

OUAT Entrance Exam

Previous Year Paper 2018

Test Prime

ALL EXAMS, ONE SUBSCRIPTION

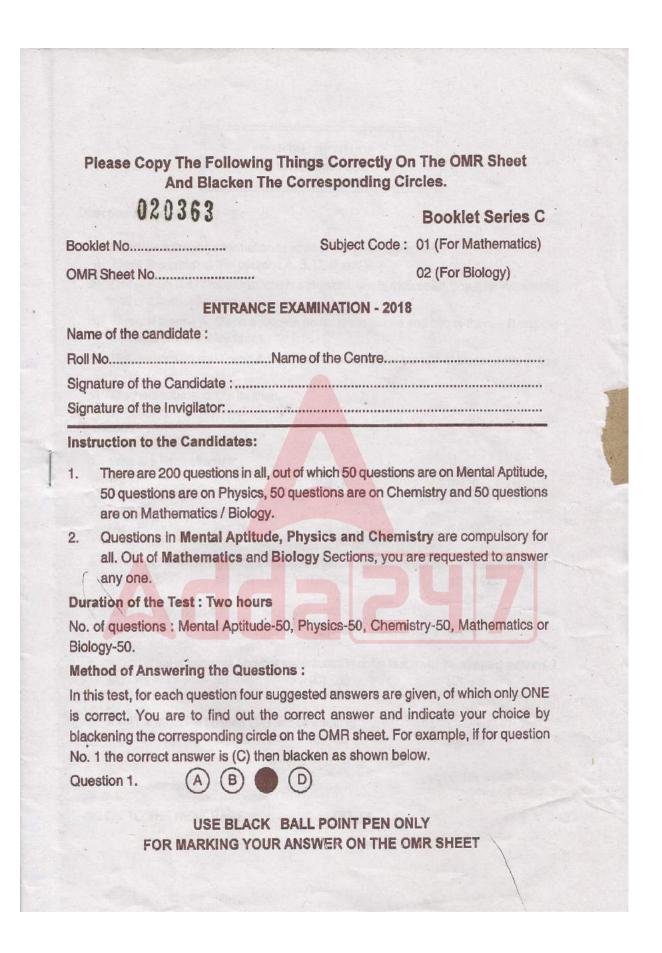
70,000+ Mock Tests

600+ Exam Covered

Personalised Report Card

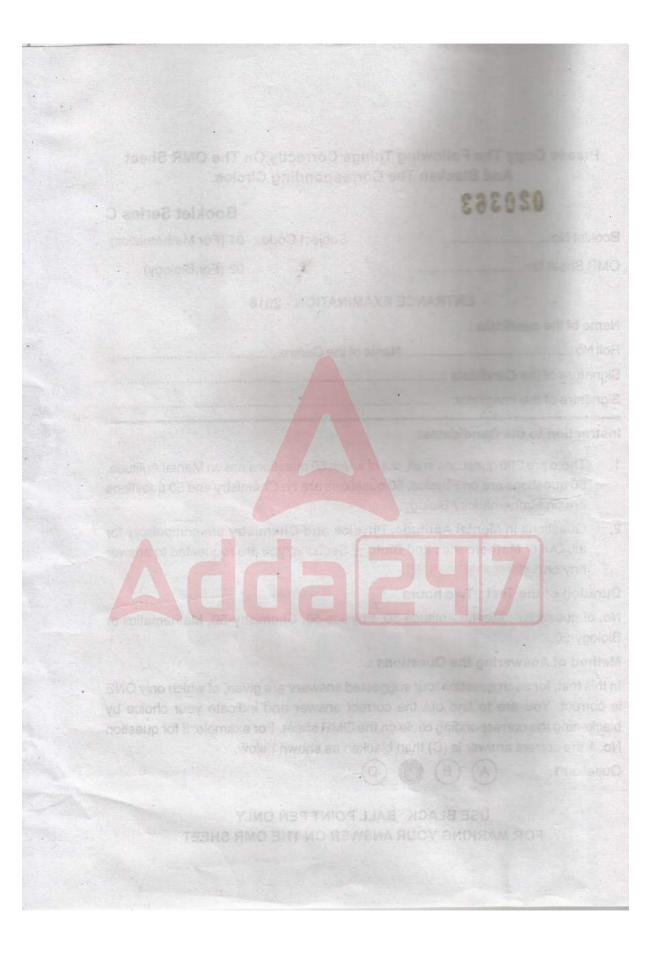
Previous Year Papers

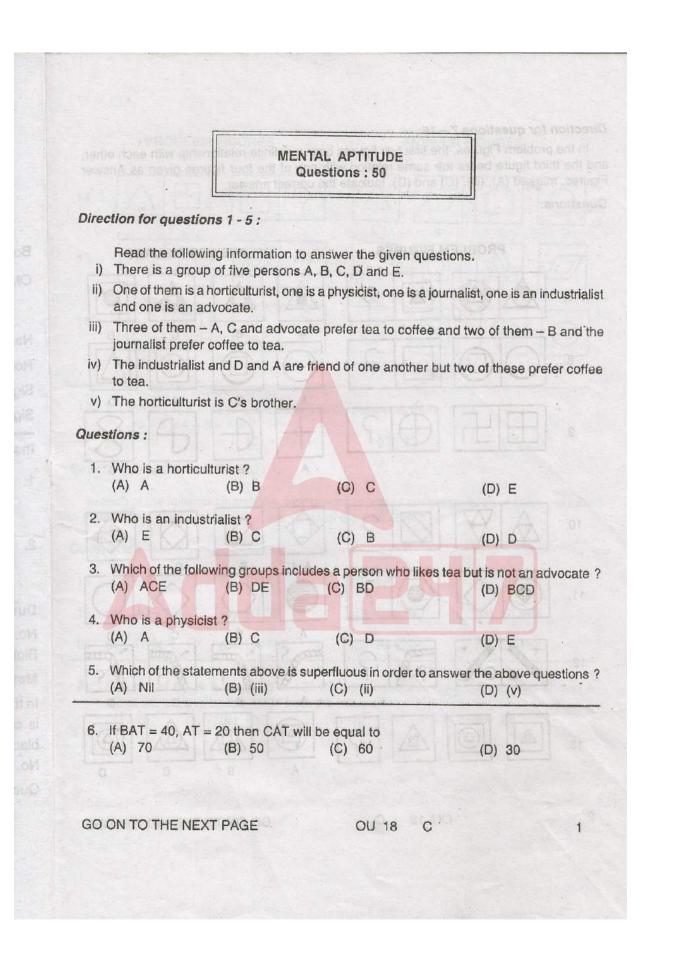
Unlimited Re-Attempt

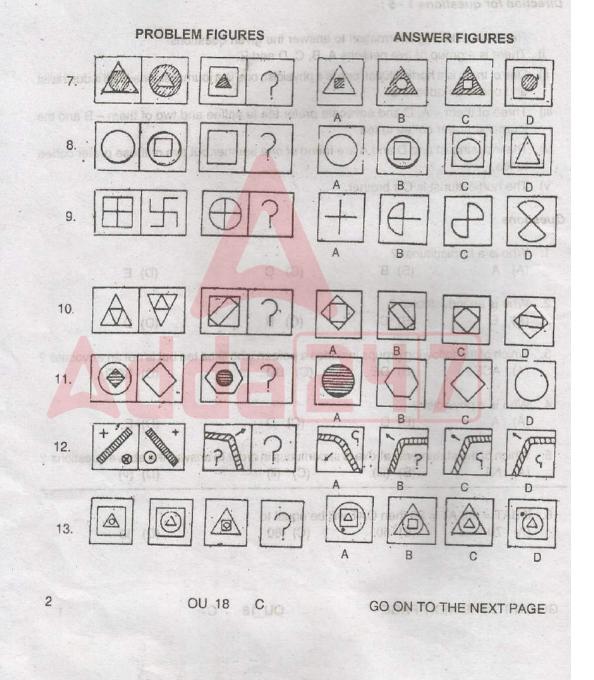


500% Refund

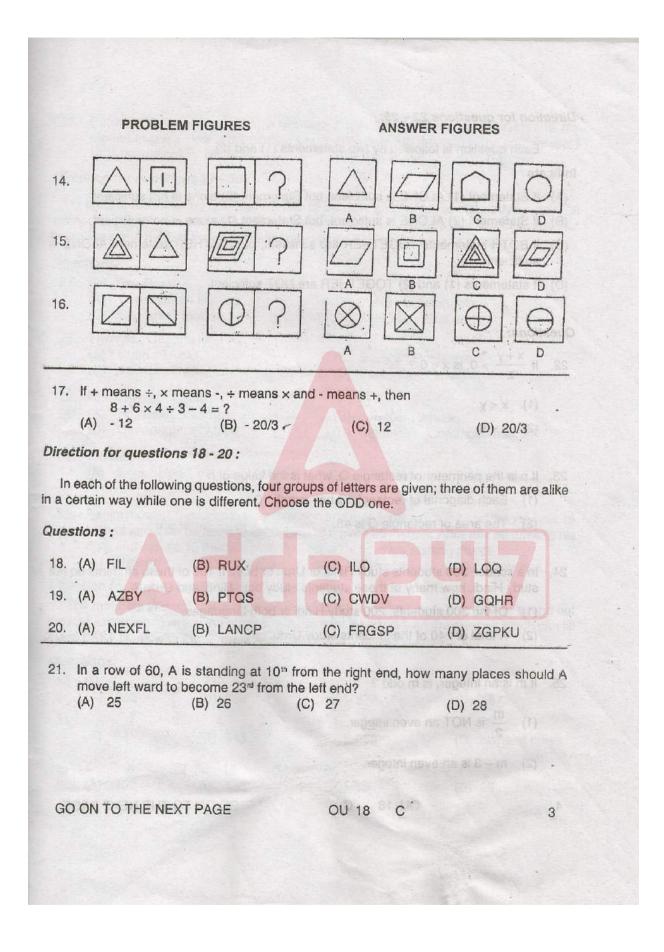
ATTEMPT FREE MOCK NOW

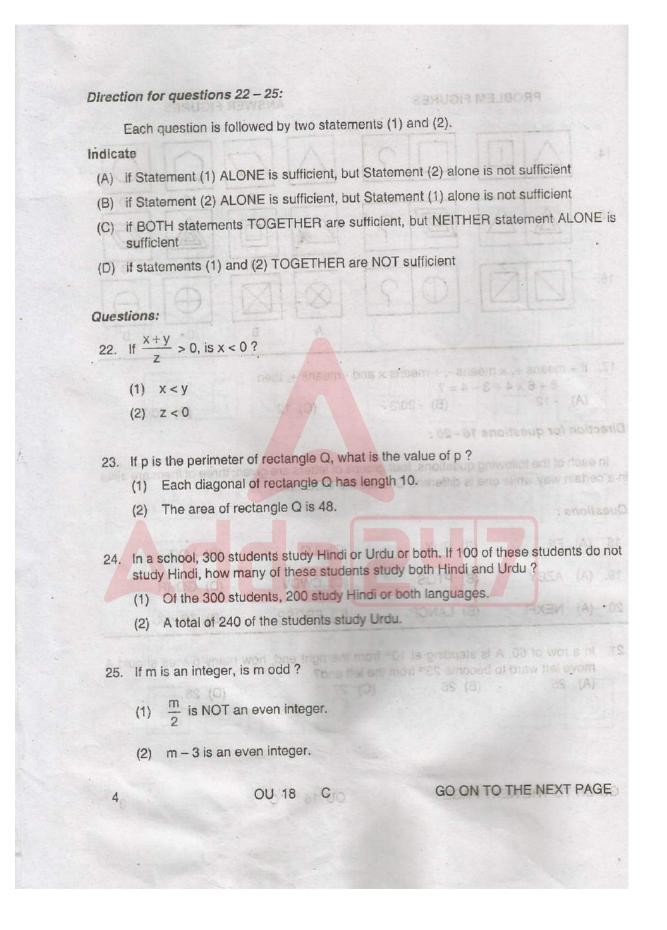


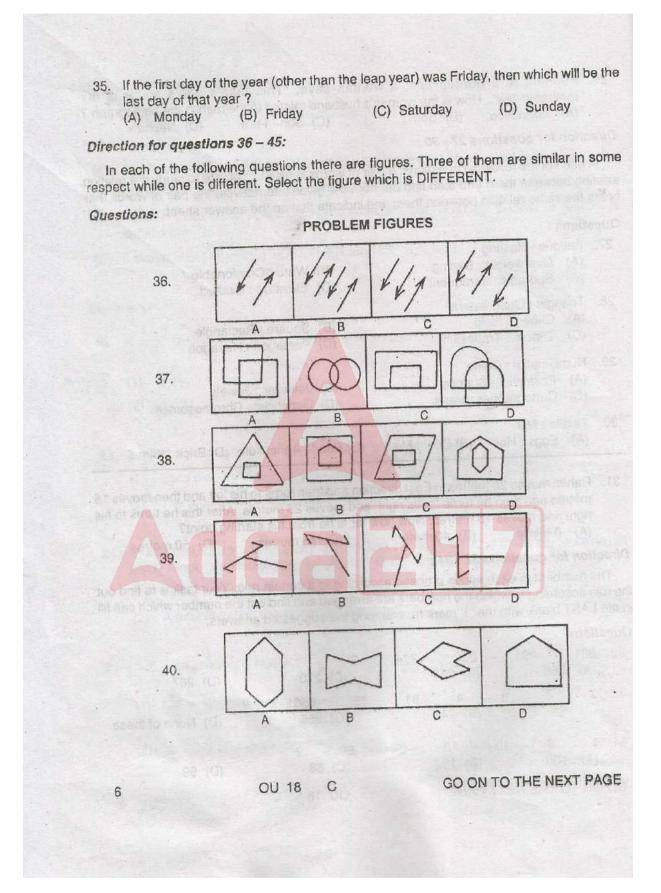




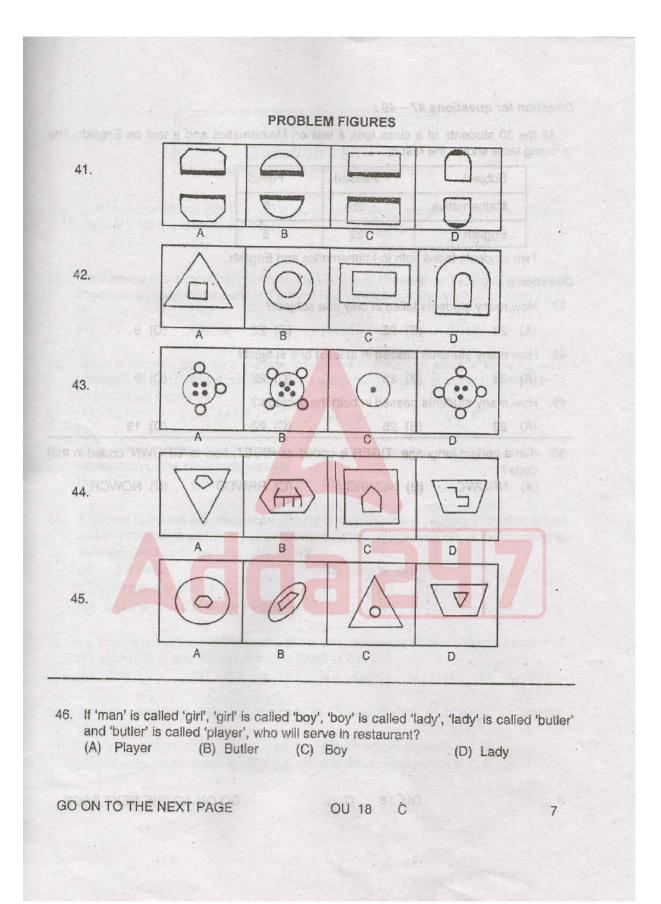
Direction for questions 7 – 16:


In the problem Figures, the first two figures bear a definite relationship with each other, and the third figure bears the same relation with one of the four figures given as Answer Figures, marked (A), (B), (C) and (D). Indicate the correct answer.





		other-in-law Grands		w is the (B) Sor	woman	s nusbar	d related	d to the	man	in the pho D) Nepho	ter is my otograph?
Dir	ection	for ques					00111				ew Direction
	and the part	h of the fo etween the same rela	CIII alli	1 11 11 11	E IF 1 / 11 11 1	000 000 0	112 1 12 12 12 12 12 12	en. You	are t	o study t	he relation
	estion					OBLEM					
27	(A)	igue : Res Overwei Sporadio	ight : D	lieting equent	11) Ward) Elevat			9 .38	
28	(A)	ingle : Qui Cube : T Trident :	rifold	0		(B (D) Squar) Pentag	e : Rec gon : H	tangle exago	e In	
29	(A)	nismatist : Philatelis Cartogra	st : Star	mps		(B)	Jewell Geneti	er : Jev	vels		
30		tile : Mill Eggs : H	en (l	B) Coal	: Mine	(C) For	od : Agric	culture	(D) B	rick : Kilr	<u>)</u>
31. Dire	(A) Rahi metr right (A)	Eggs : H im moves res and the and move 0 metre for questi	20 met en he tu es 15 n (E	res in E urns to I netres. I 3) 40 m 2 - 34 :	ast direc nis right Now hov netres	and mov and mov v far is he (C)	then turr ves 25 m e from hi 45 met	ns to his letres. <i>i</i> s starti res	s left a After t ng poi (D)	nd then r his he tu int? 50 met	noves 15 rns to his res
31. Dire	(A) Rahi metr right (A) ction i he nur ule acc	Eggs : H im moves es and the and move 0 metre	20 met en he tu es 15 m (E ions 32 ach sei which ti	res in E urns to I netres. I 3) 40 m 2 - 34 : ries pro he num	ast direct his right Now how letres ceed ac	tion and and mov v far is he (C) cording to	then turr ves 25 m e from hi 45 met 0 a certa	is to his netres. / s starti res in rule.	s left a After t ng po (D) Your	nd then r his he tu int? 50 met	noves 15 rns to his res
31. Dire T ne ru the	(A) Rahi metr right (A) ction i he num le acco e LAST stions	Eggs : H im moves es and the and move 0 metre for questi nbers in e cording to 5 blank wit	20 met en he tu es 15 m (E ions 32 ach ser which th th the "	rres in E urns to I netres. I 3) 40 m 2 - 34 : ries pro he num ?' mark	ast direc nis right Now how hetres ceed ac bers are from am	tion and and mov v far is he (C) cording to	then turr ves 25 m e from hi 45 met 0 a certa	is to his netres. / s starti res in rule.	s left a After t ng po (D) Your	nd then r his he tu int? 50 met	noves 15 rns to his res
