Chemistry

Chemical Reactions & Equations

- 1. Ramesh took a beaker containing dilute HCl and dropped some zinc granules into it. He observed bubbles coming out.
 - (a) