

भौतिक विज्ञान PHYSICS

- 100: 1 तीव्रता अनुपात वाले दो कलासम्बद्ध स्रोत व्यतिकरण करते हैं । उच्चतम एवम् न्यूनतम तीव्रता में अनुपात है
 - (A) 100:1
- (B) 10:1
- (C) 11:9
- (D) 121:81
- 2. एक उपग्रह की कक्षा का अर्धव्यास, एक भूस्थिर उपग्रह की कक्षा के अर्धव्यास का 16 गुना है। उपग्रह का आवर्तकाल होगा
 - (A) 4 दिन
- (B) 16 दिन
- (C) 64 दिन
- (D) 96 दिन
- 3. निम्निखित में से कौन पथ पर निर्भर करता है ?
 - A) TU/6
- (B) PdV
- (C) P_V (D) V 可能 U = आन्तरिक ऊर्जा

P = दाब

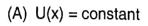
№ V = आयतन

(B)
$$U(x) = Ae^{-bx}$$

(C)
$$U(x) = \frac{1}{2}K(x-a)^2$$

(D)
$$U(x) = K_1 x + K_2 x^2$$

PG-03/D


- Two coherent sources of intensity ratio
 100: 1 interfere. The ratio of intensity
 between maxima and minima is
 - (A) 100:1
- (B) 10:1
- (C) 11:9
- (D) 121:81
- The radius of the orbit of a satellite is
 16 times the radius of the orbit of a
 geo-stationary satellite. The period of the satellite is
 - (A) 4 days
- (B) 16 days
- (C) 64 days
- (D) 96 days
- 3. Which of the following is path dependent?
 - (A). U
- (B) PdV ~
- (C) P
- (D) V

Where U = Internal Energy

P = Pressure

V = Volume

4. The potential energy U(x) of a particle executing S.H.M. is

(B) $U(x) = Ae^{-bx}$

(C) $U(x) = \frac{1}{2}K(x-a)^2$

(2h)2

(D) $U(x) = K_1 x + K_2 x^2$

Test Prime

ALL EXAMS, ONE SUBSCRIPTION

70,000+ Mock Tests

600+ Exam Covered

Personalised Report Card

Previous Year Papers

Unlimited Re-Attempt

500% Refund

ATTEMPT FREE MOCK NOW

- 5. पृथ्वी की धारिता कितनी है यदि इसको 6400 कि.मी. त्रिज्या का एक गोलीय चालक माना जाता है ?
 - (A) 711 माइक्रोफैरड
 - (B) 640 माइक्रोफैरड
 - (C) 900 माइक्रोफैरड
 - (D) 1406 फैरड
- 6.) किसी सूक्ष्मदर्शी का संख्यात्मक द्वारक होता है
 - (A) μ/sin i
- (B) μsin i
- (C) sin i/μ
- (D) $sin^{-1}i/\mu$
- 7. q कूलंम्ब के अनंत आवेश एक सीधी रेखा में क्रमश: 1 मी., 2 मी., 4 मी., 16 मी., 32 मी. दूरी पर रखे गये हैं। इन सभी आवेशों के कारण विभव होगा
 - (A) शून्य
- (B) $\frac{q}{4\pi \in Q}$
- $\sqrt{(C)} \frac{q}{2\pi \in_0}$
- (D) $\frac{q}{8\pi \in_0}$
- 8. पानी की आठ समान बूँदे हवा में से 5 सें.मी./से. की नियत वेग से गिर रही हैं। यदि ये बूँदे आपस में मिल जायें तो बूँद का नया सीमान्त वेग कितना होगा ?
 - (A) 5 सें.मी./सेकण्ड
 - (B) 10 सें.मी./सेकण्ड १ = 2
 - (C) 20 सें.मी./सेकण्ड
 - (D) 40 सें.मी./सेकण्ड
- 9.) ध्रुवण घूर्णन (ऑप्टिकल रोटेशन) मापने का उपकरण कहलाता है
 - (A) स्पेक्ट्रोमीटर
 - (B) सूक्ष्मदर्शी
 - (C) पोलारीमीटर
 - (D) इन्टरफेरोमीटर

- 5. What is the capacitance of the earth if it is assumed to be a spherical conductor of radius 6400 Km?
 - (A) 711 μF
 - (B) 640 μF
 - (C) 900 μF
 - (D) 1406 F
- The numerical aperture of a microscope is given by
 - (A) μ/sin i
- (B) μsin i
- (C) sin i/μ
- (D) sin-1i/μ
- Infinite equal charges q are placed along a line at distances 1 meter, 2 meter, 4 meter, 16 meter, 32 meter and so on.
 Potential due to all charges are
 - (A) Zero
- (B) $\frac{q}{4\pi \in Q}$
- (C) $\frac{q}{2\pi \in_0}$
- (D) $\frac{q}{8\pi \in_0}$
- 8. Eight equal drops of water are falling through air with a steady velocity of 5 cm/sec. If the drops coalesce, what will be the new terminal velocity?
 - (A) 5 cm/s
 - (B) 10 cm/s
 - (C) 20 cm/s
 - (D) 40 cm/s
- 9. The instrument used to measure optical rotation is known as
 - (A) spectrometer
 - (B) microscope
 - (C) polarimeter
 - (D) interferometer

旋

10. यदि दो सदिशों P तथा Q का परिणामी में इस प्रकार हो कि R² = P² + Q², सदिशों P तथा Q के मध्य कोण है

- (A) शून्य
- (B) 45°
- (C) 60°
- (D) 90°

11. सौर ऊर्जा का स्रोत है

- (A) हाइड्रोजन का दहन
- (B) नाभिकीय विखण्डन अभिक्रियाएँ
- (C) नाभिकीय संलयन अभिक्रियाएँ
- (D) अन्य सौर मण्डलों से प्राप्त विकिरित कर्जा
- 2 0° से. पर 20 ग्राम बर्फ, 0° से. जल में पिघलती है । इस प्रक्रम में एन्ट्रॉपी परिवर्तन का मान होता है (जल की गुप्त ऊष्मा 80 कैली/ग्राम है)
 - (A) 24.5 जू./के. (B) 30.2 जू./के.
 - (C) 35.7 जू./के. (D) 49.2 जू./के.
- एक द्विघ्रुव से, θ कोण दिशा में, r दूरी पर एक बि़न्दु
 पर, द्विघ्रुव p के कारण विद्युत विभव होता है
 - (A) $\frac{1}{4\pi \in_0} \frac{p \cos \theta}{r^2}$
 - $(B) \ \frac{1}{4\pi \in_0} \frac{\rho}{r^3}$
 - (C) $\frac{1}{4\pi \in \frac{p \sin \theta}{r^2}}$
 - (D) $\frac{1}{4\pi \in_0} \frac{p \tan \theta}{r^2}$

- 10. If the resultant \vec{R} of two vectors \vec{P} and \vec{Q} is such that $R^2 = P^2 + Q^2$, the angle between vector \vec{P} and \vec{Q} is
 - (A) zero
- (B) 45°
- (C) 60°
- (D) 90°
- 11. The source of solar energy is
 - (A) burning of hydrogen
 - (B) nuclear fission reactions
 - (C) nuclear fusion reactions
 - (D) radiant energy received from other solar systems
- 12. 20 grams of ice at 0°C melts to water at 0°C. The entropy change in this process, is (Latent heat of water is 80 cal/gm)
 - (A) 24.5 J/°K
- (B) 30.2 J/°K
- (C) 35.7 J/°K
- (D) 49.2 J/°K
- 13. The electric potential due to dipole p, at a point distant r from it and in the direction θ from the dipoles is

(A)
$$\frac{1}{4\pi \in_0} \frac{p \cos \theta}{r^2}$$

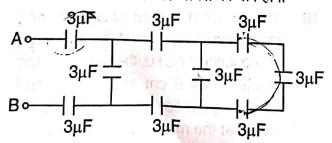
- (B) $\frac{1}{4\pi \in {}_{0}} \frac{p}{r^{3}}$
- (C) $\frac{1}{4\pi \in 0} \frac{p \sin \theta}{r^2}$
- (D) $\frac{1}{4\pi \in_0} \frac{p \tan \theta}{r^2}$

8 - Day 1 K. 7 - Ed & 2/2 d x

14. किसी द्रव्यमान वितरण के कारण x दिशा में गुरुत्वीय क्षेत्र व्यंजक E = kx-3/2 द्वारा दर्शाया गया है जहाँ k एक धनात्मक नियताँक है । अनन्त पर गुरुत्वीय विभव को शून्य लेते हुये, उसका मान x दूरी पर होगा

- (A) $2k\sqrt{x}$
- (B) $2k/\sqrt{x}$
- (C) 2kx3
- (D) 2k/x3
- यदि अभिदृश्यक लेन्स की फोकस दूरी बढ़ाई जाये तो आवर्धन क्षमता
 - (A) सूक्ष्मदर्शी की बढ़ेगी तथा दूरदर्शी की घटेगी
 - (B) सूक्ष्मदर्शी तथा दूरदर्शी दोनों की बढेगी-
 - (C) सूक्ष्मदर्शी तथा द्रदर्शी दोनों की घटेगी
 - (D) सूक्ष्मदर्शी की घटेगी तथा दूरदर्शी की बढ़ेगी
- एक रुद्धोष्म प्रक्रम को इस प्रकार भी जाना जाता है
 - (A) समतापीय (B) समदाबी
- - (C) समऐन्ट्रॉपीय
- (D) समआयतनिक
- फाइबर आप्टिक्स पर कार्य करता है।
 - (A) स्नेल का नियम
 - (B) पूर्ण आंतरिक परावर्तन
 - (C) (A) तथा (B) दोनों
 - (D) जनसंख्या व्युत्क्रम
- 1 मीटर लम्बी अनुनाद नली की आन्तरिक त्रिज्या 3 से.मी. है। 2000 हर्ट्ज आवृत्ति वाले स्वरित्र से प्रथम अनुनाद स्थिति 4.6 से.मी. पर है तथा द्वितीय अनुनाद स्थिति 14.0 से.मी. पर है। कमरे के ताप पर ध्वनि की चाल है
 - (A) 336 मी./से.
- (B) 376 मी./से.
- (C) 332 मी./से.
- (D) 340 मी./से.