31. Dire T ne ru 1 the Due: 32.	(A) Rahi metr right (A) ction i he nur ule acc ELAST stions 301	Eggs : H im moves res and the and move 0 metre for questi nbers in e cording to 5 blank wit : 291	20 met en he tu es 15 m (E ions 32 ach sei which ti th the "	rres in E urns to I netres. I 3) 40 m 2 - 34 : ries pro he num ?' mark 82	ast direct nis right Now how hetres ceed act bers are from arr 274	ction and and mov v far is ho (C) cording to arranged ong the ?	then turr ves 25 m e from hi 45 met d a certa d and fin suggesta	is to his netres. / s starti res in rule.	s left a After t ng poi (D) Your e nun vers.	nd then r his he tu int? 50 met task is to hber whic	noves 15 rns to his res
31. Dire T ne ru o the 32. 33.	(A) Rahi metr right (A) ction i he num le acco c LAST stions 301 (A) 3	Eggs : H im moves es and the and move 0 metre for questi nbers in e cording to 5 blank wit	20 met en he tu es 15 m (E ions 32 ach ser which th th the " 20 (B 9	rres in E urns to I netres. I 3) 40 m 2 - 34 : ries pro he num ?' mark 82 8) 268 4	ast direct his right Now how hetres ceed act bers are from arr 274	ction and and mov v far is he (C) cording te arranged arranged arranged (C) 16	then turr ves 25 m e from hi 45 met d a certa d and fin suggesta	is to his betres. , s starti res in rule. d out th ed ansv	s left a After t ng poi (D) Your e nun vers.	nd then r his he tu int? 50 met	noves 15 rns to his res o find out ch can fill
31. Dire The ru o the 32. 33.	(A) Rahi metr right (A) ction i he nur ule acco E LAST stions 301 (A) 3 (A) 4	Eggs : H im moves es and the and move 0 metre for questi nbers in e cording to 5 blank wit : 291 265 2	20 met en he tu es 15 m (E ions 32 ach sen which th th the 'f (B 9 (B 9 (B	res in E urns to I netres. I 3) 40 m 2 - 34 : ries pro he num ?' mark 82 8) 268 4 9) 243 18	ast direct his right Now how hetres ceed ac bers are from am 274 81 34	ction and and mov v far is he (C) cording te arranged ong the ? (C) 16 (C)	then turr ves 25 m a from hi 45 met o a certa d and fin suggesto 270 6561 256 ?	is to his betres. , s starti res in rule. d out th ed ansv	(D) (D) (C) (C) (C)	nd then r his he tu int? 50 met task is to ber whic	noves 15 rns to his res o find out ch can fill



Direction for questions 47 - 49 :

All the 30 students of a class took a test on Mathematics and a test on English. The totawing table shows the result:

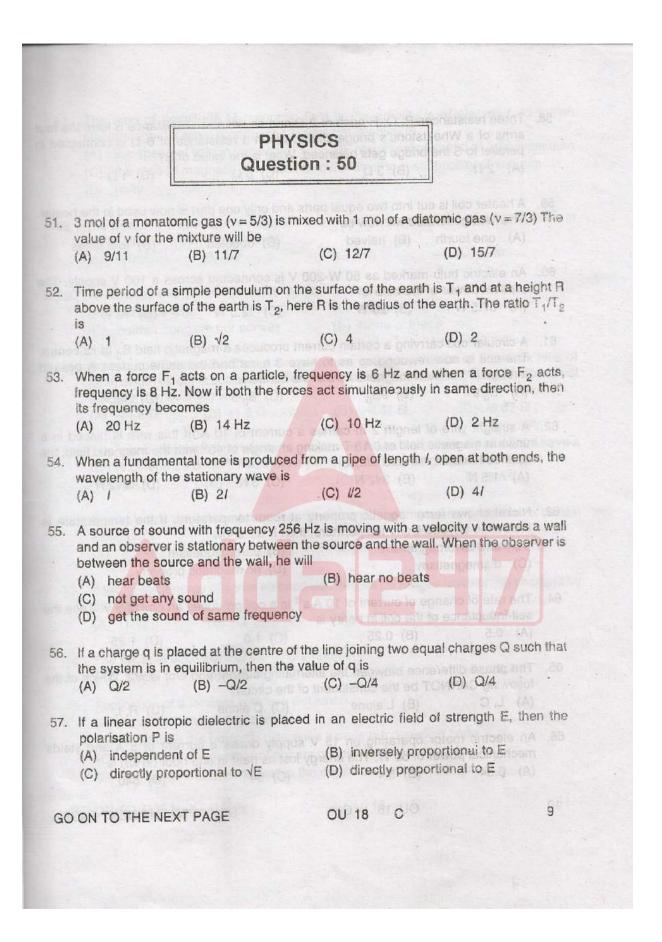
Subject	Passed	Failed
Mathematics	25	5
English	22	8

Two students failed both in Mathematics and English.

