | a)                                                                                                                  | <180°                                                  | b)         | Between 180° and 360°                        |  |
|    | c)                                                                                                                  | 360°                                                   | d)         | 90°                                          |  |
| 28 |                                                                                                                     |                                                        |            |                                              |  |
|    | a)                                                                                                                  | Phase velocity > Group velocity                        | b)         | Phase velocity < Group velocity              |  |
|    | c)                                                                                                                  | Phase velocity = Group velocity                        | d)         | None of the above                            |  |
| 29 | Scho                                                                                                                | ttky clamp <mark>ing is resorted in TTL gate</mark>    | es         |                                              |  |
|    | a)                                                                                                                  | to reduce propagation delay                            | b)         | to increase noise margins                    |  |
|    | c)                                                                                                                  | to increase packing density                            | d)         | to increase fan-out                          |  |
| 30 | At cı                                                                                                               | ut-off frequency, the phase velocity of                | a waveg    | uide is                                      |  |
|    | a)                                                                                                                  | Zero                                                   | b)         | Infinite                                     |  |
|    | c)                                                                                                                  | Finite                                                 | d)         | None of the above                            |  |
| 31 | <del></del>                                                                                                         | ener diode, when used in voltage stabi                 | lization o | ircuits, is biased in                        |  |
|    | a)                                                                                                                  | reverse bias region below the breakdown voltage        | b)         | reverse breakdown region                     |  |
|    | (c)                                                                                                                 | forward bias region                                    | d)         | forward bias constant current mode           |  |

| इसमें डिन्ट | INDIAN SPACE RESEARCH ORGANISATION | Page 6 of 18 |
|-------------|------------------------------------|--------------|
|             |                                    |              |





| 32       | The                         | closed loop                  | frequency respons       | e of a dc-c | lc conve    | rter is shown in following figure. What ar |   |
|----------|-----------------------------|------------------------------|-------------------------|-------------|-------------|--------------------------------------------|---|
|          | the gain and phase margins? |                              |                         |             |             |                                            |   |
|          |                             |                              |                         |             |             | •                                          |   |
|          |                             |                              |                         |             |             |                                            |   |
|          |                             | 30                           | Cair                    |             |             | - <del>-</del> 180                         |   |
|          |                             |                              | Gain                    |             |             |                                            |   |
| !        |                             | 20                           |                         |             |             | 120                                        |   |
|          | ļ                           | •                            | \ \ \                   | <i>.</i> ·  |             | Phase                                      |   |
| ļ        |                             | 10                           | ļi~i                    | <u> </u>    |             | 60                                         |   |
|          |                             | QB)                          |                         |             |             | 99                                         |   |
|          |                             | Gain (dB)                    |                         | :           |             | <b>-</b> 0 <b>b</b>                        |   |
|          |                             | G<br>ai                      | -                       | •           | •           | / /                                        |   |
|          |                             | -10                          |                         |             |             | Phase (Degree)                             |   |
| 1        |                             |                              |                         |             |             | F 4                                        |   |
|          |                             | -20                          |                         |             |             | -120                                       |   |
|          |                             |                              |                         |             |             |                                            |   |
|          |                             | -30 -                        |                         |             |             |                                            |   |
|          |                             |                              |                         |             |             |                                            |   |
|          |                             | · <sub>I</sub> ·····         |                         |             |             |                                            |   |
|          | a)                          | 20dB, 80°                    |                         |             | b)          | 26dB, 80°                                  |   |
| 22       | c)                          | 20dB, 120                    |                         | •           | d)          | 26dB, 120°                                 |   |
| 33       | If fo                       | r a silicon n                | pn transistor, the b    | ase-to-em   | itter vol   | tage (VBE) is 0.7V and the collector-to-   |   |
|          | base                        | voltage (V                   | (CB) is 0.2 V, then the | ie transist | or is ope   | erating in the                             |   |
|          | a)                          | normal acti                  | ve mode                 |             | b)          | saturation mode                            |   |
|          | c)                          | inverse acti                 | ive mode                | ٠,          | d) ·        | cutoff mode                                | _ |
| 34       | 3 po                        | rt Circulato                 | or is                   |             |             |                                            |   |
|          | a)                          | Reciprocal,                  | , matched               |             | b)          | Non reciprocal, unmatched                  |   |
|          | c)                          |                              | ocal, matched           |             | d)          | Reciprocal, unmatched                      |   |
| 35       | An 8                        | B bit rippl <mark>e c</mark> | counter and an 8 bi     | t synchro   | nous cou    | inter are made using flip flops having a   |   |
| <u> </u> | prop                        | pagation del                 | ay of 10 ns each. If    | the worst   | case del    | lay in the ripple counter and the          |   |
| -        |                             |                              | unter be $R$ and $S$ re | spectively  | <del></del> |                                            |   |
|          | a)                          | R = 10  ns, 10  s            |                         |             | b)          | R = 40  ns, S = 10  ns                     |   |
| 36       | c)                          | R = 10  ns S                 |                         |             | (d)         | R = 80  ns, S = 10  ns                     | _ |
| 00       |                             |                              |                         | g a time o  | constant    | 'τ' and frequency 'ω' is:                  |   |
| <u></u>  | a)                          | $\sqrt{1+(\omega\tau)}$      | 2                       |             | b)          | $1/\sqrt{1+(\omega\tau)^2}$                |   |
|          | c)                          | $\omega \tau / \sqrt{1 + (}$ | $(\omega \tau)^2$       |             | d)          | $\omega \tau / \sqrt{1 - (\omega \tau)^2}$ |   |