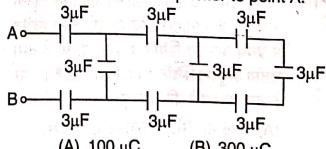
- The gravitational field due to a mass distribution is given by E = kx-3/2 in x-direction, where k is a positive constant. Taking gravitational potential to be zero at infinity, its value at a distance x is
 - (A) 2k√x
- (B) $2k/\sqrt{x}$
- (C) 2kx3
- (D) $2k/x^3$
- If the focal length of objective lens is increased then magnifying power of
 - (A) microscope will increase but that of telescope decrease
 - (B) microscope and telescope both will increase
 - (C) microscope and telescope both will decrease
 - (D) microscope will decrease but that of telescope will increase
- An adiabatic process is also known as
 - (A) isothermal
- (B) isobaric
- (C) isoentropic
- (D) isochoric
- 17. Fibre optics works on the principle of
 - (A) Snell's law
 - (B) Total internal reflection
 - (C) (A) and (B) both
 - (D) Population inversion
- The internal radius of a 1 m long resonance tube is 3 cm. With a tuning fork of frequency 2000 Hz, the first resonating position is 4.6 cm and the second resonating position is 14.0 cm. Speed of sound at the room temperature is
 - (A) 336 m/s
- (B) 376 m/s
- (C) 332 m/s
- (D) 340 m/s


- 19. ब्रूस्टर कोण पर आपतन के लिए, परावर्तित तथा अपवर्तित किरणों के मध्य कोण होता है
 - (A) 120°
- (B) 90°
- (C) 70°
- (D) 60°

20. एक 240 वो. ए.सी. स्रोत की शिखर वोल्टता कार्य होती है

- 5/0-120.
- (A) 240 वो.
- (B) 300 वो.
- (C) 340 वो.
- (D) 380 वो.

एण्डरसन सेतु का उपयोग _____ मापन के लिए किया जाता है।


- (A) धारिता
- (B) स्व-प्रेरकत्व
- (C) प्रतिरोध
- (D) ए सी आपूर्ति की आवृत्ति
- 22. L लम्बाई, r अर्धव्यास के एक बेलन को जिसके पदार्थ का दृढ़ता गुणांक n है, एक फेरा (चक्कर) पूरा ऐंठन करने हेतु आवश्यक मरोड़ी
 - (A) $\frac{2\pi^2\eta r^4}{I}$
- (B) $\frac{\pi \eta r^4}{2L}$
- (C) $\frac{\pi^2 \eta r^4}{1}$
- (D) $\frac{360\pi\eta r^4}{I}$
- 23. निम्न परिपथ में बिन्दु A व B के बीच यदि 100 वोल्ट का विभवांतर स्थापित करें तो A के निकटतम संधारित्र पर आवेश का मान होगा

- (A) 100 μC
- (B) 300 μC
- (C) 150 μC
- (D) 200 μC

PG-03/D OF THE SELECTION 8

- For incidence at Brewster's angle, the angle between reflected and refracted rays, is
 - (A) 120°
- (B) 90°
- (C) 70°
- (D) 60°
- 20. The peak voltage in a 240V A.C. source is
 - (A) 240 V
- (B) 300 V
- (C) 340 V
- (D) 380 V
- 21. Anderson's Bridge is used for measurement of
 - (A) Capacitance
 - (B) Self-inductance
 - (C) Resistance
 - (D) Frequency of AC supply
- 22. Torsional couple required to twist a cylinder of length $\frac{L}{2}$, radius r and modulus of rigidity η by one turn will be
 - (A) $\frac{2\pi^2\eta r^4}{L}$
- (B) πη**ι**⁴
- (C) $\frac{\pi^2 \eta r^4}{L}$
- (D) 360πηr⁴ L
- 23. In the following circuit if between point A and B, a potential of 100 volt is established, then find value of charge of the nearest capacitor to point A.

- (A) 100 μC
- (B) 300 μC
- (C) 150 μC
- (D) 200 μC

9" 18 110 mo

M

- 24. सौर प्रकाश में अधिकतम तीव्रता 470 नैमी. की तरंगदैर्घ्य में पायी जाती है। मानते हुए कि सूर्य सतह एक कृष्णिका की भांति उत्सर्जन करती है, सूर्य के ताप की गणना कीजिए। (वीन स्थिरांक = 0.288 सें.मी. क्कै.)
 - (A) 8000°K(°के.)

T= . 208 K100

(B) 7000°K (°के.) (C) 6128°K (°के.)

(C) 6120 K (° 南。)

T= 288 P

एक पाइआन तथा एक इलेक्ट्रान के द्रव्यमानों का अनुपात है लगभग

- (A) 270
- (B) 50
- (C) 20
- (D) 5
- 26. अशुद्ध कथन को चिन्हित कीजिए।
 - (A) अभिलाक्षणिक एक्स-किरण स्पेक्ट्रम में सतत् स्पेक्ट्रम पर तीव्र शिखर अध्यारोपित होते हैं।
 - (B) निम्नतर परमाणु क्रमाँक की तुलना में उच्चतर परमाणु क्रमाँक के पदार्थों के लिए अभिलाक्षणिक एक्स-किरण की तरंगदैर्घ्य अधिक होती है।
 - (C) उच्चतर परमाणु क्रमाँक से आनेवाली एक्स किरणों की भेदन क्षमता अधिक होती है।
 - (D) जब इलेक्ट्रॉन उच्चतर भीतरी कोश से निम्नतर भीतरी कोश में कूदता है, तो अभिलाक्षणिक एक्स-किरण उत्पन्न होती है।
- 7. f, तथा f₂ फोकस दूरियों के दो पतले लेन्सों से एक अवर्णक संयोजन प्राप्त किया जाता है, जब उनके मध्य अन्तराल हो
 - (A) $\frac{f_1}{2}$
- (B) $\frac{1}{2}(f_1 + f_2)$
- (C) $\frac{f_2}{2}$
- (D) $\frac{1}{2}(f_1-f_2)$

24. The light from the sun has maximum intensity for the wavelength of 470 nm. Assuming that the surface of the sun emits as a blackbody, calculate the temperature of the sun.

(Wien's constant = 0.288 cm. °K)

- (A) 8000°K
- (B) 7000°K
- (C) 6128°K
- (D) 5000°K
- 25. The ratio of masses of a pion and an electron is about
 - (A) 270
- (B) 50
- (C) 20
- (D) 5
- 26. Mark the wrong statement.
 - (A) The characteristic X-ray spectrum consists of sharp peaks superimposed on the continuous spectrum.
 - (B) The characteristic X-rays from substances of higher atomic number are of longer wavelength than those from lower atomic number.
 - (C) X-rays from higher atomic number are more penetrating.
 - (D) Characteristic X-rays are generated when an electron from a higher inner shell jumps to lower.
- 27. An achromatic combination of two thin lenses of focal lengths f₁ and f₂, is achieved if separation between them is equal to
 - (A) $\frac{f_1}{2}$
- (B) $\frac{1}{2}(f_1 + f_2)$
- (C) $\frac{f_2}{2}$
- (D) $\frac{1}{2}(f_1 f_2)$

No AS Not O

260 हर्ज आवृत्ति का एक स्वरित्र द्विभुज एक सोनोमीटर तार के साथ कम्पित किया जाता है तथा 5 विस्पन्द सुनाई देते हैं। यदि तार के तनाव में थोड़ी वृद्धि की जाय, तो विस्पन्द आवृत्ति बढ़ जाती है । सोनोमीटर तार की प्रारम्भिक आवृत्ति है

- (A) 265 हर्ज
- (B) 260 हर्ज
- (C) 255 हर्ज
- (D) 250 हर्ज

0.15 हे. प्रेरण तथा प्रतिरोध 15Ω की एक कुण्डली को 50 हर्ज, 220 वो. लाइन पर जोड़ा जाता है। कुण्डली में धारा का अभिकलन कीजिए।

- (A) 4.45 ऐ.
- (B) 4.25 ऐ.
- (C) 4.00 ऐ.
- (D) 3.50 ऐ.

एलुमिनियम के एक घन के एक भुजा की लंम्बाई 👨 🥠 10 सें.मी. है। घन के उपरी सतह पर 100 न्यूटन का दृढ़ बल लगाकर, निचली सतह की अपेक्षा 2001 सें.मी. विस्थापित किया जाता है। दृढ़ता र्थे गुणांक का मान है

- (A) 10⁴ न्यूटन/मी.² (B) 10³ न्यूटन/मी.²
- ...(C) 10⁷ न्यूटन/मी.² (D) 10⁻⁵ न्यूटन/मी.² M ूरि

यदि r_0 हाइड्रोजन परमाणु की प्रथम (n = 1) बोर कक्षा का अर्धव्यास हो, तो चतुर्थ (n = 4) र्कक्षा का अर्धव्यास होगा

- χ₂ (A) 16 r₀
- (B) 4r₀
- (D) $\frac{1}{16} r_0$

एक विकृत तार की प्रति आयतन स्थितिज ऊर्जा u होती है

- (A) u = प्रतिबल × विकृति
- $\frac{x^{\circ}}{I}$ (B) $u = \frac{1}{I}$ प्रतिबल \times विकृति
- $\sqrt[N]{(C)}$ u = $\frac{1}{2}$ प्रतिबल × विकृति
- $u = \frac{3}{4}$ प्रतिबल \times विकृति

- A tuning fork of frequency 260 Hz is vibrated with a sonometer wire and 5 beats are heard. If the tension in the wire is slightly increased, the beat frequency also increases. The original frequency of the sonometer is
 - (A) 265 Hz
- (B) 260 Hz
- (C) 255 Hz
- (D) 250 Hz

A coil having inductance 0.15 H and resistance 15Ω is connected across a 220 V, 50 Hz line. Compute the current in the coil.