Questions:

- 47. How many students failed in only one subject?
 - (A) 28 (B) 25 (C) 22 (D) 9
- 48. How many students passed in at least one subject?
 - (A) 28 (B) 25 (C) 22
- 49. How many students passed in both the subjects?(A) 28(B) 25(C) 22
- 50. If in a certain language, TIGER is coded as RIGET, how is 'CROWN' coded in that code?
 (A) NROWC (B) NOWRC (C) RRWCO (D) NOWCR

(D) 9


(D) 19

Adda247

ANT PERER 13 durat 161, 000 (D) tady ()

8 OU 18 C GO ON TO THE NEXT PAGE

Adda 247

ie in	Three resistances P, Q, R each of 2 Ω and an unknown resistance S form the arms of a Wheatstone's bridge circuit. When a resistance of 6 Ω is connected parallel to S the bridge gets balanced. What is the value of S?							
		(B) 3 Ω 00 101	(C) 6 Ω	(D) 1Ω				
59.	A heater coil is cut ir The heat generated	nto two equal parts : will now be	and only one part is	now used in the heater				
		(B) halved	(C) doubled	(D) four times				
60.	present power of the	e butb is soonue en		oss a 100 V supply. Th				
	(A) 37.5 W	(B) 25 W	(C) 12.5 W	(D) 10 W				
61.	A circular coil carryi The coil is now rew through it. The new	vound so as to hav	e 3 turns and the	etic field B ₀ at its centre same current is passe				
	(A) B ₀ /9 mbe n vi	(B) 9B ₀	·(C) B ₀ /3	(D) 3B ₀				
62.	A straight wire of le uniform magnetic fie applied force on the	eld of 0.15 T making	current of 10 A. It an angle of 45 ⁰ wi	f this wire is placed in th the magnetic field, th				
		(B) 3√2 N	C) 3 N s noticita	(D) 3/√2 N				
63.	Nickel shows ferror increased beyond C	magnetic property	at room temperatu hen it will show	re. If the temperature				
	(A) anti-ferromagn		(B) paramagnet	ism				
	(C) diamagnetism	6-0 01 1899 (6)	(D) no magnetic	property				
64.	. The rate of change of current of 10 A s ⁻¹ in a coil produces an emf of 5 V. Ther self-inductance of the coil in henry is							
	(A) 0.5	(B) 0.25	(C) 1.0	(D) 1.25				
65.	The phase difference between the alternating current and emf is $\pi/2$. Which of t following CANNOT be the constituent of the circuit?							
ant.	(A) L, C	(B) Lalone	(C) C alone	(D) R, L				
	a state of the second stat							
66.		(B) 5.4	(C) 54	(D) 540				
66.	(A) 0.54	(6) 3.4						

67.	electromagnetic	plitude of magnetic wave propagating in	n vacuun	n is equal to			
	(A) the speed of(C) the ratio of	of light in vacuum magnetic permeabil	(B) lity to the	reciprocal c electric sus	of speed	of light in va	acuum
	(D) unity	of a sphere is 2%	auiban I		som ni	ionis ant il	
68.	in the case of a d	peed of an object to convex mirror is	o the spe		image c	of magnificat	
	(A) -1/m ²	(B) <i>m</i> ²	(C)	m. gnols g	nillev (D)	1/mned A	78.
69.	An air bubble is ((A) concave ler	contained inside wat	ter. It bei (B)	naves as a convex lens	n O whe	particle from particle from (A) B1 m	
		cave nor convex	(D)	None of the	se		
70.	An eye specialis focal length 40 cr this lens combina	t prescribes spectad n in contact with a co ation will be	oles havi oncave le	ng a combin ens of focal le	ation of ngth 25	a convex le cm. The pov	one of
erk (h	(A) +1.5 D	(B) -1.5 D	(C)	+6.67 D	1 M = (D)	-6.67 D	08
bonil,	(A) 3 A ² (A)	atic light waves of ar of 60 ⁰ . The intensity (B) 5 A ²	(C)	7 A ²	proportic (D)	9 A ²	.18
12.	minimum	ssion occur <mark>s only</mark> w		articlent of the	9+00 tip.	respect (S)	ərtain
	(A) power leno	(B) wavelength	(C)	intensity	o elo(D)	frequency	
73.	the factor	gy of a free electron				HIS CL (A)	es by
	(A) 1/√2 euiber	(B) √2	(C)	1/2 megnal	(D)	2	
74.	The decimal equiv (A) 9.625	alent of the binary r (B) 25.265		1 1 0 1 0. 1 (26.625	YAL DINES I	26.265	
	Application of a fo (A) widens the d	rward bias to a p-n epletion zone	junction	ed from the	s projec	A particle	.48
	(C) increases the	e potential difference e number of donors e electric field in the	on the n-	side	n zone	skia (A)	
GO	ON TO THE NEXT	PAGE	OU	18 81 CIO		1	11
	. · .						

	of mass are	ity (v) and time (1) are t	aken as	runuamenta	I units, then the dimension
	A Real Property and the second s	(B) FVT ⁻¹			(D) FVT ⁻²
77.		measurement of radiu f volume of the sphere		sphere is 2	2%, then the error in th
	(A) 2%	(B) 4% o been e	(C)	6%	(D) 8%
78.	from O at a time		7t-t ³ , wh	ere tis in se	x(in meters) of the partic conds. The distance of the
	(A) 81 m	(B) 91 m			(D) 111 m
79.		etween cross product	and do	t product of	f two vectors is 1/√3. Th
tia seri		(B) 45 ⁰		600	
80.	same velocity. 7	The impulse experience	ed by th	n velocity V e body is	and bounces back with th
		(B) 1.5 MV			(D) Zero
81.		iding on a plane, the f			ss if the plane is incline
ment	(C) because, c	offective mass decreas co-efficient of friction de le of inclination 0, frictio	ecrease	S	ormal force decreases
					Barry Aller
82	If a body travels (A) is zero (C) acts along	along a circular path v its tangent	(B)	In the second	its circumference
02.			-	ent x of the	mass is related with time
83.		on a mass of 6 kg. Dis r. Work done by the fo (B) 6 J		sec. is	(D) 12 J
	as $x = t^2/4$ mete (A) 3 J A particle is pro	r. Work done by the fo (B) 6 J jected from the ground s kinetic energy at the (B) E/2	rce in 2 (C) d with kin highest (C)	sec. is 9 J netic energy point of its E/4	v E at an angle of 60 ⁰ wi motion will be (D) E/8
83.	as $x = t^{2/4}$ mete (A) 3 J A particle is pro- the horizontal. It	r. Work done by the fo (B) 6 J jected from the ground s kinetic energy at the (B) E/2	rce in 2 (C) d with kin highest (C)	sec. is 9 J netic energy point of its E/4	r E at an angle of 60 ⁰ wi motion will be