SET-A

| 37 | For a directional coupler, the quantities I (isolation in dB), D (directivity in dB), C (coupling in |                                                                                             |                         |                                                           |  |  |  |
|----|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------|--|--|--|
| J. |                                                                                                      | dB) are related by                                                                          |                         |                                                           |  |  |  |
|    | a)                                                                                                   | I=C/D                                                                                       | b)                      | I = D - C                                                 |  |  |  |
|    | c)                                                                                                   | I = D + C                                                                                   | d)                      | I = D/C                                                   |  |  |  |
| 38 | The                                                                                                  | two numbers represented in signed 2's o                                                     | compleme                | nt form are $P = 11101101$ and $Q =$                      |  |  |  |
|    | 1110                                                                                                 | 00110. If $Q$ is subtracted from $P$ , the value                                            | ie obtaine              | d in signed 2's complement is                             |  |  |  |
|    | a)                                                                                                   | 1000001111                                                                                  | b)                      | 00000111                                                  |  |  |  |
|    | c)                                                                                                   | 11111001                                                                                    | d)                      | 111111001                                                 |  |  |  |
| 39 | Dep                                                                                                  | letion type MOSFET operates in:                                                             |                         |                                                           |  |  |  |
|    | a)                                                                                                   | Depletion Model only                                                                        | b)                      | Enhancement Mode only                                     |  |  |  |
|    | c)                                                                                                   | Both depletion and enhancement mode                                                         | d)                      | None of the above                                         |  |  |  |
| 40 | Elec                                                                                                 | tric Field and Magnetic Field are perpe                                                     | <del></del>             |                                                           |  |  |  |
|    | a)                                                                                                   | Klystron                                                                                    | b)                      | Magnetron                                                 |  |  |  |
| 41 | c)                                                                                                   | TWTA                                                                                        | d)                      | All of the above nents as shown below. What is the output |  |  |  |
|    |                                                                                                      | 2.5V                                                                                        | ) 4mA                   | 7.5 V                                                     |  |  |  |
| ļ  | a)                                                                                                   | 9.3 V                                                                                       | b)                      | 2.5 V                                                     |  |  |  |
| 42 | (C)                                                                                                  | 0 V                                                                                         | d)                      |                                                           |  |  |  |
| 42 | If r                                                                                                 | ange of a radar is to be doubled, the pea                                                   |                         |                                                           |  |  |  |
|    | a)                                                                                                   | Increased by a factor of 2                                                                  | b)                      | Increased by a factor of 4                                |  |  |  |
|    | c)                                                                                                   | Decreased by a factor of 4                                                                  | <u>d)</u>               | Increased by a factor of 16                               |  |  |  |
| 43 | Th                                                                                                   | e electric field measured in the far field or<br>erage power densities at a distance of 500 | of an ante<br>Im from t | nna at a distance of 50m is 1V/m. The<br>he antenna is    |  |  |  |
| -  | a)                                                                                                   | 26.6µW/m <sup>2</sup>                                                                       | b)                      | $0.1\mu \text{W/m}^2$                                     |  |  |  |
|    | (c)                                                                                                  | 10μW/m <sup>2</sup>                                                                         | d)                      | $13.3\mu\text{W/m}^2$                                     |  |  |  |