- (A) 4.45 A
- (B) 4.25 A
- (C) 4.00 A
- (D) 3.50 A

A cube of aluminium of side 10 cm is subjected to a shearing force of 300 N. The top surface of the cube is displaced by 0.01 cm with respect to bottom. The value of modulus of rigidity is

- (A) 10⁴ N/m²
- (B) 103 N/m²
- (C) 107 N/m²
- (D). 10⁻⁵ N/m²

If r_0 is the radius of the first (n = 1) Bohr 31. orbit in a hydrogen atom, the radius of the fourth (n = 4) orbit is given by

- (A) $16 r_0$

- (C) $\frac{1}{4}$ r₀ (D) $\frac{1}{16}$ r₀

Potential energy per unit volume u of 32. a strained wire is

- (A) $u = stress \times strain$
- (B) $u = \frac{1}{4}$ stress x strain
- (C) $u = \frac{1}{2}$ stress × strain
- (D) $u = \frac{3}{4}$ stress x strain

2 = 1 wn = 2 = fr 3fr f2 bets=20

Suffer = 120

33. दो लेंसों की विक्षेपण क्षमताओं का अनुपात 2:3 है। इन शीशों को उपयोग करके 20 सें.मी. फोकस दूरी का अवर्णक लेंस बनाया जाता है। लेंसों के फोकस दूरी है

(A) $f_1 = 5 \text{ Hi.Hl.}, f_2 = -10 \text{ Hi.Hl.}$

(B) $f_1 = -10 \text{ Å}.\text{ H}.$, $f_2 = 10 \text{ Å}.\text{ H}.$

(C) $f_1 = 6.67 \text{ Å}.\text{H}., f_2 = -10 \text{ Å}.\text{H}.$

(D) $f_1 = 10 \text{ Å}.\text{ H}., f_2 = -10 \text{ Å}.\text{ H}.$

34. प्लेटों के मध्य वायु के एक संधारित्र की धारिता 8 µF है। यदि प्लेटों के मध्य एक परावैद्युत, परावैद्युतांक 6 का प्रविष्ट कराया जाय, इसकी धारिता अब होगी

- (A) 48 μF
- (B) 40 μF
- (C) 32 μF
- (D) 16 μF

35. एक वान डर वाल्स गैस के लिए निम्न दाब पर व्युत्क्रमण ताप होता है

- (A) $\frac{27a}{bR}$
- (B) $\frac{a}{8Rb}$
- (C) $\frac{ab}{8B}$
- (D) $\frac{2a}{Rb}$

36. परमाणु क्रमांक z = 11 के एक तत्व की k_α एक्स किरणरेखा की तरंगदैर्घ्य λ है । परमाणु क्रमांक z के क्रूसरें तत्व की k_α एक्स किरण रेखा की <u>तरं</u>गदैर्घ्य λ है । तब z का मान है

- (A) 11
- (B) 44
- (C) 6
- (D) 4

- (A) $\frac{\sqrt{\pi}}{4}$
- (B)
- (C) $\frac{\sqrt{\pi}}{2}$
- (D) $\frac{2}{\sqrt{\pi}}$

33. Two lenses have dispersive powers in ratio 2: 3. These glasses are used to make achromatic lens of focal length
20 cm. The value of focal lengths of two lenses are

- (A) $f_1 = 5$ cm, $f_2 = -10$ cm
- $(B) f_1 = -10 \text{ cm}, f_2 = 10 \text{ cm}$
 - (C) $f_1 = 6.67$ cm, $f_2 = -10$ cm
 - (D) $f_1 = 10 \text{ cm}, f_2 = -10 \text{ cm}$

 A capacitor with air between its plates has a capacitance of 8 μF. Its capacitance on introducing a dielectric with dielectric constant 6 between its plates, is

- (A) 48 μF
- (B) 40 μF
- (C) 32 μF
- (D) 16 μF

35. For a van der Waals gas the inversion temperature at low pressure is

- (A) $\frac{27a}{bR}$
- (B) $\frac{a}{8Rb}$
- (C) $\frac{ab}{8R}$
- (D) $\frac{2a}{Rb}$

36. The wavelength of k_α x-ray line of an element of atomic number z = 11 is λ. The wavelength of k_α x-ray line of another element of atomic number z is 4λ. Then z is

- (A) 11
- (B) 44
- (C) 6
- (D) 4

37. The ratio of most probable speed and average speed of a gas enclosed in a vessel is-

- (A) $\frac{\sqrt{\pi}}{4}$
- (B) 1

(C) $\frac{\sqrt{\pi}}{2}$

(D) $\frac{2}{\sqrt{\pi}}$

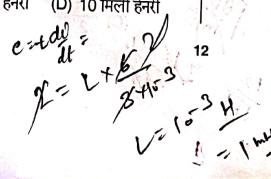
अपवर्तनांक 1.5 की एक आयताकार ग्लास प्लैद को एक ध्रुवक के रूप में प्रयोग किया जाता है। संगत ध्रवक कोण होगा

- (A) 43.7°
- (B) 33.7°
- (C) 56.3°
- (D) 23.4°

39. एक डायोड वाल्व में लगी ऐनोड वोल्टता यदि 48 वो. से 50 वो. की जाती है, तो ऐनोड धारा कर 2 60 मि.ऐ. से बढ़कर 70 मि.ऐ. हो जीती है। 🎝 डायोड का गतिक ऐनोड प्रतिरोध क्या है ?

(A) 200 Ω

(B) 180Ω


(C) 150 Ω

(D) 120 Ω

एक गैस की श्यानता के परिवहन से होती है।

- (A) संवेग
- (B) ऊर्जा
- (C) द्रव्यमान
- (D) इनमें से कोई नहीं
- 41. एक कुण्डली में 3 × 10-3 सेकण्ड में धारा जब 8 एम्पियर से परिवर्तित होकर 2 एम्पियर हो जाती है, तो कुण्डली में प्रेरित विद्युत वाहक बल 2 वोल्ट है। कुण्डली का स्वप्रेरकत्व है
 - (A) 1 मिली हेनरी
- (B) 5 मिली हेनरी
- (C) 20 मिली हेनरी
- (D) 10 मिली हेनरी

PG-03/D

A rectangular glass plate of refractive index 1.5 is used as a polarizer. The corresponding polarizing angle will be

- (A) 43.7°
- (B) 33.7°
- (C) 56.3°
- (D) 23.4°
- When the plate voltage applied to a 39. diode valve is changed from 48 V to 50 V, the plate current increases from 60 mA to 70 mA. What is the dynamic plate resistance of the diode?
 - (A) 200Ω
- (B) 180Ω
- (C) 150 Ω
- (D) 120 Ω

Viscosity of a gas is due to transport of

(A) momentum

- (B) energy
- (C) mass
- (D) none of these
- When the current in a coil changes from 8A to 2A in 3×10^{-3} s, the emf induced in the coil is 2V. The self inductance of the coil is
 - (A) 1 mH
- (B) 5 mH
- (C) 20 mH
- (D) 10 mH

प्लांक के अनुसार आवृत्ति ए तथा इसके पूर्णांक गुणक के दोलकों की औसत ऊर्जा होती है

(A) kT

2 SX25 X25 XQX A THE ELSTABERT

(B) $hvexp\left(-\frac{hv}{kT}\right)$

(C) $\frac{100}{\left[\exp\left(-\frac{h\upsilon}{kT}\right)+1\right]}$

+1] expr

(D) $\left[\exp\left(-\frac{h\upsilon}{kT}\right) - 1 \right]$

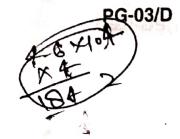
8 मी.मी. दूरी पर दो आवेशों 5 माइक्रो कूलाम् तथा – 5 माइक्रो कूलाम द्वारा एक द्विध्रुव बना है। i) द्विध्रुव के केन्द्र से उसकी अक्ष पर 25 सें.मी. दूरी पर तथा ii) द्विध्रुव अक्ष के केन्द्र से होकर जाती हुई लम्बवत् रेखा पर केन्द्र से 20 सें.मी. दूरी पर वैद्युत क्षेत्र होगा

- (A) 6 × 10⁶ न्यूटन/कूलाम, 4.5 × 10⁴ न्यू<mark>टन</mark>/ कूलाम
- (B) 4.6 × 10⁴ न्यूटन/कूलाम, 4.5 × 10⁴ न्यूटन/कूलाम
- (C) 4.6 × 10⁴ न्यूटन/कूलाम, 4.5 × 10⁴ न्यूटन/कूलाम

(D) 4.5×10⁴न्यूटन/कूलाम, 6×10⁶ न्यूटन/ • कुलाम . ऽ

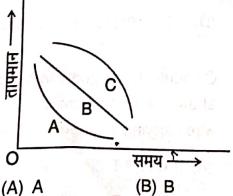
44. 20 ऐ. धारा वहन करते एक लम्बे सीधे तार से क्रिया की क्रिया के क्रिया के

- (A) 3×10⁻⁵ ਟੈ.
- (B) 4 × 10⁻⁵ ਟੈ.
- (C) 5 × 10⁻⁵ ਟੈ.
- (D) 6 × 10⁻⁵ टै.


- 42. According to Planck the average energy of oscillators with frequency υ and its integral multiples is
 - (A) kT
 - (B) $hv exp\left(-\frac{hv}{kT}\right)$

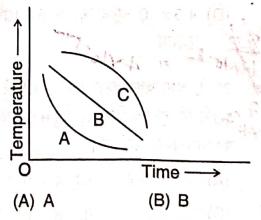
(C) $\left[\exp\left(-\frac{h\upsilon}{kT}\right) + 1\right]$

- (D) $\left[\exp\left(-\frac{h\upsilon}{kT}\right) 1 \right]$
- 43. A dipole is formed by two charges of 5μC and -5μC at a distance of 8 mm. Find electric field at i) a point 25 cm away from dipole centre at its axis and ii) a point 20 cm away on a line perpendicular to the axis and passing through its centre
 - (A) 6 × 10⁶ N/C, 4.5 × 10⁴ N/C
 - (B) 4.6×10^4 N/C, 4.5×10^4 N/C
 - (C) -4.6×10^4 N/C, 4.5×10^4 N/C
 - (D) 4.5×10^4 N/C, 6×10^6 N/C
 - 44. Compute the magnetic induction in air at a point 10 cm from a long straight wire carrying a current of 20 A.
 - (A) 3×10^{-5} T
- (B) $4 \times 10^{-5} \text{ T}$
- (C) 5×10^{-5} T
- (D) $6 \times 10^{-5} \text{ T}$


732 OP 941.9 X 2 X 401 232 S 25 X 232 S 25 X

9x25025 1= 72x

- 45. लिसाजूस चित्र का आकार निर्भर करता है
 - (A) व्यतिकरण करने वाली तरंगों के आयाम पर
 - (B) व्यतिकरण करने वाली तरंगों की आवृत्ति पर
 - (C) व्यतिकरण करने वाली तरंगों के कालांतर पर
 - (D) उपरोक्त सभी
- 46. μ_o = 1.544, μ_E = 1.558 तथाँ λ = 6500 Å के लिए चतुर्थांश तरंग पट्टिका की मोटाई है .014xt= 5
 - (A) 10.0 माइक्रो मीटर
 - (B) 11.6 माइक्रो मीटर
 - (C) 0.25 माइक्रो मीटर
 - (D) 0.28 माइक्रो मीटर यहाँ संकेतों का सामान्य अर्थ है ।
- विस्थापन धारा उत्पन्न होती है
 - (A) केवल धनात्मक आवेश के कारण
 - (B) केवल ऋणात्मक आवेश के कारण
 - (C) दोनों धनात्मक <mark>एवं</mark> ऋणात्मक <mark>आ</mark>वेश के <mark>का</mark>रण
 - (D) समय के साथ बदलती विद्युत क्षेत्र के कारण
- 48. 100° C पर गर्म स्टील का एक खण्ड एक कमरे में ठण्डा होने के लिए छोडा जाता है। नीचे दिये गये वक्रों में से कौन इसके उचित व्यवहार को प्रदर्शित करता है ?