(A) $\frac{1}{2} \text{ mr}^2$ (B) $\frac{1}{4} \text{ mr}^2$ (C) mr^2 (D) 2mr^2 (P) If the diurnal motion of the earth ceases all on a sudden, then the val- acceleration due to gravity of a body at the equator will (A) remains same (B) be zero (C) increase (D) decrease (D) decrease (D) decrease (O) Two satellites of masses m_1 and m_2 ($m_1 > m_2$) are revolving around the earth of radii r_1 and r_2 ($r_1 > r_2$) with velocities v_1 and v_2 respectively. In this case (A) $v_1 = v_2$ (B) $v_1 < v_2$ (C) $v_1 > v_2$ (D) $v_1/r_1 =$ 1. A wire of initial length L and area of cross-section A has Young's modulu material. The wire is stretched by a stress S within its elastic limit. The store density in the wire will be (A) S/2Y (B) 2Y/S ² (C) S ² /2Y (D) S ² /Y (A) Sprayer (B) Hydraulic lift (C) Barometer (D) Ventur	
masses. The centre of mass of the two parts taken together shifts horizontall (A) lighter piece (B) heavier piece (C) depends on the vertical velocity at the time of breaking (D) does not shift horizontally 7. Angular momentum of a moving body remains constant if (A) a pressure acts on the body (B) an external force acts on the (C) an external torque acts on the body (D) no external torque acts on the (C) an external torque acts on the body (D) no external torque acts on the (C) an external torque acts on the body (D) no external torque acts on the (C) an external torque acts on the body (D) no external torque acts on the (C) an external torque acts on the body (D) no external torque acts on the (C) an external torque acts on the body (D) no external torque acts on the (C) an external torque acts on the body (D) no external torque acts on the (C) an external torque acts on the body (D) no external torque acts on the (A) $\frac{y_2}{mr^2}$ (B) $\frac{y_4}{mr^2}$ (C) mr^2 (D) $2mr^2$ 9. If the diurnal motion of the earth ceases all on a sudden, then the val- acceleration due to gravity of a body at the equator will (A) remains same (B) be zero (C) increase (D) decrease 9. Two satellites of masses m_1 and m_2 ($m_1 > m_2$) are revolving around the earth of radii r_1 and r_2 ($r_1 > r_2$) with velocities v_1 and v_2 respectively. In this case (A) $v_1 = v_2$ (B) $v_1 < v_2$ (C) $v_1 > v_2$ (D) $v_1/r_1 =$ 1. A wire of initial length L and area of cross-section A has Young's module material. The wire is stretched by a stress S within its elastic limit. The stor- density in the wire will be (A) $S/2Y$ (B) $2Y/S^2$ (C) $S^2/2Y$ (D) S^2/Y 2. Which of the following works on Pascal's law? (A) Sprayer (B) Hydraulic lift (C) Barometer (D) Venture 3. Surface energy of a water drop of radius <i>r</i> will be directly proportional to	
 Angular momentum of a moving body remains constant if (A) a pressure acts on the body (B) an external force acts on the (C) an external torque acts on the body (D) no external torque acts on the body (D) 2mr² (D) 2mr²	lly towards
 (A) a pressure acts on the body (B) an external force acts on the (C) an external torque acts on the body (D) no external torque acts on the body (D) and "2 (D) 2mr² (D) 2mr² 9. If the diurnal motion of the earth ceases all on a sudden, then the valiance acceleration due to gravity of a body at the equator will (A) remains same (B) be zero (C) increase (D) decrease 0. Two satellites of masses m₁ and m₂ (m₁>m₂) are revolving around the earth of radii r₁ and r₂ (r₁>r₂) with velocities v₁ and v₂ respectively. In this case (A) v₁ = v₂ (B) v₁ < v₂ (C) v₁ > v₂ (D) v₁/r₁ = 1. A wire of initial length L and area of cross-section A has Young's module material. The wire is stretched by a stress S within its elastic limit. The store density in the wire will be (A) S/2Y (B) 2Y/S² (C) S²/2Y (D) S²/Y <	
 Moment of inertia of circular wire of mass m and radius r about its diameters (A) ½ mr² (B) ¼ mr² (C) mr² (D) 2mr² If the diurnal motion of the earth ceases all on a sudden, then the value acceleration due to gravity of a body at the equator will (A) remains same (B) be zero (C) increase (D) decrease Two satellites of masses m₁ and m₂ (m₁>m₂) are revolving around the earth of radii r₁ and r₂ (r₁>r₂) with velocities v₁ and v₂ respectively. In this case (A) v₁ = v₂ (B) v₁ < v₂ (C) v₁ > v₂ (D) v₁/r₁ = A wire of initial length L and area of cross-section A has Young's module material. The wire is stretched by a stress S within its elastic limit. The store density in the wire will be (A) S/2Y (B) 2Y/S² (C) S²/2Y (D) S²/Y Which of the following works on Pascal's law? (A) Sprayer (B) Hydraulic lift (C) Barometer (D) Venture 3. Surface energy of a water drop of radius <i>r</i> will be directly proportional to 	
 (A) ½ mr² (B) ¼ mr² (C) mr² (D) 2mr² (E) ½ mr² (D) 2mr² (E) the diurnal motion of the earth ceases all on a sudden, then the valacceleration due to gravity of a body at the equator will (A) remains same (B) be zero (C) increase (D) decrease (E) the cerease (E) the ce	the body
(A) $\frac{1}{2} \text{ mr}^2$ (B) $\frac{1}{4} \text{ mr}^2$ (C) mr^2 (D) 2mr^2 39. If the diurnal motion of the earth ceases all on a sudden, then the val- acceleration due to gravity of a body at the equator will (A) remains same (B) be zero (C) increase (D) decrease 30. Two satellites of masses m ₁ and m ₂ (m ₁ >m ₂) are revolving around the earth of radii r ₁ and r ₂ (r ₁ >r ₂) with velocities v ₁ and v ₂ respectively. In this case (A) v ₁ = v ₂ (B) v ₁ < v ₂ (C) v ₁ > v ₂ (D) v ₁ /r ₁ = 31. A wire of initial length L and area of cross-section A has Young's modulu material. The wire is stretched by a stress S within its elastic limit. The store density in the wire will be (A) S/2Y (B) 2Y/S ² (C) S ² /2Y (D) S ² /Y 32. Which of the following works on Pascal's law? (A) Sprayer (B) Hydraulic lift (C) Barometer (D) Venture 33. Surface energy of a water drop of radius <i>r</i> will be directly proportional to	ər is
 B9. If the diurnal motion of the earth ceases all on a sudden, then the valacceleration due to gravity of a body at the equator will (A) remains same (B) be zero (C) increase (D) decrease 90. Two satellites of masses m₁ and m₂ (m₁>m₂) are revolving around the earth of radii r₁ and r₂ (r₁>r₂) with velocities v₁ and v₂ respectively. In this case (A) v₁ = v₂ (B) v₁ < v₂ (C) v₁ > v₂ (D) v₁/r₁ = 91. A wire of initial length L and area of cross-section A has Young's module material. The wire is stretched by a stress S within its elastic limit. The store density in the wire will be (A) S/2Y (B) 2Y/S² (C) S²/2Y (D) S²/Y 92. Which of the following works on Pascal's law? (A) Sprayer (B) Hydraulic lift (C) Barometer (D) Venture 	
 of radii r₁ and r₂ (r₁>r₂) with velocities v₁ and v₂ respectively. In this case (A) v₁ = v₂ (B) v₁ < v₂ (C) v₁ > v₂ (D) v₁/r₁ = A wire of initial length L and area of cross-section A has Young's module material. The wire is stretched by a stress S within its elastic limit. The store density in the wire will be (A) S/2Y (B) 2Y/S² (C) S²/2Y (D) S²/Y Which of the following works on Pascal's law? (A) Sprayer (B) Hydraulic lift (C) Barometer (D) Venture 	
 91. A wire of initial length L and area of cross-section A has Young's module material. The wire is stretched by a stress S within its elastic limit. The store density in the wire will be (A) S/2Y (B) 2Y/S² (C) S²/2Y (D) S²/Y 92. Which of the following works on Pascal's law? (A) Sprayer (B) Hydraulic lift (C) Barometer (D) Venture 93. Surface energy of a water drop of radius <i>r</i> will be directly proportional to 	
 material. The wire is stretched by a stress S within its elastic limit. The store density in the wire will be (A) S/2Y (B) 2Y/S² (C) S²/2Y (D) S²/Y 92. Which of the following works on Pascal's law? (A) Sprayer (B) Hydraulic lift (C) Barometer (D) Venture 93. Surface energy of a water drop of radius <i>r</i> will be directly proportional to 	$= v_2/r_2$
 (A) S/2Y (B) 2Y/S² (C) S²/2Y (D) S²/Y <	
 (A) Sprayer (B) Hydraulic lift (C) Barometer (D) Ventur 93. Surface energy of a water drop of radius r will be directly proportional to 	
(A) Sprayer (B) Hydraulic lift (C) Barometer (D) Ventur3. Surface energy of a water drop of radius <i>r</i> will be directly proportional to	
	rimeter
GO ON TO THE NEXT PAGE OU 18 C	
	13

		1								
1	coeff	icient of vis	I is falling with scosity η. If the	e viscous for	ce a	cting on	the sph	erical b	all is F th	er
	(A)	F or \eta and	F a1/v Wol	8 (0)	(B)	Fαηa	ndFαv	(W	(A) 5 K	
1	(C)	$F \alpha 1/n an$	dFα1/v		(D)	$F \alpha 1/\eta$	and F c	χV		
		two parts.	rity breaks in	s under grat	val ds	VOWOD	Official Sector	A lhon	A DOGY	
	incre	ased to 40	t of a body im ⁰ C, the apparent solids W ₂ m	ent weight be	ecom	les W2.	in this c	ase	right 4m	ur
	(A)	W is shue	it solids w ₂ in	dy De greate	i uno	11 01 100	Chart file	is too a	(D) 30e	
	(B)	W ₂ is alwa	ive less than W	1						
	(0)	vv ₂ is alwa	ays less than V ays greater that	¥1						
	(U)	w ₂ is alwa	tys greater ind	.u. v.v. 1 			no alos			
96.	An id of th	leal gas is e e cas is	xpanding such	that $pT^2 = cc$	onsta	int. The	coefficie	nt of vol	ume expa	
	(A)	1/T sib at 1	(B) 2/T	brin m vaind	(C)	3/T		(D) 4	/TremoM	
		SmS (D)		(C) m		ामा भ				
97.	Duri	ng boiling v	vater at 100°C	, what will b	e its	specific	heat?			
	(A)	zero) ned	(B) 0.5	0 116/20260	(C)	the etc	to noite	(D) li	nfinite	
				at the equal	bot	ty of a l	VATE OF	enp uoi		
			ure of a black b		rom	T to 21,	how ma	any time	es will its	a
		ation be?	010350	ste (a)	101	Part			(C) incr	
	(A)	16	(B) 8		(C)			(D) 2		
000		und the ear	ess of an idea	Lass dW-	0 an	d dD e	0 Then	for the	das	
99.	Ina	the tompo	erature will dec	1900,000 -	our		o. mon	101 110	(A)	
			e will increase					1		
	(D)	the proof	ure will remain	constant	10-04		titing	Initiat	to uniw A	
61) (O)	(0)	the tompo	erature will incl	CONSIGNT.				in ant	Iscolar	
	(0)	rue tempe	nature winning	ease				w both	density in	
100.	Evo	n Carnot e	ngine CANNO	T give 100%	6 effi	ciency.	because	e we C	ANNOT	
100.		eliminate		1 9100 100 /	(B)	preven	t radiati	on		
	(1)	reach abr	solute zero ten	norature	(D)	find ide	al sour	ces	Which of	
	(0)	umov (Q)		iperature -	(0)		((8)	Nec of		
			diracity propo						Surface e	
14			OU 18			G	O ON T	O THE	NEXT P	40
Lot										

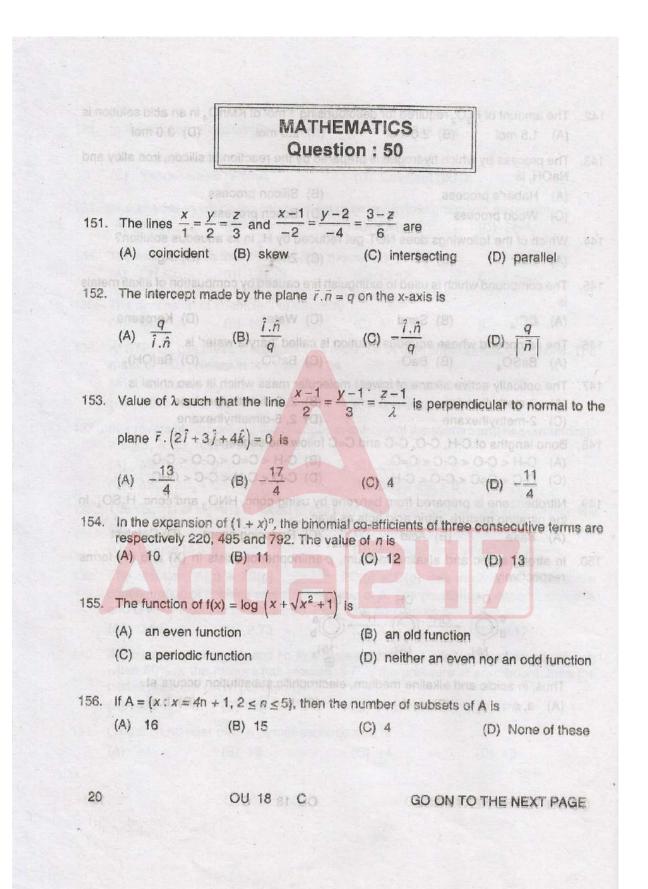
CHEMIS	STRY In 50 States States
(C) 8 (C)	(A) 4 (B)
 Incomplete combustion of gasoline prod (A) CO₂ (B) CO 	(C) SO ₂ . (D) NO ₂
02. Cause of byssinosis diseases (A) fly-ash (B) cement particles	s (C) cotton fibre (D) lead particles
03. Which one is NOT favourable for $S_N 1$ re	
	(D) 3 ⁰ alkyl halide
04. Consider the following reaction:	
Phenol $\frac{\text{Zn dust}}{\text{distillation}} X \xrightarrow[anhy. MCl_3]{\text{CH}_3Cl} Y \xrightarrow{(1) Alkal}{(1)}$	$\xrightarrow{\text{ine KMnO}_4} Z$
The product Z is (A) Benzaldehyde (C) Benzoic acid	(B) Benzene (D) Toluene
 05. Which converts carboxylic acids directli (A) LiAIH₄ (B) Na + C₂H₅OH 	y into alcohols (C) NaBH ₄ and to (D) All of these
 06. In the reaction of acetaldehyde with an (A) Schiff's base (C) Imine 	(B) Carbylamine (D) None of these
07. Complete hydrolysis of cellulose yields (A) D-fructose (B) D-ribose	(C) D-glucose (D) L-glucose
(C) Isoprene and Butadiene	(B) Butadiene(D) Vinyl chloride and Sulphur
 109. Chemical name of aspirin is (A) Methyl Benzoate (C) Acetylsalicylic acid 	and a standard unsee and a stand and
(D) LD process	(ii) Abaltes Persient is process
GO ON TO THE NEXT PAGE	OU 18 C 15

110.	(A) Orthorhombic (B) Tetragonal	s does NOT have body-centered lattice? (C) Monoclinic (D) Cubic
111.	NaCl has face-centered unit cell. In contact with a Na ⁺ ion is	its crystal, the number of CI ⁻ ions presen
	(A) 4 (B) 6	(C) 8 (D) 10
112.	Which of the following concentration(A) Molarity(B) Normality	units does NOT depend on temperature? (C) Mole fraction (D) Formality
113.	At a given temperature, which one of vapour pressure?	the following solutions would have the high
	(A) 0.1 m glucose solution(C) 0.1 m CaCl₂ solution	 (B) 0.1 m NaCl solution (D) 0.1 m Al₂(SO₄)₃ solution
114.	Which one of the following does NOT (A) HI (B) HBr	give precipitate on reaction with lead aceta (C) HCI (D) HF
115.	At 250°C, the correct order of molar is K ⁺ in infinite dilute aqueous solution i (A) H ⁺ < Li ⁺ < Na ⁺ < K ⁺ (C) Li ⁺ < Na ⁺ < H ⁺	onic conductances of the ions H+, Li+, Na+ a s (B) K+< Na+< Li+< H+ (D) Li+< K+< H+< Na+
116.	 The activation energy of a reaction de (A) temperature (B) initial concentration of the reacta (C) effective collisions among the re (D) nature of the reactants 	ant
117.	The bottle of liquor ammonia is cooler (A) is a mild explosive (C) is harmful to lung	d before opening the cork because it (B) is a corrosive liquid (D) exerts high vapour pressure
118.	Which of the following substances for (A) Glucose (B) Urea	rm a colloidal solution in water? (C) BaSO ₄ (D) Starch
119.	Adsorption of a gas on a solid surface (A) change in free energy of the sys (B) enthalpy of the system increases (C) entropy of the system increases (D) enthalpy of the system decrease	tem increases s
120.	In the manufacture of steel, the proce (A) Open-hearth process (C) Alkaline Bessemer's process	 (B) Acidic Bessemer's process (D) LD process
		GO ON TO THE NEXT PAGE

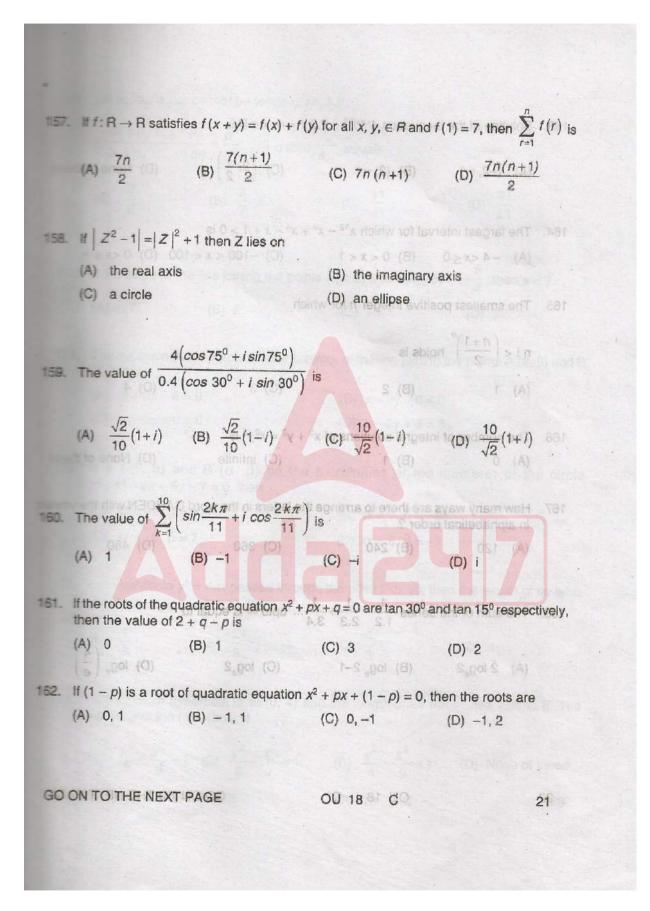
The ore that do (A) Fluorspar			(D) Mica
Which of the for (A) Nitrogen to	lowing nitrogen ox	ides is ionic ? (B) Nitrogen pen	
Which one of the (A) Hg	following is used a (B) Black P	s the photosensitive subs	tance in Xerox machines
Fe2+ can be diffe	erentiated from Fe	H with the help of	134 The molecule will
The salt of the obleaching powd	d-block element the	at is used as a catalyst ir	
(A) Ni (A)	(B) CO (D) (D)	(C) V (C)	(D) Cr
(A) Potassium	d for identifying Ni ferrocyanide	(B) Phonolophthol	136 ALSTP. O. 939 P
(A) 20.0%	(B) 25.0%	(C) 31.4%	(D) 50.0%
	TITLE MM		
An anion X ³⁻ has	36 electrons and	(C) Acidic 45 neutrons. What is the	(D) Amphoteric e mass number of the
(A) 81	(B) 84		(D) 88
A) directly propB) inversely pro	portional to the velo	n same kinetic energy, city locity	then the de-Broglie's
The increasing ord A) F <s<p<1< td=""><td>ler of the first ionis: 3 =</td><td>ation enthalpies of the ele (B) P < S < B < F (D) B < S < P < F</td><td>ments B, P, S and F is</td></s<p<1<>	ler of the first ionis: 3 =	ation enthalpies of the ele (B) P < S < B < F (D) B < S < P < F	ments B, P, S and F is
		£+ (8)	
N TO THE NEXT	PAGE	OU 18 C	17
	(A) Fluorspar Which of the fol (A) Nitrogen tr (C) Dinitrogen Which one of the (A) Hg Fe ²⁺ can be diffe (A) BaCl ₂ The salt of the of bleaching powde (A) Ni The reagent use (A) Potassium (C) Dimethylghy When 800 g of a The percentage of (A) 20.0% A sample of Na ₂ resulting solution (A) Basic An anion X ³ has blement X? A) 81 Two particles a vavelength (λ) of A) directly prop (C) independent he increasing or (A) F < S < P < E C) B < P < S < F	(A) Fluorspar (B) Feldspar Which of the following nitrogen ox (A) Nitrogen trioxide (C) Dinitrogen tetroxide Which one of the following is used a (A) Hg (B) Black P Fe ²⁺ can be differentiated from Fe ³ (A) BaCl ₂ (B) AgNO ₃ The salt of the d-block element the bleaching powder is (A) Ni (B) CO The reagent used for identifying Nie (A) Ni (B) CO The reagent used for identifying Nie (A) Potassium ferrocyanide (C) Dimethylglyoxime When 800 g of a 40% solution by we The percentage composition of the fill (A) 20.0% (B) 25.0% A sample of Na ₂ CO ₃ .H ₂ O weighing resulting solution will be (A) Basic (B) Neutral An anion X ³ has 36 electrons and element X? A) 81 (B) 84 i two particles are associated with vavelength (λ) of these particles is (A) directly proportional to the veloc (B) inversely proportional to the veloc (C) independent of mass and veloc (C) B < P < S < F	Which of the following nitrogen oxides is ionic? (A) Nitrogen triaxide (B) Nitrogen pen (C) Dinitrogen tetroxide (D) Nitric oxide Which one of the following is used as the photosensitive subse (A) Hg (B) Black P (C) Se Fe ²⁺ can be differentiated from Fe ³⁺ with the help of (A) BaCl ₂ (B) AgNO ₃ (C) NH ₄ SCN The salt of the d-block element that is used as a catalyst in bleaching powder is (A) NI (B) CO (C) V The reagent used for identifying Nickel ion is (A) Potassium ferrocyanide (B) Phenolphthale (C) Dimethylglyoxime (D) EDTA When 800 g of a 40% solution by weight was cooled, 100 g of a The percentage composition of the remaining solution is (A) 20.0% (B) 25.0% (C) 31.4% A sample of Na ₂ CO ₃ .H ₂ O weighing 0.62 g is added to 100 m resulting solution will be (A) Basic (B) Neutral (C) Acidic An anion X ³⁻ has 36 electrons and 45 neutrons. What is the element X? A) 81 (B) 84 (C) 78 two particles are associated with same kinetic energy, vavelength (λ) of these particles is A) directly proportional to the velocity D) independent of mass and velocity (D) Cannot be prece he increasing order of the first ionisation enthalpies of the element A) F <s<p<b (b)="" (d)="" b<s<p<f<="" p<s<p<f="" td=""></s<p

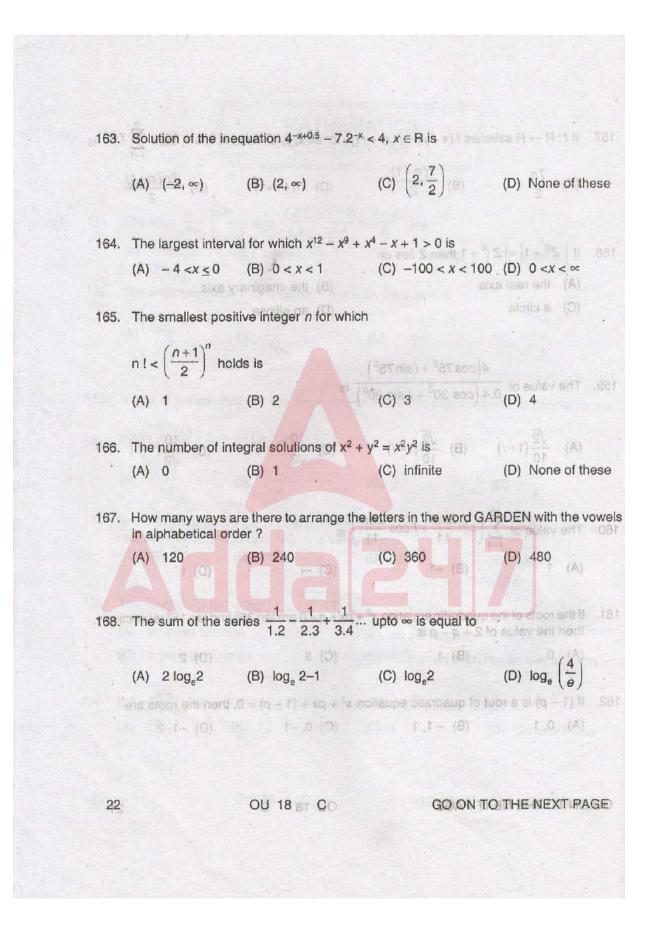
Adda 247

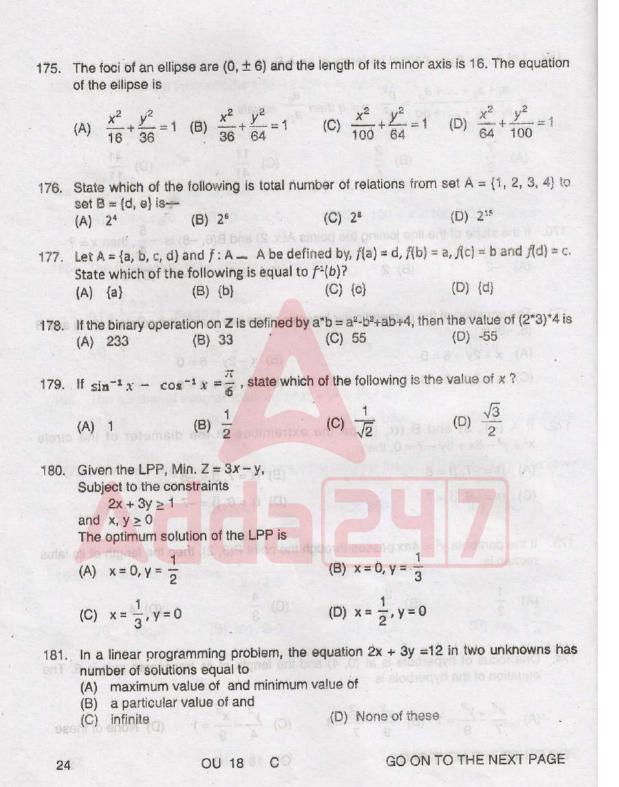
	•			0.359 2	Tef	s NOT contain		ril eno eriT t's
132.	In th	ne relation, Ele	ectronegativi	$ty = \frac{r^2}{r^2}$		+ 0.744, r is		
	(A) (C)	Metallic radi Vander waal	CAC DESCRIPTION		(B)	lonic radius	IS	it to dairtWSS joutiN(A) trihid(O)
133.	The	species in wh	ich the cent	ral atom use	s s	p ² hybrid orbita	uls in i	ts bonding is
		NH ₃ (O)						SbH ₃
134.	The (A)	molecule with CH ₂ Cl ₂	(B) CH ₃ Cl	(C)	is CHCl ₃		CCI4
135.		dimension of MLT	coefficient o			MLT-10 (8)	(D)	MLT ⁻²
136.	At S		esent in a fla	sk was repla	ice		simila	r conditions. Th
						equal to that o		
		twice that of				one-third of O		
137.	are	$\Delta S_1 \& \Delta S_2 res$	pectively, the	en		181 25 0%		l its surrounding
		$\Delta S_1 + \Delta S_2 > 0$ $\Delta S_1 + \Delta S_2 = 0$	or or bebb) 0.62 g is a	B) D)	$\Delta S_1 + \Delta S_2 < 0$ $\Delta S_1 + \Delta S_2 \ge 0$		
			as is reduced	d to half from	its	original volume	e. The	specific heat wi
ort the						remain consta		nouse nA .85
		reduce to hal		1015		increase four t		YATH DY
139. a'eilg	conc	reaction, A(generation of B C were found	which was 1	.5 times that	t of	A. The equilibr	tudiec ium co	using an initia oncentration of A
		0.32	(B) 2.73	· · · · · · ·	erra.	4.0	(D)	8.17
	whe	ixture containi n 50% of the al pressure of	mixture has	reacted. If P	atio is	o 1 : 3 is allowe the pressure a	ed to a t equi	attain equilibriun librium, then the
	(A)	Contraction of the second s	(B) P/3		2)	P/5	(D)	P/9
	Oxid	lation number	of P in pyrop	phosphoric a	cid	is		12-2-141
141.	(A)	+1	(B) +3	((C)	+4	(D)	+5
141.	1.11							



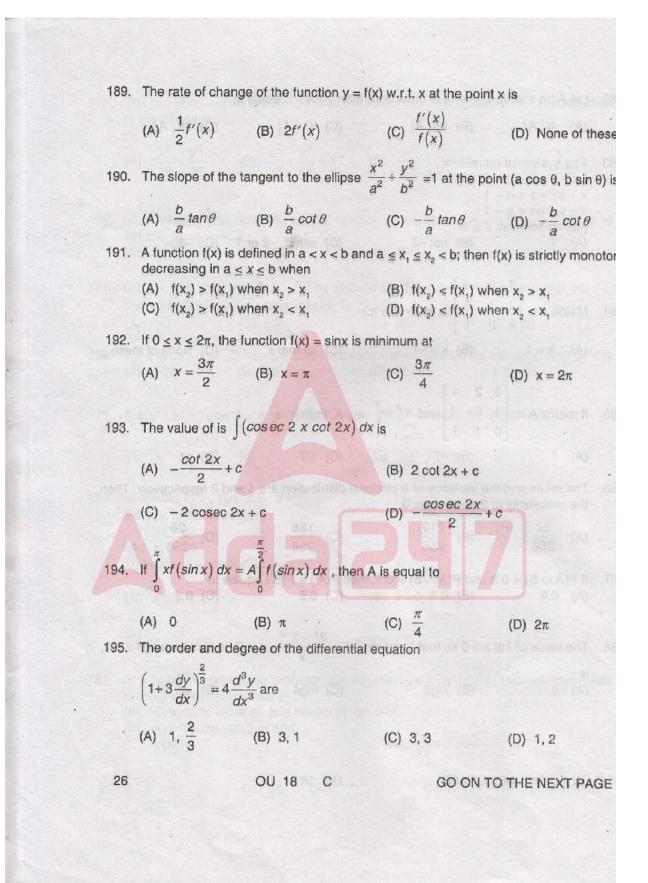
142. The amount of H ₂ O ₂ required for dec (A) 1.5 mol (B) 2.0 mol	colourising 1 mol of KMnO₄ in a (C) 2.5 mol (D)	
143. The process by which hydrogen is p NaOH, is		
(A) Haber's process(C) Wood process	(B) Silicon process	
144. Which of the followings does NOT g (A) Cu^{2+} (B) Fe^{3+}	and the second s	solution? Aa+
145. The compound which is used to extin is		
(A) CCl ₄ (B) Sand		Kerosene
146. The compound whose aqueous solution(A) BaSO4(B) BaO		Ba(OH)
147. The optically active alkane of lowest(A) 3-methylhexane(C) 2-methylhexane		chiral is
(C) $C-C < C=C < C-O < C-H$	(B) C-H < C=C < C-O < C (D) C-O < C-H < C-C < C	C =C
the nitrating mixture, nitric acid acts a	ene by using conc. HNO ₃ and c is a/an (C) Reducing agent (D	
150. In strong acidic and alkaline mediun respectively		
O° OH		t55 The tune
	b notonut neve	(A) and
notonul phone NH _{2 we ne w} NH ₂	NH ₃ notonut albaha	
Thus, in acidic and alkaline medium, (A) a, c (B) a, d	electrophilic substitution occurs	at
GO ON TO THE NEXT PAGE	OU 18 8 CO	19

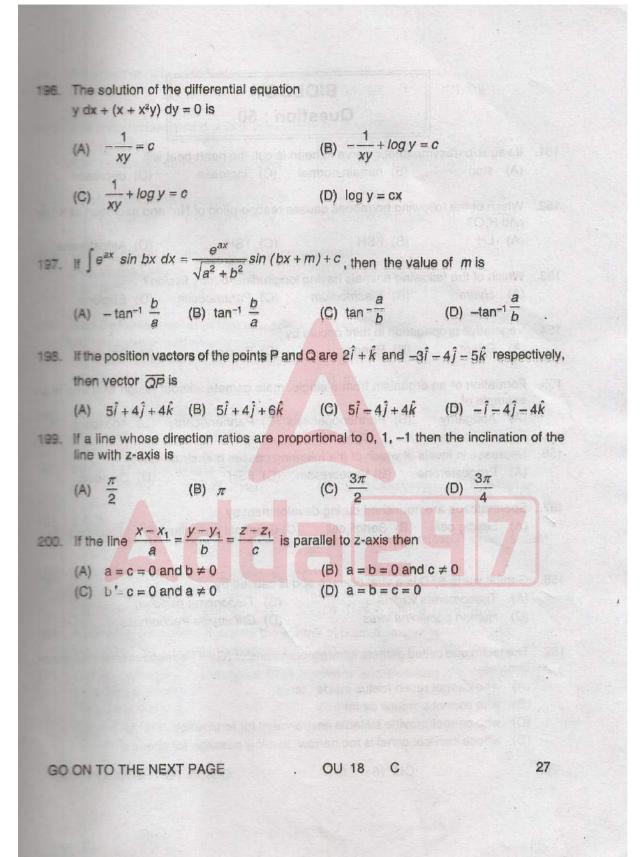






If $\frac{a_1 + a_2 + \dots + a_1 + a_2 + \dots + a_1 + a_2 + \dots + a_1}{(A) \frac{7}{2}}$	$\frac{a_p}{aq} = \frac{p^2}{q^2}, \ p \neq q$	s of an A.P. then $\frac{a_6}{a_{21}}$ equals (C) $\frac{11}{41}$	of the effipse i
(A) 7/2	(B) $\frac{2}{7}$	(a) 11 (b) 11 (c) 11	(A)
		(C) $\frac{1}{41}$	(D) $\frac{41}{11}$
If the slone of th	a service	it the following is total number	176. State which o set 8 = (d, e)
(A) -2		points A(x , 2) and B(6, -8) is -	
(D) (d)	(10) ((A) (a)
	CG (r bisector of the line joining the	points A (2, 3) and B
 (A) x + 2y - 6 = (C) x + 2y + 6 = 		(B) $x - 2y - 6 = 0$ (D) $x - 2y + 6 = 0$	- y K-min H . BVF
	d B (α, β) be	the extremities of the diam	
(A) $\alpha = -7, \beta =$ (C) $\alpha = -6, \beta =$		(B) $\alpha = 7, \beta = -8$ (D) $\alpha = 6, \beta = -7$	180. Given the LP Subject to In 2x + 3y and x, y > 0
173. If the parabola y ² rectum is	= 4 <i>ax</i> passes th	rough the point P(3, 2), then th	
(A) <u>1</u> 3	$(\underline{B}) \frac{2}{3} = \times (C$		$0) \frac{14}{\varepsilon} = x^{-1}(0)$
174. One focus of hyp equation of the hy	erbola is at (0, 4 /perbola is	4) and the length of its transve	erse axis is 6. The
(A) $\frac{x^2}{7} - \frac{y^2}{9} = 1$		1 (C) $\frac{y^2}{4} - \frac{x^2}{9} = 1$ (D	
GO ON TO THE NEXT	PAGE	OU 18 BT CO	23




THE Let A be a square matrix of order 3x3, then | KA | is equal to (A) K|A| (B) $K^2|A|$ (C) $K^3|A|$ (D) 3K A The system of equations $cox + y + z = \alpha - 1$ $x + \alpha y + z = \alpha - 1$ $\begin{array}{c} x+y+\alpha z=\alpha-1\\ \text{has no solution, if }\alpha \text{ is}\\ (A) \ 1 \qquad (B) \ \text{not}-2 \qquad (C) \ \text{either} \ -2 \ \text{or} \ 1 \quad (D) \ -2 \end{array}$ $x + y + \alpha z = \alpha - 1$ Matrix A = $\begin{bmatrix} 1 & 0 & -k \\ 2 & 1 & 3 \\ k & 0 & 1 \end{bmatrix}$ is invertible for (A) (A) k = 1 (B) k = -1 (C) all real k (D) None of these [3 2 4] If matrix A = $\begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \end{bmatrix}$ and $A^{-1} = \frac{1}{k}$ adj A, then k is (C) 1/7 (A) 7 (B) -7 (D) 11 The mean and the variance of a binomial distribution are 4 and 2 respectively. Then 1 the probability of 2 successes is (C) $\frac{128}{256}$ (D) $\frac{28}{256}$ $\frac{37}{256}$ (B) $\frac{219}{256}$ (4) If $P(A \cup B) = 0.8$ and $P(A \cap B) = 0.3$, then P(A') + P(B') equals to THE REAL (A) 0.9 (B) 0.7 (C) 0.5 (D) 0.3 The value of f at x = 0 so that function $f(x) = \frac{2^x - 2^{-x}}{x}$, $x \neq 0$, is continuous at x = 0, is (C) log4 (D) e⁴ (A) 0 (B) log2 GO ON TO THE NEXT PAGE OU 18 C 25

			10	BIOL		and the second second		The soluti y dx + (x +
151.				ic nerve to hear				(A) xy
	(A)	stop			(C)	increase	(D)	decrease
152.		ch of the follo $H_2O?$		ormones cause	s reab	sorption of Na ⁺	and e	xcretion of
	(A)	LH	(B)			TSH		Aldostero
153.	Whi	erm to eut	ine va	nimals having k	ongitur	dinc! hipppy fice		ns. al il
155.				Plasmodium		Paramoecim		Euglena
	T	(D) -tan	~~/	(C) tan 5	(-)	(B) tan !! -	4-1	(A) – tan
154.	-		all and a second	in mint occurs b	*			
lively	(A)	Offset	(B)	Runner	16 (C)	Sucker	(D)	Rhizome
155.				m from a single				
4R	and the state	mple of Apogamy	(B)	Parthenogenesi	is (C)	Parthenocarov	(D)	Anospory
		and the second				s soitch noticent		
	Deci	rease in level	s of wh	nich of the follow	ving ca		I flow	a universities
	Deci	rease in level	s of wh		ving ca			Oxytocin
156.	Deci (A)	rease in level: Progesteron	s of wh e (nich of the follow B) Vasopressin	ving ca (C)	FSH		
156.	Deci (A) Spei	rease in level: Progesteron	s of whe e (1 nouris	nich of the follow	ving ca (C) elopme	FSH The (B) ent by	(D)	Oxytocin
156.	Deci (A) Sper (A)	rease in level: Progesteron rmatozoa are Leydig cell	s of wh e (i nouris (B)	hich of the follow B) Vasopressin hed during deve Sertoli cell (ving ca (C) elopme C) Ger	FSH ent by rminal epitheliu	(D)	Oxytocin Mitochon
156.	Deci (A) Sper (A)	rease in levels Progesteron rmatozoa are Leydig cell ital warts STE	s of whee (nouris (B)	hich of the follow B) Vasopressin hed during deve Sertoli cell (riral disease and	ving ca (C) alopme C) Ger	FSH ent by minal epitheliu used by	(D) m (D)	Oxytocin
156.	Deci (A) Spei (A) Geni (A)	rease in level: Progesteron rmatozoa are Leydig cell	s of wh e (i nouris (B)) is a v s vagin	hich of the follow B) Vasopressin hed during deve Sertoli cell (viral disease and valis	ving ca (C) elopme C) Ger d is cau (B)	FSH ent by rminal epitheliu	(D) m (D) Ilidum	Oxytocin
156.	Deci (A) Sper (A) Gen (A) (C)	rease in levels Progesterond rmatozoa are Leydig cell ital warts STE Trichomonas Human papil	s of wh e (i nouris (B)) is a v s vagin líoma v	hich of the follow B) Vasopressin hed during deve Sertoli cell (viral disease and palis virus	ving ca (C) elopme C) Ger d is cau (B) (D)	FSH minal epitheliu used by <i>Treponema pa</i> <i>Chlamydia trad</i>	(D) m (D) Ilidum choma	Oxytocin Mitochone
156.	Deci (A) Sper (A) (A) (C) The fema	rease in levels Progesteron rmatozoa are Leydig cell ital warts STE <i>Trichomonas</i> <i>Human papil</i> technique call ales	s of whee (i nouris (B) :) is a v s vagin lioma v	hich of the follow B) Vasopressin hed during deve Sertoli cell (viral disease and virus mete intrafallopia	ving ca (C) elopme C) Ger d is cau (B) (D) an trar	FSH minal epitheliu used by <i>Treponema pa</i> <i>Chlamydia trad</i>	(D) m (D) Ilidum choma	Oxytocin Mitochone
156. 157. 158.	Deci (A) Spei (A) Gen (A) (C) The fema (A)	rease in levels Progesteron rmatozoa are Leydig cell ital warts STE <i>Trichomonas</i> <i>Human papil</i> technique call ales who cannot r	s of whe e ((nouris (B)) is a v s vagin floma v led gar etain f	hed during deve B) Vasopressin hed during deve Sertoli cell (riral disease and <i>alis</i> <i>rirus</i> mete intrafallopia oetus inside ute	ving ca (C) elopme C) Ger d is cau (B) (D) an trar	FSH minal epitheliu used by <i>Treponema pa</i> <i>Chlamydia trad</i>	(D) m (D) Ilidum choma	Oxytocin Mitochone
156. 157. 158.	Deci (A) Sper (A) Gen (A) (C) The fema (A) (B)	rease in levels Progesterond rmatozoa are Leydig cell ital warts STE Trichomonas Human papil technique call ales who cannot r who cannot r	s of whe e (i nouris (B)) is a v s vagin floma v led gan etain f produc	hich of the follow B) Vasopressin hed during deve Sertoli cell (viral disease and alis virus mete intrafallopia oetus inside ute e ovum	ving ca (C) elopme C) Ger d is cau (B) (D) an trar	FSH ant by rminal epitheliu used by <i>Treponema pa</i> <i>Chlamydia trad</i> nsfer (GIFT) is re	(D) m (D) Ilidum choma	Oxytocin Mitochon
156. 157. 158.	Deci (A) Sper (A) (A) (C) The fema (A) (B) (C)	rease in levels Progesterond rmatozoa are Leydig cell ital warts STE Trichomonas Human papil technique call ales who cannot r who cannot r who cannot r	s of whee (i nouris (B)) is a v (B)) is a v s vagin loma v led gar etain f produc provide	hed during deve B) Vasopressin hed during deve Sertoli cell (riral disease and <i>alis</i> <i>rirus</i> mete intrafallopia oetus inside ute	ving ca (C) elopme C) Ger d is cau (B) (D) an trar erus	FSH ent by minal epitheliu used by <i>Treponema pa</i> <i>Chlamydia trad</i> nsfer (GIFT) is n	(D) m (D) Ilidum choma	Oxytocin Mitochone atis

Adda 247

160. A method of birth control is	Which type of restriction enzymes an	171
(A) IUDs (B) HJF (C)	(C) IVF-ET (D) GIFT	
151. The linked characters would always inhe	rit together till they are	
(A) mutated	(B) delinked due to segregation	
(C) separated due to crossing over	(D) masked by dominance	
162. Down's syndrome is a typical case of	The state of the second st	
(A) Nullisomy (B) Monosomy	(C) Gene mutation (D) Trisomy	· ·
163. Leading strand during DNA replication is	formed notify within which beings	174, 1
(A) in short segment · (C)	(B) continuously emoile (A	
(C) first	(D) ahead of replication	
and the Devictor halfs and the	$\frac{4 \text{Nn}}{4 \text{ m}} = B \text{ represents}$.asr
 164. Nec-Darwinism believes that new specie (A) mutations with natural selection 	s develop through	
(B) continuous variations with natural selection	election (8) (8) Alection	
(C) hybridisation	(D) mutations	
	(D) mutations	avr.
Genetic drift operates in population	 A) poikilalhermic (B) pligothermic no 	
(A) small (B) large	(C) island (D) mendeliar	10-11-10-12
156. Which of the following is quartan in period	dicity? (8) esaio (A	
(A) P. ovale (B) P. vivax		178. 9
167, B.C.G. is vaccine against	A) Haynia (B) Psiloluin	
(A) Typhoid (B) Tuberculosis	(C) German measles(D) Chicken p	ox evr
166. In tissue culture variations appeared are	A) saeqs (B) large lgaves	9
(A) Somatic variation	(B) Clonal variation	1001
(C) Somaclonal variation	(D) Tissue culture variation	0, 0001
169. A common bio control agent for the control		
(A) Bacillus (B) Trichoderma	(C) Baculovirus (D) Glomus	181. V
170. The technique for breakage of DNA fra molecule, is related to	agment and inserting it into anothe	r DNA
(A) Gene cloning	(B) Gene typing	182. 1
(C) Gene splicing	(D) DNA fingerprinting	
GO ON TO THE NEXT PAGE	OU 18 8 C 0	29
	1	