INDIAN SPACE RESEARCH ORGANISATION

Page 8 of 18





|          | <u>,</u>    | •                                    |                    |                                                       |
|----------|-------------|--------------------------------------|--------------------|-------------------------------------------------------|
| 44       |             |                                      | at 0, wha          | t count will it hold after 2060 pulses?               |
|          |             | 000 1100                             | b)                 | 000 001 1100                                          |
| <u> </u> |             | 001 1000                             | d)                 | 000 000 1110                                          |
| 45       | For a fr    | equency modulated signal repre       | sented, by         | $s(t)=10\sin(6 \times 10^8 t + 2\sin 100\pi t)$ . The |
| -        |             | frequency deviation in the carrie    |                    |                                                       |
|          | a) 990      |                                      | b)                 | 100Hz                                                 |
| 1.5      | c) 50H      |                                      | d)                 | 200Hz                                                 |
| 46       | For which   | n of the following conditions, the   | circuit sh         | own below will function as precision full             |
|          | wave rect   | ifier?                               |                    |                                                       |
|          |             | Vin N                                | F                  | R3<br>Vo                                              |
| -        | a) R1       | = R2 = R                             | b)                 | R1 = R3 = R                                           |
|          |             | = 2R1                                | d)                 | R1 = R2 = R3                                          |
| 47       | <del></del> | ostatic radar, if the antenna apertu | ,                  |                                                       |
|          | a) Rec      | luce by a factor of 2                | b)                 | Increase by a factor of 2                             |
|          |             | Since by a factor of $\sqrt{2}$      | d)                 |                                                       |
| 48       |             | vantage of single stub matching is   | ,                  | Increase by a factor of $\sqrt{2}$                    |
|          |             | ry load needs a new stub position    |                    | 0-1-1-1-1                                             |
| -        |             |                                      | b)                 | Only shunt stub should be used                        |
| 49       |             | y resistive load can be matched      | d)                 | Useful only in two wire transmission line             |
| 49       | directivity | of the antenna fed by input powe     | has maxir of 0.4 W | imum radiation intensity of 0.5 W/sr. The             |
| <u></u>  | a) 16.5     | 3                                    | b)                 | 12.2                                                  |
|          | c) 10.3     |                                      | d)                 | 11.31                                                 |
| 50       | A memor     | y system of size 16 K bytes is requi | red to be          | designed using memory chips which have                |
| 1        | 12 addres   | s lines and 4 data lines each. Th    | nen numb           | per of such chips required to design the              |
|          | memory s    | ystem is                             |                    | i i i i i i i i i i i i i i i i i i i                 |
| ļ        | a) 2        |                                      | b)                 | 4                                                     |
|          | c) 8        |                                      | d)                 | 16                                                    |
|          |             |                                      |                    |                                                       |

| Á          |  |
|------------|--|
| इसरो डिन्ट |  |





| इसरो डिन्ट | INDIAN SPACE RESEARCH ORGANISATION | Page 10 of 18 |
|------------|------------------------------------|---------------|
| 1          |                                    |               |