- (C) C
- (D) कोई नहीं

PG-03/D

- The shape of the Lissajous Figures 45. depends on
 - (A) The amplitude of the superposing
 - (B) Frequencies of superposing waves
 - (C) The phase difference between the superposing waves
 - (D) All of the above
 - For $\mu_o = 1.544$, $\mu_E = 1.558$ and $\lambda = 6500$ Å, the thickness of a quarter wave plate is
 - **»**(A) 10.0 μm
 - (B) 11.6 μm
 - **)**(C) 0.25 μm
 - (D) 0.28 μm

Here notations carry their usual meaning.

- The displacement current arises due to
 - (A) positive charges only
 - (B) negative charges only
 - (C) both positive and negative charges
 - (D) time varying electric field
- A block of steel heated to 100° C is left 48. in a room to cool. Which of the curves shown in figure, represents the correct behaviour?

- (D) None

- का वर्णन इसके द्वारा होता है
 - . (A) बायल नियम
 - (B) पाउसौली नियम
 - (C) आर्किमिडीज़ सिद्धान्त
 - (D) बरनौली सिद्धान्त
- यंग के एक द्विस्लिट प्रयोग में, स्लिट अंतराल 0.12 मि.मी. है । प्रयुक्त प्रकाश का तरंगदैर्घ्य 5893 ऐ.° तथा व्यतिकरण चित्राम एक मीटर दूर स्क्रीन पर प्रेक्षित की जाती है। दो उत्तरोत्तर दीप्त फ्रिन्जों के मध्य अंतराल होगा
 - (A) 6.50 मि.मी.
- (B) 5.50 मि.मी.
- (C) 4.91 मि.मी.
- (D) 4.50 मि.मी.
- 51. एक मोल गैस की प्रति स्वातंत्र्य कोटि माध्य गतिज ऊर्जा (गैसों की अणु गति <mark>सिद्धान्त के आधा</mark>र पर) है
 - (A) $\frac{1}{2}$ KT
- (C) $\frac{3}{2}$ RT (D) $\frac{1}{2}$ RT

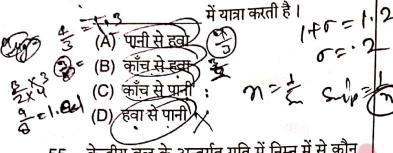
एक 200 मि.मी. लंबी पोलारीमीटर नलिका में 48 सें.मी.³ चीनी का विलयन भरा है, जब पोलारीमीटर को श्वेत प्रकाश के सामने रखा जाता है तब चीनी के घोल का प्रकाशिक घूर्णन 11° तथा विशिष्ट घूर्णन 66° है। नलिका में विलयन के रूप में प्रयुक्त चीनी की मात्रा है

- (A) 5 ग्राम
- (B) 10 ग्राम
- (C) 2 ग्राम

$$\beta = 10 = \frac{589341-10\times1}{12\times10^{-3}}$$

- The streamline flow of an incompressible 49. and non-viscous liquid is described by
 - (A) Boyle's law
 - (B) Poiseuille's law
 - (C) Archimedes principle
 - (D) Bernoulli's principle
- In a Young's double slit experiment the slit separation is 0.12 mm, the wavelength of light used is 5893 A° and interference pattern is observed on a screen 1m away. The separation between successive bright fringes will be
 - (A) 6.50 mm
- (B) 5.50 mm
- (C) 4.91 mm
- (D) 4.50 mm
- The mean Kinetic energy of one mole 51. of gas per degree of freedom (on the basis of Kinetic theory of gases) is
 - (A) $\frac{1}{2}$ KT

- (C) $\frac{3}{2}$ RT (D) $\frac{1}{2}$ RT
- A 200 mm long polarimeter tube 52. containing 48 cm³ of sugar solution produces an optical rotation of 11° when placed in a polarimeter and infront of white light, if the specific rotation of sugar solution is 66°. The amount of sugar contained in the tube in form of solution is
 - (A) 5 gm
- (B) 10 gm
- (C) 2 gm
- (D) 4 gm



53. एक दिये हुए पदार्थ का यंग प्रत्यास्थता गुणांक (Υ) इसके दृढ़ता गुणांक (η) का 2.4 गुना है । पदार्थ के प्वाइसन अनुपात का मान है $\eta = \frac{1}{2(1+\delta)}$

- (A) '2.4
- (B) 1.2
- (C) 0.4
- (D) 0.2

7 = 20170

54. क्रान्तिक कोण अधिकतम है जब प्रकाश

55. केन्द्रीय बल के अन्तर्गत गति में निम्न में से कौन एक भौतिक राशि संरक्षित होती हैं ?

- (A) कोणीय संवेग
- (B) गतिज ऊर्जा
- (C) रैखिक संवेग
- (D) सम्पूर्ण ऊर्जा

56. निम्न में से कौन सा परिपथ प्रतिबाधा मैचिंग हेतु प्रयुक्त होता है ?

- (A) उभयनिष्ठ आधार विन्यास में ट्रांजिस्टर
- (B) उभयनिष्ठ उत्सर्जक विन्यास में ट्रांजिस्टर
- (C) उभयनिष्ठ संग्राहक विन्यास में ट्रांजिस्टर
- (D) उत्क्रम अभिनति में जेनर डायोड

57. बुरे चालकों की ऊष्मीय चालकता का मापन किया जाता है

- (A) सर्ल विधि
- (B) ली डिस्क विधि
- (C) कैलेण्डर एवं बार्न विधि
- (D) उपरोक्त में कोई नहीं

53. For a given material the value of Young's modulus (Y) is 2.4 times of its modulus of rigidity (η), the value of Poisson's ratio of the material is

- (A) 2.4
- (B) 1.2
- (C) 0.4
- (D) 0.2

54. The critical angle is maximum when light travels from

- (A) water to air
- (B) glass to air
- (C) glass to water
- (D) air to water

55. In central force motion which one of the following physical quantity is conserved?

- (A) Angular momentum
- (B) Kinetic energy
- (C) Linear momentum
- (D) Total energy

56. Which of the following circuit is being used in impedance matching?

- (A) transistor in common base configuration
- (B) transistor in common emitter configuration
- (C) transistor in common collector configuration
- (D) zener diode in reverse bias

Thermal conductivity of bad conductors is measured by

- (A) Searle's method
- (B) Lee's disc method
- (C) Callendar and Barne's method
- (D) None of the above

PG-03/D

16

190 SPASHOLD

Ŧ

1000 1000 10001

- किसी पिण्ड की लम्बाई 1.526 मीटर मापी गयी है। सार्थक अंको का ध्यान रखते हुये परम त्रुटि, सापेक्ष त्रुटि एवम् प्रतिशत त्रुटि है
 - (A) 0.0001m, 0.000065, 0.065%
 - (B) 0.001m, 0.00065, 0.065%
 - (C) 0.001m, 0.001, 0.1%

 - (D) 0.0001m, 0.0001, 0.1%
- 2 सें.मी. मोटी एक लोह प्लेट का अनुप्रस्थ काट 5000 सें.मी.² है । इसका एक पार्श्व 110°से. तथा दूसरा 100° से. पर है। यदि लोह की ऊष्मा चालकता 0.115 कै./से. सें.मी. °से. हो, तो प्लेट द्वारा ऊष्मा प्रवाह की दर है
 - (A) 5750 कै./से.
- (B) 4750 के./से.

(B)

- (C) 2875 कै./से.
- (D) 2375 कै./से.
- सरल आवर्त गति करते एक कण के दोलन का विस्थापन समीकरण है

 $x = 5 \sin(0.2\pi t + 0.5\pi)$ कण का दोलन काल है

- (A) 10.0 से.
- (B) 1.0 से.
- (C) 0.8 से.
- (D) 0.5 से.
- 61. / लम्बाई के एक धातु तार पर जब एक रैखिक भार लगाया जाता है, तो लम्बाई Δl बढ़ जाती है । इसके आयतन में भिन्नात्मक परिवर्तन $\frac{\Delta V}{V}$ इसके समानुपातिक है

- (D) $\left(\frac{\Delta l}{l}\right)^3$

- The length of an object is measured as 58. 1.526 m. Taking significant figures into account, the absolute error, relative error and percentage error are
 - (A) 0.0001m, 0.000065, 0.065%
 - (B) 0.001m, 0.00065, 0.065%
 - (C) 0.001m, 0.001, 0.1%
 - (D) 0.0001m, 0.0001, 0.1%
- An iron plate 2 cm thick has a 59. cross-section of 5000 cm². Its one side is at 110°C and the other side is at 100°C. If thermal conductivity of iron is 0.115 cal/s-cm-°C, the rate of heat flow through the plate is
 - (A) 5750 cal/s
- (B) 4750 cal/s
- (C) 2875 cal/s
- (D) 2375 cal/s
- The displacement equation of oscillations of a particle executing simple harmonic motion is

 $x = 5 \sin(0.2\pi t + 0.5\pi)$

The time period of particle is

- (A) 10.0 s
- (B) 1.0 s
- (C) 0.8 s
- (D) 0.5 s
- When a linear load W is applied to a metal 61. wire of length l, its length increases by Δl . The fractional change in its volume $\frac{\Delta V}{V}$ will be proportional to

(A)
$$\sqrt{\frac{\Delta l}{l}}$$

- (A) $\sqrt{\frac{\Delta l}{l}}$ (B) $\left(\frac{\Delta l}{l}\right)^2$
- (C) $\frac{\Delta l}{l}$ (D) $\left(\frac{\Delta l}{l}\right)^3$

- 62. व्हीटस्टोन सेतु की सुग्राह्यता अधिकतम है जब
 - (A) $\frac{P}{Q} = \frac{R}{X}$
 - (B) P = Q, R = X
 - (C) P = Q = R = X
 - (D) इनमें से कोई नहीं
- 63. एक रूबी लेसर में ऊर्जा स्तरों के मध्य जनसंख्या प्रतिलोमन प्राप्त किया जाता है इसके द्वारा
 - (A) ताप में वृद्धि
 - (B) ताप में कमी
 - (C) प्रकाशिक पम्पिंग
 - (D) निर्वात पम्पिंग
- 64. अशुद्ध कथन बताइए ।
 - (A) रेडियोसक्रियता के कारण कई भौमीय तथा जैवीय प्रतिरूपों की आयु निर्धारित की जा सकती है।
 - (B) रेडियोकार्बन बीटा-सक्रिय समस्थानिक कार्बन ¹६°C होता है।
 - (C) जीवित पादप एवम् जन्तुओं में रेडियोकार्बन तथा सामान्य कार्बन का अनुपात भिन्न-भिन्न होता है।
 - (D) कास्मिक किरणें उच्च ऊर्जा परमाणु नाभिक विशेषकर प्रोटॉन होती हैं।
- 65. R त्रिज्या के एक ठोस गोले, जिसका एकसमान आवेश घनत्व e है, के केंद्र तथा बाहरी सतह का विभवान्तर है
 - $(A) \frac{eR^2}{3 \in_0}$
- (B) $\frac{eR^2}{6 \in_0}$
- (C) $\frac{eR^2}{2 \epsilon_0}$
- (D) शून्य

- 62. The sensitivity of a Wheatstone bridge is maximum when
 - (A) $\frac{P}{Q} = \frac{R}{X}$
 - (B) P = Q, R = X
 - (C) P = Q = R = X
 - (D) None of these
- 63. The population inversion between energy states in a Ruby laser is achieved through
 - (A) raising of temperature
 - (B) lowering of temperature
 - (C) optical pumping
 - (D) vacuum pumping
- 64. Identify the incorrect statement.
 - (A) Radioactivity makes it possible to establish the age of many geological and biological specimens.
 - (B) Radiocarbon is the beta-active carbon isotope 14C.
 - (C) Living plants and animals have different ratio of radiocarbon to ordinary carbon.
 - (D) Cosmic rays are high energy atomic nuclei chiefly protons.
- 65. What is the potential difference between the centre and the surface of a sphere of radius R with uniform charge density e within it?

Scanned with CamScanner

- $(A) \frac{eR^2}{3 \in \Omega}$
- (B) $\frac{eR^2}{6 \in \mathbb{R}^2}$
- (C) $\frac{eR^2}{2 \in \Omega}$
- (D) zero

썙

- 66. प्रत्यावर्ती परिपथ में धारा वाटहीन है यदि धारा तथा वोल्टेज में कलान्तर है
 - (A) शून्य
- (B) $\frac{\pi}{4}$
- (C) $\frac{\pi}{2}$
- (D) π
- 67. एक तार में 20 μA की धारा 30 सेकेन्ड़ तक प्रवाहित हो रही है। तार से स्थानांतरित इलेक्ट्रानों की संख्या है
 - (A) 375×10^{13}
- (B) 375×10^{15}
- (C) 375×10^{16}
- (D) 375×10^{17}
- 68. v वेग से स्वतंत्रत: गतिशील द्रव्यमान M का एक पिंड विस्फोटित होता है तथा एक समान तीन खण्डों में विभक्त हो जाता है। विस्फोट के तुरन्त बाद दो खण्ड विरामावस्था प्राप्त कर लेते हैं परन्तु तृतीय खण्ड गतिमान रहता है। इस खण्ड की गतिज ऊर्जा क्या होगी?
 - (A) 2 Mv²
- (B) $\frac{3}{2}$ Mv²
- (C) Mv²
- (D) $\frac{1}{2}$ Mv²
- 69. $\vec{J} = \sigma \vec{E}$, जहाँ J धारा घनत्व है, σ चालकता है तथा E विद्युत क्षेत्र है, है
 - (A) मैक्सवेल का समीकरण
 - (B) अविरतता का समीकरण
 - (C) एम्पियर का नियम
 - (D) ओम के नियम का एक रूप
- 70. एक अर्ध-तरंग दिष्टकारी के लिए अधिकतम दिष्टकरण दक्षता होती है
 - (A) 40.6%
- (B) 50.0%
- (C) 81.2%
- (D) 100.0%

- 66. The current in an AC circuit is wattless when the phase difference between current and voltage is
 - (A) zero
- (B) $\frac{\pi}{4}$
- (C) $\frac{\pi}{2}$
- (D) π
- 67. 20 μA current is flowing in a wire for 30 seconds. The number of electrons
 63.3° passing through wire is
 - (A) 375×10^{13}
- (B) 375×10^{15}
- (**§**) 375 × 10¹⁶
- (D) 375×10^{17}

An object of mass M moving with velocity v explodes and breaks up into three equal pieces. Immediately after the explosion two pieces become stationary, but the third piece keeps moving. What is the kinetic energy of this piece?

- (A) 2 Mv²
- (B) $\frac{3}{2}$ Mv²
- (C) Mv²
- (D) $\frac{1}{2}$ Mv²
- 69. $\vec{J} = \vec{\sigma} \vec{E}$, where J is current density, $\vec{\sigma}$ is conductivity and E is electric field, is
 - (A) Maxwell's equation
 - (B) Continuity equation
 - (C) Ampere's law
 - (D) A form of Ohm's law
- Maximum rectification efficiency of a half-wave rectifier is
 - (A) 40.6%
- (B) 50.0%
- (C) 81.2%
- (D) 100.0%

एक झील से परावर्तित सूर्य किरण किसी क्षण 100 प्रतिशत ध्रुवित है । सूर्य एवं क्षैतिज के बीच का कोण है (दिया हैं tan -1(1.33) = 53.06°, पानी का अपवर्तनांक $(\mu) = 1.33$)

- (A) 53.06°
- (B) 36°54'
- (C) 143.06°
- (D) 126°54'

72. नाभिकीय बन्धन ऊर्जा वक्र के शिखर पर

- (A) Z सम परन्तु N विषम होता है
- (B) Z विषम परन्तु N सम होता है
- (C) दोनों Z तथा N विषम होता है
- (D) दोनों Z तथा N सम होता है

73. दो व्यतिकरण करती किरणों की तीव्रता का अनुपात 9: 1 है। व्यतिकरण चित्राम (पैटर्न) में अधिकतम एवं न्यूनतम तीव्रता का अनुपात होगा

- (A) 5:4
- (B) 2:1
- (C) 25:16
- (D) 4:1

74. अधिकतर नाभिकों की प्रति न्यूक्लियॉन औसत बन्धन ऊर्जा _____ के कोटि की होती है।

- (A) 10⁻¹² eV (B) 10⁻¹² MeV
- (C) 10⁻¹² BeV
- (D) 10⁻¹² J

इलेक्ट्रान-पाजीट्रान युग्म उत्पन्न करने हेत् आवश्यक निम्नतम ऊर्जा का मान है

- (A) 0.5 MeV
- (B) 1 KeV
- (C) 0.5 KeV

2650 Sunlight is reflected from a lake is 100% polarized at any instant. The angle between the sun and horizon at that instant is

(Given $tan^{-1}(1.33) = 53.06^{\circ}$, μ of water = 1.33)

- (A) 53.06°
- (B) 36°54'
- (C) 143.06°
- (D) 126°54'

72. At the peak of the nuclear binding energy curve

- (A) Z is even but N is odd
- (B) Z is odd but N is even
- (C) Both Z and N are odd
- (D) Both Z and N are even

Two interfering waves have intensities 73. in the ratio 9:1. The ratio of maximum and minimum intensities, in interference pattern, will be

- (A) 5:4
- (B) 2:1
- (C) 25:16
- (D) 4:1

The average binding energy per nucleon 74. of most nuclei is of the order of

- (A) 10⁻¹² eV
 - (B) 10⁻¹² MeV
- (C) 10⁻¹² BeV (D) 10⁻¹² J

5. ولار Minimum energy required for electronpositron pair production is

- (A) 0.5 MeV
- (B) 1 KeV
- (C) 0.5 KeV
- (D) 1 MeV

PG-03/D

mu 100 f1.641-120 p

एक कार्नो इंजन की दक्षता 25% है। यदि स्रोत का ताप 327° से. हो, तो सिंक का ताप होना चाहिए

- (A) 82° से.
- (B) 127° से
- (C) 177° से.
- (D) 227° 社

77. एक वैद्युत हीटर पर लिखा है 1500 वा./220 वो.। एक 220 वो. स्रोत से यह हीटर कितनी धारा खींचेगा ?

- (A) 5.1 ऐ.
- (B) 6.8 t.
- (C) 9.2 ऐ.
- (D) 10.0 仓.

Kirchhoff's Laws are applicable to

(A) 5.1 A

must be

9A) 82°C

(C) 177°C

76.