	/ 6 1	Transford	estriction enzymes are			10 10 10 10 10 10 10 10 10 10 10 10 10 1	somnology:
	(A)	Type-I	(B) Type-II	(C)	Type-III		All of these
172.	uib	ianis/uest y	lowing bacteria has fou enetic vector used in pl	and exte	ensive use in ge	netic	engineering w
	(A)	Bacillus th	uringiensis	(B)	Xanthomonas	citri	
	(C)	Agrobacte	rium tumefaciens	(D)	E. coli		
173.	Ana	abnormal ge	ne is replaced by norm			Aont A	
			apy (B) Cloning		Mutation	(D)	None of these
174.	Geo	ographic limi	t within which a popula	tion exi	ists is called		
	(A)	Biome	(B) Habitat	(C)		(D)	Ecosystem
175.		n lt = B repres	sents				
	(A)	Natality	(B) Growth rate	(C)	Mortality	(D)	All of these
176.	Anin	nals with bui	It in thermostat are				bodynt (3)
			nic (B) oligothermic	(C)	homeothermic		biothermic ·
				(-)	nomeourerinic	(0)	biomennic
177.	The					(0)	Diotriennic
177.	The (A)	lowest categ	gory in taxonomic hiera	irchy is			Tisma (A)
/	(A)	lowest categ class	gory in taxonomic hiera (B) kingdom	rchy is (C)	species		phylum
/	(A) Most	lowest categ class t primitive nu	gory in taxonomic hiera (B) kingdom	rchy is (C)	species		Tisma (A)
/	(A) Most	lowest categ class	gory in taxonomic hiera	(C)	species	(D)	Tisma (A)
178.	(A) Most (A)	lowest categ class t primitive nu <i>Rhynia</i>	gory in taxonomic hiera (B) kingdom umber in which roots ar (B) <i>Psilotum</i>	rchy is (C) re NOT (C)	species present is <i>Lycopodium</i>	(D)	phylum
178.	(A) Most (A) Angie	lowest categ class t primitive nu <i>Rhynia</i> osperms diff	gory in taxonomic hiera (B) kingdom umber in which roots ar (B) <i>Psilotum</i> er from gymnosperms	rchy is (C) re NOT (C) in havir	species present is <i>Lycopodium</i>	(D)	phylum Selaginella
178.	(A) Most (A) Angie	lowest categ class t primitive nu <i>Rhynia</i> osperms diff	gory in taxonomic hiera (B) kingdom umber in which roots ar (B) <i>Psilotum</i>	rchy is (C) re NOT (C) in havir	species present is <i>Lycopodium</i>	(D)	phylum Selaginella
178.	(A) Most (A) Angia (A)	lowest categ class t primitive nu <i>Rhynia</i> osperms diff seeds	gory in taxonomic hiera (B) kingdom umber in which roots ar (B) <i>Psilotum</i> er from gymnosperms (B) large leaves	rchy is (C) re NOT (C) in havir (C)	species present is <i>Lycopodium</i>	(D)	phylum Selaginella
178. 179. 180.	(A) Most (A) Angie (A) Gree	lowest categ class t primitive nu <i>Rhynia</i> osperms diff seeds	gory in taxonomic hiera (B) kingdom umber in which roots ar (B) <i>Psilotum</i> er from gymnosperms	rchy is (C) re NOT (C) in havir (C) of	species present is <i>Lycopodium</i> ng tap roots	(D)	phylum Selaginella covered seed:
178. 179. 180.	(A) Most (A) Angle (A) Gree (A)	lowest categ class t primitive nu <i>Rhynia</i> osperms diff seeds n glands are Insecta	gory in taxonomic hiera (B) kingdom umber in which roots ar (B) <i>Psilotum</i> er from gymnosperms (B) large leaves the excretory organs (B) Myriapoda	rchy is (C) re NOT (C) in havir (C) of (C)	species present is <i>Lycopodium</i> ng tap roots Arachnida	(D)	phylum Selaginella
178. 179. 180.	(A) Most (A) Angli (A) Gree (A) Whic	lowest categ class t primitive nu <i>Rhynia</i> osperms diff seeds in glands are Insecta h tissue give	gory in taxonomic hiera (B) kingdom umber in which roots ar (B) <i>Psilotum</i> er from gymnosperms (B) large leaves the excretory organs (B) Myriapoda	in havir (C) in havir (C) of (C) o plant	species present is <i>Lycopodium</i> ng tap roots Arachnida ordans?	(D)	phylum Selaginella covered seed:
178. 179. 180.	(A) Most (A) Angli (A) Gree (A) Whic	lowest categ class t primitive nu <i>Rhynia</i> osperms diff seeds in glands are Insecta h tissue give	gory in taxonomic hiera (B) kingdom umber in which roots ar (B) <i>Psilotum</i> er from gymnosperms (B) large leaves e the excretory organs in	in havir (C) in havir (C) of (C) o plant	species present is <i>Lycopodium</i> ng tap roots Arachnida ordans?	(D) (D) (D)	phylum Selaginella covered seed:
178. 179. 180.	(A) Most (A) Angle (A) Gree (A) Whic (A)	lowest categ class t primitive nu <i>Rhynia</i> osperms diff seeds n glands are Insecta h tissue give Accessory o	gory in taxonomic hiera (B) kingdom umber in which roots ar (B) <i>Psilotum</i> er from gymnosperms (B) large leaves the excretory organs (B) Myriapoda e mechanical strength t cells (B) Collenchyma	rchy is (C) re NOT (C) in havir (C) of (C) /	species present is <i>Lycopodium</i> ng tap roots Arachnida ordans?	(D) (D) (D)	phylum Selaginella covered seed: Crustace ta (
178. 179. 180. 181. 82.	(A) Most (A) Angle (A) Gree (A) Whic (A) In wh	lowest categ class t primitive nu <i>Rhynia</i> osperms diff seeds in glands are Insecta h tissue give Accessory o	gory in taxonomic hiera (B) kingdom umber in which roots ar (B) <i>Psilotum</i> er from gymnosperms (B) large leaves the excretory organs (B) Myriapoda e mechanical strength t cells (B) Collenchyma	in havir (C) in havir (C) of (C) o plant a (C) f und?	species present is <i>Lycopodium</i> ng tap roots Arachnida organs? Parenchyma	(D) (D) (D) (D),	phylum Selaginella covered seed: Crustaceta f Stomata
178. 179. 180. 181. 82.	(A) Most (A) Angle (A) Gree (A) Whic (A) In wh	lowest categ class t primitive nu <i>Rhynia</i> osperms diff seeds in glands are Insecta h tissue give Accessory o	gory in taxonomic hiera (B) kingdom umber in which roots ar (B) <i>Psilotum</i> er from gymnosperms (B) large leaves the excretory organs (B) Myriapoda e mechanical strength t cells (B) Collenchyma	in havir (C) in havir (C) of (C) o plant a (C) f und?	species present is <i>Lycopodium</i> ng tap roots Arachnida ordans?	(D) (D) (D) (D),	phylum Selaginella covered seed: Crustace ta (

 A) Stigmata C) Spiracle a The function of A) store eggs C) keep vagif Golgi apparatus 	nd trachea the collaterial gland in s na moist s takes part in rate synthesis	 (B) Air chamber (D) Longitudinal respiratory tube cockroach is to (B) store sperms (D) secretate the egg case (B) Lipid synthesis
 C) Spiracle a C) Spiracle a C) store eggs C) keep vagir C) carbohydr 	the collaterial gland in s na moist s takes part in rate synthesis	 (D) Longitudinal respiratory tube cockroach is to (B) store sperms (D) secretate the egg case
The function of A) store eggs C) keep vagir Golgi apparatus A) Carbohydr	the collaterial gland in s na moist s takes part in rate synthesis	 cockroach is to (B) store sperms (D) secretate the egg case
 A) store eggs C) keep vagir Golgi apparatus A) Carbohydr 	s na moist s takes part in rate synthesis	(B) store sperms(D) secretate the egg case
 A) store eggs C) keep vagir Golgi apparatus A) Carbohydr 	s na moist s takes part in rate synthesis	(B) store sperms(D) secretate the egg case
 C) keep vagir Golgi apparatus A) Carbohydi 	na moist s takes part in rate synthesis	(D) secretate the egg case
Solgi apparatus A) Carbohydi	s takes part in rate synthesis	V) Cxalcadefale
A) Carbohydi	rate synthesis	(B) Linid synthesis
	-	(D) Lipid Officiolo
	nunesis	(D) Oxydative photophosphorylation
he longest livi	ng cells amongst the f	ollowing are
A) T-cells	(B) B-cells	(C) Memory cells (D) RB
	(D) (EMP	Correction decarbox aluar
Aitochondria in	creases in the cells of	
A) dry seed		(B) dormant seed
C) germinatir	ng seed	(D) ripening fruits
What holds the	ribosomes together in	
enolynt3 (C)	Chieseottic (3)	(a) Austria (a)
The second second	c ions are required for	r enzyme activity. These inorganic substances
are		
	(D) an instar	(C) prosthetic group (D) activator
A) enzyme	(B) co-factor	(C) prosthetic group (D) activator
A) enzyme	(C) metal)	(A) Cymleden (D) Choleystoeliau
A) enzyme Diploid chromo	(C) metal)	what shall be the number of chromatids in each
A) enzyme Diploid chromo	some number being 8,	(C) 8 (D) 16
A) enzyme Diploid chromo daughter after I A) 2	some number being 8, Meiosis-I ? (B) 4	what shall be the number of chromatids in each (C) 8 (D) 16
 A) enzyme Diploid chromo laughter after I A) 2 Potassium ion e 	some number being 8, Meiosis-I ? (B) 4	(C) 8 (D) 16
A) enzyme Diploid chromo daughter after I A) 2	some number being 8, Meiosis-I ? (B) 4	what shall be the number of chromatids in each (C) 8 (D) 16
	Mitochondria in (A) dry seed (C) germinatir What holds the (A) mRNA Some inorganie	Mitochondria increases in the cells of (A) dry seed (C) germinating seed What holds the ribosomes together in (A) mRNA (B) rRNA Some inorganic ions are required for

	 If a cell 'X' has op=6 and TP=5 and i then what will be the direction of wate (A) From other cell to cell (X) 	r movement?
	 (A) From other cell to cell 'X' (C) Water absorption is not affected 	(B) From cell 'X' to other cell
	(C) Water absorption is not affected(D) Water will move freely.	by temperature.
	(D) Longeudinal resolitation juba	
194	Bidirectional translocation of minerals	takes place through
	(A) xylem (B) phloem	(C) parenchyma (D) cambium
195.	and a state of the art of youry sis i	and TCA cycle is
	(A) Oxaloacetate	(B) Glucose-1-6 diphosphate
	(C) Pyruvic acid sectors ball (8)	(D) Acetyl Co-A
196.	Out of 38 ATP molecules produced pe	
		I glucose, 22 ATP molecules are formed
	(A) Respiratory chain	(B) Kreb's cycle
	(C) Oxidative decarboxylation	(D) EMP
197.	The maximum growth rate occurs in	Milochonona Increases In the cells of
	(A) exponential phase	(B) lag phase
	(C) stationary phase	(D) senescent phase
198.	Mobilisation of stored food in germinati	ing seed is triggered by
PAY	(A) Auxin (B) Cytokinin	(C) Gibberellin (D) Ethylene
1005	nzvine activity. These inorganic subule	Contraction of the state of the second
199.	Digestive enzymes are released by pan to the hormone	creas and bile is released by liver in resp
	(A) Zymogen (B) Cholecystokinir	n (C) Insulin (D) Secretin
rion	in a bit a line automation of a manufaction	
200.	After O ₂ diffusion into pulmonary cap with	billaries, it diffused into and t
	(A) RBC, haemoglobin	(B) RBC, CO,
beac	101 1.1	(D) Interstitial fluid, RBC
		by
	(C) Levitt (D) Bose	(A) Same (B) Stewalt