| ELECTF | CONICS - | 2013 |
|--------|----------|------|
|--------|----------|------|

|    | a)                                                                                                                                                                     | Doubled '                                                                                                                  | b)                   | Becomes half                                         |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------|--|--|
|    | c)                                                                                                                                                                     | Remains same                                                                                                               | d)                   | None of the above                                    |  |  |
| 54 | The velocity at which a sinusoidal signal of 10° rad/s travels down a loss-less transmission line for which L=0.4 μH/m and C=40 pF/m is                                |                                                                                                                            |                      |                                                      |  |  |
|    | a)                                                                                                                                                                     | 2.36 x 10 <sup>8</sup> m/s                                                                                                 | b)                   | $2.5 \times 10^8 \text{m/s}$                         |  |  |
|    | c)                                                                                                                                                                     | 5 x10 <sup>9</sup> m/s                                                                                                     | d)                   | 4.5x10° m/s                                          |  |  |
| 55 | The                                                                                                                                                                    | Maxwell's equation $ abla 	imes \overline{E} = -rac{\partial \overline{B}}{\partial t}$                                   | is obtained          | d from :                                             |  |  |
|    | a)                                                                                                                                                                     | Ampere's Law                                                                                                               | b)                   | Faraday's Law                                        |  |  |
|    | c)                                                                                                                                                                     | Lenz's Law                                                                                                                 | d)                   | Both b and c                                         |  |  |
| 56 |                                                                                                                                                                        | ssless line having characteristic impeda<br>VSWR of the line will be :                                                     | ance Zo is           | terminated with a load impedance of                  |  |  |
|    | a)                                                                                                                                                                     | 1                                                                                                                          | b)                   | 10                                                   |  |  |
|    | c)                                                                                                                                                                     | Infinite                                                                                                                   | d)                   | None of the above                                    |  |  |
| 57 | A signal $1 + \cos(2\pi ft) + \cos(6\pi ft)$ where $f=1MHz$ is sampled at 3MHz and Fourier Transform is carried out. How many lines will be seen in Fourier Transform? |                                                                                                                            |                      |                                                      |  |  |
|    | a)                                                                                                                                                                     | 5                                                                                                                          | b)                   | 1                                                    |  |  |
|    | c)                                                                                                                                                                     | 3                                                                                                                          | d)                   | 2                                                    |  |  |
| 58 | The                                                                                                                                                                    | array factor of an array antenna depe                                                                                      | nds on               |                                                      |  |  |
|    | a)                                                                                                                                                                     | Number of radiating elements                                                                                               | b)                   | Spacing between the elements                         |  |  |
|    | .c) <sub>,</sub>                                                                                                                                                       | Phase of the applied signal                                                                                                | d)                   | All of the above                                     |  |  |
| 59 | Whi                                                                                                                                                                    | ch of the following parameter is impro                                                                                     | ved by int           | roducing pipelining in digital design?               |  |  |
|    | a)                                                                                                                                                                     | Area (Gate count)                                                                                                          | b)                   | Maximum clock frequency                              |  |  |
| -  | c)                                                                                                                                                                     | Power dissipation                                                                                                          | d)                   | Noise                                                |  |  |
| 60 | A tra                                                                                                                                                                  | ansmissio <mark>n line ha</mark> vi <mark>ng characteristic in</mark><br>impedance 'Z <sub>L</sub> ' appears in a Smith Cl | mpedance<br>hart on: | 'Z <sub>t</sub> ' of varying length in series with a |  |  |
|    | a)                                                                                                                                                                     | Constant Resistance Circle                                                                                                 | b)                   | Constant VSWR Circle                                 |  |  |
|    | c)                                                                                                                                                                     | Constant Reactance Circle                                                                                                  | d)                   | All of the above                                     |  |  |
| 61 | Imp                                                                                                                                                                    | edance characteristics on a Smith Cha                                                                                      | rt repeat a          | after a distance of:                                 |  |  |
|    | a)                                                                                                                                                                     | λ                                                                                                                          | b)                   | λ/4                                                  |  |  |
|    | c)                                                                                                                                                                     | $\lambda/2$ .                                                                                                              | d)                   | None of the above                                    |  |  |