(B) 6.8 A

(B) 127°C

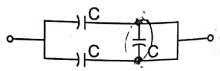
(D) 227°C

- (C) 9.2 A
- (D) 10.0 A

किरचॉफ का नियम लागू होता है

- (A) केवल डी सी में
- (B) केवल ए सी में
- (C) ए सी तथा डी सी दोनों में
- (D) उपरोक्त में से कोई नहीं
- जब एक लघु ठोस गोलक एक श्यान द्रव में छोड़ा जाता है, तो अन्ततः यह एक एकसमान वेग प्राप्त कर लेता है, जो कहलाता है
 - (A) पलायन वेग
 - (B) अन्तस्थ वेग
 - (C) क्रान्तिक वेग
 - (D) रेनाल्ड वेग
- 80. प्लांक का विकिरण नियम इस परिस्थिति में वीन नियम में परिवर्तित हो जाता है
 - (A) उच्चतर λ
 - (B) लघुत्तर λ
 - (C) उच्चतर ताप
 - (D) निम्नतर ताप

n electrical heater is labeled

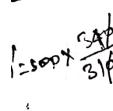

200 W/220 V. How much current does his heater draw from a 220 V source?

The efficiency of a Carnot engine is

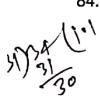
25%. If the temperature of its source is 327°C, the temperature of the sink

- (A) DC only
- (B) AC only
- (C) AC and DC both
- (D) None of the above
- When a small solid sphere is dropped in a viscous liquid, it finally acquires a uniform velocity which is called
 - (A) Escape velocity
 - (B) Terminal velocity
 - (C) Critical velocity
 - (D) Reynold velocity
- 80. Planck's radiation law reduces to Wien's law for
 - (A) higher λ
 - (B) lower λ
 - (C) higher temperature
 - (D) lower temperature

81. निम्नलिखित चित्र में दर्शाए संयोजन में तुल्य धारिता, होगी

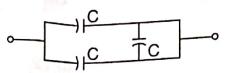


- (A) 3C
- (C) C


223 82. एक कार्नो इंजन 127°C तथा 27°C के मध्य कार्य कर रहा है। यह 80 कैलोरी ऊष्मा अवशोषित ि 2 करता है। यह कितनी ऊष्मा का परित्याग करेगा ?

- र्भ (A) 80 कैलोरी
- (B) 60 कैलोरी
- (C) 40 कैलोरी
- (D) 20 कैलोरी

30 मी./से. की चाल से गतिमान एक कार एक फैक्टरी के पास पहुँच रही है, जिसकी सीटी की आवृत्ति 500 हर्ज है । यदि वायु में ध्वनि वेग 340 मी./से. हो, तो कार चालक द्वारा सुनी सीटी की आभासी आवृत्ति क्या है ? (A) 480 हर्ज


- (B) 500 g
- (C) 544 हर्ज
- (D) 600 हर्ज
- O (साधारण) तथा E (असाधारण) तरंगों के मध्य एक अर्ध-तरंग प्लेट कलान्तर उत्पन्न करती है

- (C) π
- 85. एक प्रतिचुम्बकीय पदार्थ की चुम्बकीय प्रवृत्ति है
 - (A) कम तथा ऋणात्मक
 - (B) कम तथा धनात्मक
 - (C) अधिक तथा धनात्मक
 - (D) अधिक तथा ऋणात्मक

PG-03/D

The equivalent capacitance of the 81. combination shown in figure below, is

- (A) 3C
- (C) C
- (D) C
- A Carnot engine is working between 82. 127°C and 27°C. It absorbs 80 cals of heat. How much heat is rejected?
 - (A) 80 cals
- (B) 60 cals
- (C) 40 cals
- (D) 20 cals
- 83. A'car moving at 30 m/s is approaching a factory, whose whistle has a frequency of 500 Hz. If the speed of sound in air is 340 m/s, what is the apparent frequency of whistle as heard by the car driver?
 - (A) 480 Hz
- (B) 500 Hz
- (C) 544 Hz
- (D) 600 Hz
- A half-wave plate produces a phase 84. difference between O (ordinary) and E (extraordinary) waves equal to

- (D) π/4
- The magnetic susceptibility of a 85. diamagnetic material is
 - (A) small and negative
 - (B) small and positive
 - (C) large and positive
 - (D) large and negative

- 86. निम्न में से कौन उत्क्रमणीय प्रक्रिया है ?
 - (A) किसी वैद्युत प्रतिरोध से धारा प्रवाहित होने पर ऊष्मा की उत्पत्ति
 - (B) उष्ण पिण्ड से शीतल पिण्ड में ऊष्मा का
 - (C) कार्यशील पदार्थ के दाब एवम् आयतन में असीम धीमी दर पर परिवर्तन होना
 - (D) किसी वास्तविक गैस या द्रव का किसी वाल्व या छिद्रयुक्त प्लग से, जो कि वातावरण से पृथक्कीकृत हैं, से बलपूर्वक भेजा जाना
- 0.0314 घन सें.मी. द्रव 1 मि.मी. त्रिज्या के केशिका नली से प्रति सेकण्ड बाहर प्रवाहित हो रहा है। केशिका नली के अक्ष पर स्थित किसी बिन्द पर द्रव का वेग है
 - (A) 2 सें.मी./सेकण्ड
 - (B) 1.5 सें.मी./सेकण्ड
 - (C) 1 सें.मी./सेकण्ड
 - (D) शून्य
- 88. दो तरंगों $y_1 = A_1 \sinh(x vt)$ तथा $y_2 = A_2 \sin k(x - vt + x_0)$, जहां $k = 2\pi \dot{t}$.मी.-1 तथा $x_0 = 1.50$ सें.मी. है, को अध्यारोपित किया जाता है । यदि A, = 9.00 मि.मी. तथा $\sqrt{A_2} = 7.00$ मि.मी. हो, तो परिणामी तरंग का आयाम क्या है ?
 - (A) 16.0 मि.मी.
- (B) 8.0 मि.मी.
- (C) 2.0 मि.मी.
- (D) 1.0 मि.मी.
- 89. 12 सें.मी. त्रिज्या का गोलीय पिण्ड 500 K तापमान पर 450 वॉट शक्ति का उत्सर्जन करता है। यदि त्रिज्या को आधा कर दिया जाये तथा तापमान दुगुना कर दिया जाये तो उत्सर्जित शक्ति कितनी होगी ?
 - (A) 900 W
- (B) 7200 W

(C) 3600 W 2 (D) 1800 W

4 x 450 00

- Which of the following is a reversible 86. process?
 - (A) Production of heat by the passage of current through an electrical **O**resistance

Conduction of heat from a hot pody to a colder body

the changes in the pressure and volume of the working substance takes place at infinitely slow rate

8/10 Forcing of a real gas or liquid through a valve or porous plug while keeping them insulated with the environment

0.0314 cm3 of a liquid is flowing out per second through a capillary tube of 1 mm radius. Velocity of the liquid at a point on the axis of the capillary is

- (A) 2 cm/s
- (B) 1.5 cm/s
- (C) 1 cm/s

10 4 mg(D) 0

Two waves $y_1 = A_1 \sin k(x - \upsilon t)$ and $y_2 = A_2 \sin k(x - vt + x_0)$, where $k = 2\pi \text{ cm}^{-1} \text{ and } x_0 = 1.50 \text{ cm are}$ superposed. If $A_1 = 9.00$ mm and $A_2 = 7.00$ mm, what is the amplitude of the resulting wave?

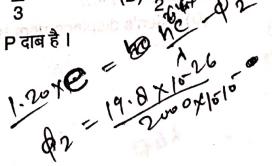
- (A) 16.0 mm
- (B) 8.0 mm
- (C) 2.0 mm
- (D) 1,0 mm
- A spherical body with radius 12 cm 89. radiates 450 W power at 500 K. If the radius were halved and the temperature doubled, what would be the power radiated?
 - (A) 900 W
- (B) 7200 W
- (C) 3600 W
- (D) 1800 W

- 113Cd में तापीय न्यूट्रॉनों का माध्य मुक्त पथ है (दिया है : no = 1.12 × 10⁴ मीटर-1, n → प्रति घन मीटर में परमाणुओं की संख्या है तथा σ प्रग्रहण परिच्छेद है)
 - (A) 0.2678 印. 却.
 - (B) 0.1786 मि.मी.
 - (C) 0.0892 年.मी.
 - (D) 0.1339 मि.मी.
- 10-2 मी. अर्धव्यास की एक जल बूंद 1000 91. एक समान बिन्दुकों में खण्डित होती है। यदि जल का पृष्ठ-तनाव 0.075 न्यू./मी. हो तो पृष्ठ-ऊर्जा में लब्धि होगी
 - (A) 8.5 × 10⁻⁴ जू.
 - (B) 8.1 × 10⁻⁴ जू.
 - (C) 7.7 × 10⁻⁴ जू.
 - (D) 7.5 × 10⁻⁴ जू.
- 92. एक पदार्थ की चुम्बकीय प्रवृत्ति χ, परम ताप π के साथ इस प्रकार परिवर्तित होती है $\chi = \frac{C}{T}$ ु जहाँ C एक अचर है । यह पदार्थ है
 - (A) पैरामैग्नेटिक
 - (B) डायामैग्नेटिक
 - (C) फेरोमैग्नेटिक
 - (D) फेरीमैग्नेटिक
- 93. एक श्रेणी प्रणोदित LCR परिपथ में अनुनाद आवृत्ति f, होती है
 - (A) $f_r = \frac{1}{2\pi\sqrt{LC}}$ (B) $f_r = 2\pi\sqrt{LC}$
 - (C) $f_r = 2\pi \sqrt{\frac{L}{C}}$ (D) $f_r = 2\pi \sqrt{\frac{C}{L}}$

- The mean free path of thermal neutrons 90. in 113Cd is (Given: n_{σ} = 1.12 × 10⁴ m⁻¹, n → number of atoms per cubic metre, $\sigma \rightarrow$ capture cross section)
 - (A) 0.2678 mm
 - (B) 0.1786 mm
 - (C) 0.0892 mm
 - (D) 0.1339 mm
- A water drop of radius 10⁻² m is broken 91. into 1000 equal droplets. If the surface tension of water is 0.075 N/m, the gain in surface energy will be
 - (A) $8.5 \times 10^{-4} \text{ J}$
 - (B) $8.1 \times 10^{-4} \text{ J}$
 - (C) 7.7 × 10⁻⁴ J
 - (D) $7.5 \times 10^{-4} \text{ J}$
- The magnetic susceptibility χ of a 92: material varies with absolute temperature $\frac{C}{T}$ where C is a constant. This material is
 - (A) paramagnetic
 - (B) diamagnetic
 - (C) ferromagnetic
 - (D) ferrimagnetic
- In a driven series LCR circuit, the 93. resonant frequency f, is given by

(A)
$$f_r = \frac{1}{2\pi\sqrt{LC}}$$
 (B) $f_r = 2\pi\sqrt{LC}$

(B)
$$f_r = 2\pi\sqrt{LC}$$


(C)
$$f_r = 2\pi \sqrt{\frac{L}{C}}$$
 (D) $f_r = 2\pi \sqrt{\frac{C}{L}}$

(D)
$$f_r = 2\pi \sqrt{\frac{C}{L}}$$

- एक ट्रायोड वाल्व के लिए, गतिक ऐनोड प्रतिरोध 👡 अन्योन्य चालकत्व g तथा प्रवर्धन गुणांक µ परस्पर इस प्रकार सम्बन्धित होते हैं
 - (A) $r_p = \mu g_m$

- (B) $g_{m} = \mu r_{p}$
- (C) $\mu = r_p.g_m$
- (D) $r_n^2 = \mu^2 + g_m^2$
- चन्द्रमा पर किन्हीं दो बिन्दुओं के बीच औसत द्री, जिनका कि 500 सें.मी. द्वारक वाले द्रदर्शी से विभेदन किया जा सकता हो, है -(चन्द्रमा की दूरी 4 × 105 कि.मी. तथा नेत्र की सर्वाधिक सुग्राहिता 5500Å तरंगदैर्घ्य के लिए है)
 - (A) 40 मीटर (B) 43 मीटर
- - (C) 53.6 मीटर (D) 50.6 मीटर
- यदि 2000 ऐं. तरंगदैर्घ्य की पराबैंगनी प्रकाश के कारण निकल सतह से उत्सर्जित तीव्रतम इलेक्ट्रानों को रोकने के लिए 1.20 वो. विभवान्तर लगाना चाहिए, तो निकल के कार्य फलन की गणना कीजिए।
 - (A) 6.21 इ.वो.
- (B) 5.01 इ.वो.
- (C) 4.80 इ.वो. (D) 4.50 इ.वो.
- एक आदर्श गैस की प्रति आयतन गतिज ऊर्जा बराबर हैं

जहाँ P दाब है ।

- The dynamic plate resistance r_p, mutual conductance g_m and amplification factor μ of a triode valve are related to each other as
 - (A) $r_p = \mu g_m$
 - (B) $g_m = \mu r_p$
 - (C) $\mu = r_o \cdot g_m$
 - (D) $r_0^2 = \mu^2 + g_m^2$
- 95. The mean separation of two points on moon that can be resolved by a 500 cm telescope aperture is (distance of the moon is 4 × 105 km, eye is most sensitive to wavelength 5500 Å)
 - (A) 40 m
- (B) 43 m
- (C) 53.6 m
- (D) 50.6 m
- If 1.20 V potential difference must be 96. applied to stop the fastest photoelectrons emitted by a nickel surface under the action of ultraviolet light of wavelength 2000 Å, calculate the work function of nickel.
 - (A) 6.21 eV
- (B) 5.01 eV
- (C) 4.80 eV
- (D) 4.50 eV
- The Kinetic energy per unit volume of 97. a perfect gas is equal to

Where P is pressure.

膦

किस ताप पर एक पिण्ड के लिए, फारेनहाइट तथी केल्विन तापमापी स्केल, एकसमान संख्यात्मक मान देते हैं ?

- (A) 40°
- (B) 180°
- (C) 435°
- (D) 574°

द्रव्यमान m के एक पिन्ड को पृथ्वी सतह से पृथ्वी अर्धव्यास R के बराबर ऊँचाई तक उठाने पर स्थितिज ऊर्जा में हुई लब्धि है (g = पृथ्वी सतह पर गुरुत्वीय त्वरण)

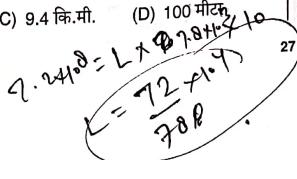
- (A) $\frac{3}{2}$ mgR (B) $\frac{1}{2}$ mgR
- (C) $\frac{2}{3}$ mgR

100. संसूचक का कार्य माडुलित वाहक तरंगों को डिमाडुलित करना है तथा इस प्रक्रिया के चरण हैं

- (A) डिमाडुलेशन तथा फिल्टरिंग
 - (B) डिमाडुलेशन तथा दिष्टकरण
 - (C) दिष्टकरण तथा फिल्टरिंग
 - (D) जनरेशन तथा फिल्टरिंग

101 कि माभिकीय रिऐक्टर में निम्नलिखित में से कौन क्र शीतलक/विमंदक के रूप में प्रयोग किया

- (A) डिस्टिल्ड जल
- (B) ताजा जल
- (C) भारी जल
- (D) बर्फ


102. शीतलन का न्यूटन नियम इसका विशेष रूप है

- (A) स्टीफन का नियम
- (B) किरचाफ का नियम
- (C) प्लांक का नियम
- (D) वीन का विस्थापन नियम

- At what temperature of a body, the Fahrenheit and Kelvin thermometer scales give equal numerical values ?
 - (A) 40°
- (B) 180°
- (C) 435°
- (D) 574°
- The gain in potential energy of an object 99. of mass m raised from the surface of earth to a height equal to the radius R of the earth, is (g = acceleration due to gravity at the earth's surface).
- (B) $\frac{1}{2}$ mgR
- $(C) \frac{2}{3} mgR$
- 100. The function of a detector is to demodulate the modulated carrier wave and the steps for the process are
 - (A) Demodulation and filtering
 - (B) Demodulation and rectification
 - (C) Rectification and filtering
 - (D) Generation and filtering
- 101. Which one of the following is used as a coolant/moderator in a nuclear reactor?
 - (A), Distilled water
 - (B) Fresh water
 - (C) Heavy water
 - (D) Ice
- Newton's law of cooling is a special case of
 - (A) Stefan's law
 - (B) Kirchhoff's law
 - (C) Planck's law
 - (D) Wien's displacement law

龖

- 103. q1 तथा q2 दो आवेश एक दूसरे के सन्निकट रखे हैं, यदि एक तीसरा आवेश q3 इनके पास लाया जाता है, q, द्वारा q2 पर लगने वाला बल अब
 - (A) बढ़ता है
 - (B) घटता है
 - (C) वही रह जाता है
 - (D) शून्य हो जाता है
- 104. पृथ्वी के परित: एक उपग्रह पृथ्वी सतह से 600 कि.मी. ऊंचाई पर, घूम रहा है। उपग्रह की चाल होगी (पृथ्वी अर्धव्यास = 6400 कि.मी., पृथ्वी द्रव्यमान = 6 × 10²⁴ कि.ग्रा.
 - $G = 6.67 \times 10^{-11}$ न्यू. मी.²/कि.ग्रा.²)
 - (A) 11.00 कि.मी./से.
 - (B) 9.00 कि.मी./से.
 - (C) 7.60 कि.मी./से.
 - (D) 4.92 कि.मी./से.
- 105. एक पावर सप्लाई में प्रयुक्त सबसे अच्छा फिल्टर है
 - (A) L सेक्सन फिल्टर
 - (B) कैपेसिटर इनपुट फिल्टर
 - (C) चोक इनपुट फिल्टर
 - (D) π सेक्सन फिल्टर
- 106. एक तने हुए तार की बिना टूटे महत्तम लंबाई है (दिया है ब्रेकिंग प्रतिबल = 7.2 × 108 न्यूटन/मी.² तार का घनत्व = 7.8 × 10³ कि.ग्रा./मी.³)
 - (A) 10 मीटर
- (B) 9.4 मीटर
- (C) 9.4 कि.मी.
- (D) 100 मीटक्

- Two charges q1 and q2 are placed 103. close to each other, if a third charge q₃ is brought near to it, the force now exerted by q1 on q2
 - (A) increases
 - (B) decreases
 - (C) remains the same
 - (D) reduces to zero
- A satellite is revolving round the earth 104. at a height of 600 km from the surface of earth. The speed of the satellite is (Radius of the earth = 6400 km, mass of the earth : 6×10^{24} kg.

 $G = 6.67 \times 10^{-11} \text{ N-m}^2/\text{kg}^2$

- (A) 11.00 km/s
- (B) 9.00 km/s
- (C) 7.60 km/s
- (D) 4.92 km/s
- The best filter used in a power supply is 105.
 - (A) L section filter
 - (B) Capacitor input filter
 - (C) Choke input filter
 - (D) π section filter
- 106. The greatest length of a wire that can be stretched without breaking. (Given breaking stress = $7.2 \times 10^8 \text{ N/m}^2$, density of wire = $7.8 \times 10^3 \text{ kg/m}^3$)
 - (A) 10 metre
- (B) 9.4 metre
- (C) 9.4 kilometre (D) 100 metre

- यदि एक रेडियोसक्रिय पदार्थ क (25%), 5 वर्ष 107. में क्षय हो जाता है, तो कितना प्रारम्भिक पदार्थ N=Moet 20 वर्षों में अक्षयित रहेगा ?
 - (A) 5%
- (B) 10%
- (C) 25%
- (D) 32%
- फोकस दूरी +15 सें.मी. तथा -12 सें.मी. के 108. दो पतले लेन्सों को संस्पर्श में रखा जाता है । इस संयोजन लेन्स की फोकस दूरी होगी
 - (A) + 3 सें.मी.
- (B) + 15 सें.मी. -
- (C) 12 सें.मी.
- (D) 60 सें.मी.
- यदि $I = I_0 \sin^2 \omega t$ जहाँ कि $\omega = \frac{2\pi}{T}$ तो t = 0 से t = T तक। का औसत मान है
 - $(A) 2I_0$
- (C) $I_0/2$
- (D) I₀/3
- 110. 4 एक समान बिन्दु आवेश +4µC, 50 सें.मी. भुजा के एक वर्ग के चारों कोनों पर रखे गए हैं। किसी एक आवेश पर लगता बल है
 - (A) 1.10 न्यू. विकर्ण पर अन्दर दिशा में
 - (B) 0.72 न्यू. विकर्ण पर अन्दर दिशा में
 - (C) 0.72 न्यू. विकर्ण पर बाहर दिशा में
 - (D) 1.10 न्यू. विकर्ण पर बाहर दिशा में
- त्रिदिशीय तरंग का अवकल समीकरण है 111.
 - (A) $\nabla^2 \Psi = \frac{1}{v^2} \frac{\partial^2 \Psi}{\partial t^2}$
 - (B) $\Psi(\vec{r}, t) = A_0 \sin(\omega t \vec{k} \cdot \vec{r})$
 - (C) $\frac{\partial^2 \Psi}{\partial t^2} = v^2 \frac{\partial \Psi}{\partial x}$
 - (D) $\vec{\nabla} \Psi = v^2 \frac{\partial \Psi}{\partial t}$

- If 25% of a radioactive material decays 107. in 5 years, how much of the original material will be left undecayed after 20 years?
 - (A) 5%
- (B) 10%
- (C) 25%
- (D) 32%
- Two thin lenses, of focal lengths 108. +15 cm and -12 cm, are placed in contact. The focal length of the combination lens will be
 - (A) + 3 cm
- (B) + 15 cm
- (C) 12 cm
- (D) -60 cm
- The average value of I from t = 0 to t = T, for $I = I_0 \sin^2 \omega t$ where $\omega = \frac{2\pi}{T}$, is
- (B) 3l₀
- (C) 1₀/2
- (D) I_n/3
- 4 equal point charges, +4μC, are 110. placed at four corners of a square that is 50 cm on a side. The force on any of the charges, is
 - (A) 1.10 N inward along diagonal
 - (B) 0.72 N inward along diagonal
 - (C) 0.72 N outward along diagonal
 - (D) 1.10 N outward along diagonal
- The differential equation of three 111. dimensional wave is

(A)
$$\vec{\nabla}^2 \Psi = \frac{1}{v^2} \frac{\partial^2 \Psi}{\partial t^2}$$

- (B) $\Psi(\vec{r}, t) = A_0 \sin(\omega t \vec{k} \cdot \vec{r})$
- (C) $\frac{\partial^2 \Psi}{\partial t^2} = v^2 \frac{\partial \Psi}{\partial x}$
- (D) $\vec{\nabla} \Psi = v^2 \frac{\partial \Psi}{\partial t}$

龖

- 112. स्थिर दाब पर, एक गैस का ताप T जिस पर इसका वर्ग-माध्य-मूल वेग इसके 0° से. पर मान का दो गुना हो, होती है
 - (A) 819° के.
- (B) 900° 南.
- (C) 980° के.
- (D) 819° से.
- एक प्रचालित (प्रणोदित) सरल आवर्ती दोलक, 113. दोलन की स्थायी अवस्था प्राप्त कर लेता है । स्थायी अवस्था में औसत अवशोषित शक्ति तथा औसत क्षयित शक्ति का अनुपात होगा
 - (A) $\frac{1}{3}$
- (B) $\frac{1}{2}$
- (C) 1
- (D) 2
- एक कमजोर सिगनल को बिना उसकी आकृति में परिवर्तन किये हुए सशक्त सिगनल में बदलना जाना जाता है
 - (A) बायसिंग
- (B) दिष्टकरण
- (C) माङ्लन
- (D) प्रवर्धन
- $\operatorname{grad}\left(\frac{1}{r}\right)$ का मान होता है
 - (A) $-\frac{\vec{r}}{r}$ (B) शून्य
- यदि एक आवेश q, l कोर लम्बाई के एक बन्द घन के केन्द्र पर रखा जाय, तो इसके प्रत्येक फलक से निकलती विद्युत-क्षेत्र तीव्रता का फ्लक्स है
 - (A) $\frac{q}{6 \in_0 l^2}$ (B) $\frac{q}{6 \in_0 l}$

 - (C) $\frac{q}{6 \in Q}$ (D) $\frac{q}{6 \in Q}$

- 'At constant pressure the temperature of gas T, at which root - mean - square velocity is twice its value at 0°C, is
 - (A) 819° K
- (B) 900° K
- (C) 980° K
- (D) 819° C
- A driven (forced) harmonic oscillator 113. has settled down to a steady state of oscillation. In steady state, the ratio of average power absorbed and average power dissipated will be
 - (A) $\frac{1}{3}$
- (C) 1
- (D) 2
- The process of changing a weak signal 114. without altering its shape into a strong one is known as
 - (A) Biasing
- (B) Rectification
- (C) Modulation (D) Amplification
- The value of grad $\left(\frac{1}{r}\right)$ is

 (A) $-\frac{\vec{r}}{r}$ (B) zero 115.

- The flux of the electric field strength 116. through each of the faces of a closed cube of edge length I, if a charge q is placed at its centre, is
 - (A) $\frac{q}{6 \in_0 l^2}$ (B) $\frac{q}{6 \in_0 l}$

Щ

- 117. एक धातु का प्रकाश विद्युत देहली तरंगदैर्घ्य 3000 Å है। इस पर 1200 Å तरंगदैर्घ्य के विकिरण के आपतित होने पर उत्सर्जित होने वाले इलेक्ट्रॉन की गतिज ऊर्जी क्या होगी ?
 - (A) 6.2 eV
- (B) 3.1 eV
- (C) 1.65 eV
- (D) 1.03 eV
- 118. एक एन्ट्रॉपी-ताप आरेख पर एक कार्नो चक्र को निम्नलिखित आकृतियों में से किस एक द्वारा निरूपित किया जाता है ?
 - (A) S ☐ (B) S ☐ (C) S ☐ (D) S
- 2000 लूप की एक वायु क्रोड नालिका, 60 सें.मी. लम्बाई तथा 2 सें.मी. व्यास की है। यदि 5 ऐ. धारा इसमें भेजी जाती है, तो इसके अन्दर फ्लक्स घनत्व होगा
 - (A) 0.042 ੈ.
- (B) 0.035 さん
 - (C) 0.030 ^ટੈ.
- (D) 0.021 ^え.
- एक आनत तल पर h ऊंचाई से बिना फिसले नीचे 120. लुढ़कते, M द्रव्यमान तथा R अर्धव्यास के एक क्रोंस बेलन पर विचार कीजिए। बेलन के तली पर पहुचने पर इसके द्रव्यमान-केन्द्र का वेग होगा

(C) $\sqrt{\frac{3}{2}gh}$ (D) $\sqrt{\frac{3}{5}gh}$

- 121. वी निर्साल एक दूसरे से लम्बबद हैं। अब, उनमें से एक को 30° कोण से घुमाया जाता है। आपितत धुवित प्रकाश का कितना प्रतिशत इस निकाय से होकर गुजरेगा?

 (A) 100%
 (B) 75%
 (C) 25%
 (D) 12.5%

PG-03/D

To W 60

- 117. The photoelectric threshold wavelength for a metal is 3000 Å. What is the kinetic energy of an electron ejected from it by radiation of wavelength 1200 Å?
 - (A) 6.2 eV
- (B) 3.1 eV
- (C) 1.65 eV
- (D) 1.03 eV
- A Carnot cycle is represented on an 118. entropy-temperature diagram by which one of the following figures?

- An air core solenoid with 2000 loops in 119. it, is 60 cm long and has a diameter of 2 cm. If a current of 5A is sent through it, the flux density within it will be
 - (A) 0.042 T
- (B) 0.035 T
- (C) 0.030 T
- (D) 0.021T
- Consider a solid cylinder of mass M 120. and radius R rolling down an inclined plane without slipping from a height h. The speed of its centre of mass when the cylinder reaches the bottom, is
- (C) $\sqrt{\frac{3}{2}gh}$ (D) $\sqrt{\frac{3}{5}gh}$
- Two Nicols are crossed to each other. 121. Now, one of them is rotated through 30°. What percentage of incident polarised light will pass through the system?
 - (A) 100%
- (B) 75%
- (C) 25%
- (D) 12.5%

- 122. किसी गैस के अणुओं का दाब p तथा ताप T पर माध्य मुक्त पथ 2 × 10⁻⁷ मी. है । इसी गैस का दाब p तथा ताप 2T पर माध्य-मुक्त पथ का मान होगा
 - (A) 10×10^{-7} 相. (B) 8×10^{-7} 相.
 - (C) 6×10^{-7} 中. (D) 4×10^{-7} 中.
- 123. LASER में जनसंख्या व्युत्क्रम की स्थिति है
 - (A) एक संतुलन अवस्था और ग्रांउड स्तर में परमाणुओं की संख्या उत्तेजित स्तर अवस्था से अधिक होते है
 - (B) एक असंतुलित अवस्था और ग्राउंड स्तर में परमाणुओं की संख्या, उत्तेजित अवस्था से कम होते है
 - (C) एक संतुलित अवस्था और ग्राउंड स्तर एवं उत्तेजित स्तर में परमाणुओं की संख्या बराबर होती है
 - (D) एक असंतुलित अवस्था और समस्त परमाणु उत्तेजित स्तर में होते है
- 124. नाभिकीय कणों को जुटाकर परमाणु नाभिक बनाने के लिए उत्तरदायी मूल कण हैं
 - (A) ग्लूऑन
- (B) मेसॉन
- (C) बोसॉन
- (D) न्यूट्रिनो
- 125. एक धारामापी का प्रतिरोध 80 Ω है तथा 20 मि.वो. विभवान्तर के लिए पूर्ण स्केल विक्षेप देता है। उसको 5 वो. विभवमापी में परिवर्तित करने के लिए कितना बड़ा श्रेणी प्रतिरोध आवश्यक है?
 - (A) 4920 Ω
- (B) 5220 Ω
- (C) 10520 Ω
- (D) 19920 Ω

- 122. The mean free path of molecules of a certain gas at pressure p and temperature T is 2×10^{-7} m. The mean free path for the same gas at pressure $\frac{p}{2}$ and temperature 2T, will be
 - (A) 10×10^{-7} m
- (B) 8×10^{-7} m
- (C) 6×10^{-7} m
- (D) 4×10^{-7} m
- 123. State of population inversion in LASER is
 - (A) an equilibrium state and number of atoms in ground state is more than that of excited state
 - (B) a non equilibrium state and number of atoms in ground state is less than that of in excited state
 - (C) an equilibrium state and number of atoms in ground state is same as that in excited states
 - (D) a non equilibrium state and number of all atoms lie in excited state
- 124. The elementary particles responsible for holding nucleons together to form atomic nuclei are
 - (A) Gluons
- (B) Mesons
- (C) Bosons
- (D) Neutrinos
- 125. A galvanometer has a resistance of 80 Ω and deflects full scale for a potential of 20 mV across it. How large a series resistance is required to convert it to a 5V voltmeter?
 - (A) 4920 Ω
- (B) 5220Ω
- (C) 10520 Ω
- (D) 19920 Ω