ELECTRONICS - 2013.

| 62 | If τ is                                                                                                                                                                                 | the time constant and ω is the ap                                                          | plied frequ          | ency, a low pass RC filter acts as a pure |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------|-------------------------------------------|--|--|
|    |                                                                                                                                                                                         | ator when:                                                                                 | . , .                | • ′                                       |  |  |
|    | a)                                                                                                                                                                                      | ωτ=0                                                                                       | b)                   | ωτ>> 1                                    |  |  |
|    | c)                                                                                                                                                                                      | $\omega \tau = 1$                                                                          | d)                   | ωτ<< 1                                    |  |  |
| 63 | 10μF capacitor is connected across secondary winding of a high frequency transformer having primary to secondary turns ratio 5:2. What is the value of capacitance seen across primary? |                                                                                            |                      |                                           |  |  |
|    | a)                                                                                                                                                                                      | 4μF                                                                                        | b)                   | 62.5µF                                    |  |  |
|    | c)                                                                                                                                                                                      | 25μF                                                                                       | d)                   | · 1.6μ <b>F</b>                           |  |  |
| 64 | What                                                                                                                                                                                    | will be the output of the following                                                        | g circuit, if        | point-P is stuck at 1?                    |  |  |
|    | В —<br>С —                                                                                                                                                                              |                                                                                            | -Y                   | •                                         |  |  |
|    | a)                                                                                                                                                                                      | A+B+C                                                                                      | b)                   | A'B'C'                                    |  |  |
|    | c)                                                                                                                                                                                      | (ABC)'                                                                                     | d)                   | 0                                         |  |  |
| 65 | For the                                                                                                                                                                                 | For the current mirror circuit shown below, if the emitter area of Q2 is thrice of Q1, the |                      |                                           |  |  |
|    |                                                                                                                                                                                         | R = 20KΩ                                                                                   |                      | Q 2                                       |  |  |
|    |                                                                                                                                                                                         | AUU                                                                                        | V <sub>E</sub> =-10V |                                           |  |  |
|    |                                                                                                                                                                                         | 0.228mA                                                                                    |                      |                                           |  |  |
|    | a)                                                                                                                                                                                      | 0.328mA                                                                                    | b)                   | 2.955mA                                   |  |  |
| 66 | c)                                                                                                                                                                                      | 0.105mA                                                                                    | b)<br>d)             | 2.955mA<br>0.012mA                        |  |  |
| 66 | c)<br>Outp                                                                                                                                                                              | 0.105mA<br>ut of an Op-amp is 1V peak, and s                                               | b) d) slew rate is   | 2.955mA                                   |  |  |
| 66 | c)<br>Outp                                                                                                                                                                              | 0.105mA                                                                                    | b) d) slew rate is   | 2.955mA<br>0.012mA                        |  |  |

| इसरो डिन्ट | INDIAN SPACE RESEARCH ORGANISATION | Page 12 of 18 |
|------------|------------------------------------|---------------|
| ·          |                                    |               |









SET-A





INDIAN SPACE RESEARCH ORGANISATION

Page 14 of 18





| FELECTRONICS – 2013 SET -A : |                   |                   |                                       | <br>    |
|------------------------------|-------------------|-------------------|---------------------------------------|---------|
|                              | FELECTRONICS PALS |                   |                                       | CET 4   |
|                              |                   | the second second |                                       | SEI-A : |
|                              | <del></del>       |                   | · · · · · · · · · · · · · · · · · · · |         |
| ullet                        | •                 | •                 |                                       |         |

|    |                                                                                      | •                                          |             |                                       |
|----|--------------------------------------------------------------------------------------|--------------------------------------------|-------------|---------------------------------------|
|    | a)                                                                                   | $4\pi$                                     | b)          | $2\pi$                                |
| -  | c)                                                                                   | $\leq 4\pi$                                | d)          | $\leq 2\pi$                           |
| 74 | $\sqrt[3]{C}$                                                                        | osx - jSinx is equal to                    |             |                                       |
|    | a)                                                                                   | $(\cos x)^{1/3} - j(\sin x)^{1/3}$         | b)          | $\sqrt[3]{\cos^2 x - j\sin^2 x}$      |
|    | c) -                                                                                 | $\cos\frac{x}{3} - j\sin\frac{x}{3}$       | d)          | $\sin\frac{x}{3} - j\cos\frac{x}{3}$  |
| 75 | If f                                                                                 | t) is 1 MHz sinusoid with 1 Vp-p           | and samplin | g frequency fs is 25KHz, the output   |
|    | will be: $\begin{array}{c} \text{8bit} \\ \text{A/D} \\ \text{0} \end{array}$ Output |                                            |             |                                       |
|    | fs , Sampling Frequency                                                              |                                            |             |                                       |
|    | a)                                                                                   | 0V                                         | b)          | DC value anywhere between -1V and +1V |
|    | c)                                                                                   | DC value anywhere between - 0.5V and +0.5V | d)          | 1Vp-p 1MHz sinusoid                   |





ELECTRONICS - 2013 -



| इसर्गे डिन्ट | INDIAN SPACE RESEARCH ORGANISATION | Page 16 of 18 |
|--------------|------------------------------------|---------------|
|              |                                    |               |





| 77  | 1           | A 10dB attenuator is put at the input of a low noise amplifier having 3dB noise figure. Now the noise figure of the cascaded amplifier will be |                 |                                                                       |  |
|-----|-------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------|--|
|     | a)          | 3dB                                                                                                                                            | b)              | e<br>12dB                                                             |  |
|     | c)          | 7dB                                                                                                                                            | d)              | None of the above                                                     |  |
| 78  | A 33<br>Wha | t will be observed?                                                                                                                            | e is fed to the | he input of an Spectrum Analyzer.                                     |  |
|     | a)          | 2 <sup>nd</sup> , 5 <sup>th</sup> , 8 <sup>th</sup> harmonics missing                                                                          | b)              | 3 <sup>rd</sup> , 6 <sup>th</sup> , 9 <sup>th</sup> harmonics missing |  |
|     | c)          | 1 <sup>st</sup> , 4 <sup>th</sup> , 7 <sup>th</sup> harmonics missing                                                                          | d)              | All the harmonic present                                              |  |
| 79  | Phase       | e function of a filter is $(f) = kf^2, k$                                                                                                      | > 0. The gro    | oup delay of the filter has the shape                                 |  |
|     | a)          |                                                                                                                                                | oup Delay       |                                                                       |  |
| )   | b)          |                                                                                                                                                | Group Delay     | <b>24</b> 7                                                           |  |
| d , | c)          |                                                                                                                                                | Group D         | elay<br>                                                              |  |

| 7/-        |  |
|------------|--|
| इसरी डिन्ट |  |





| ELEC | CTRO                                                                                                                                               | NICS - 2013 - SET - A |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|
|      |                                                                                                                                                    | , Group Delay         |  |  |
|      | d)                                                                                                                                                 | f                     |  |  |
| 30   | 1V p-p sinusoid is digitized by a 4 bit A-to-D converter with input dynamic range of 2V p-p. The signal to noise ratio of the digitized signal is: |                       |  |  |
|      | a)                                                                                                                                                 | 384                   |  |  |
|      | b)                                                                                                                                                 | 96                    |  |  |
|      | c)                                                                                                                                                 | 48                    |  |  |
|      | d)                                                                                                                                                 | 24                    |  |  |



End of questions

| इसरी डिन्ट | INDIAN SPACE RESEARCH ORGANISATION | Page 18 of 18 |
|------------|------------------------------------|---------------|
|            |                                    |               |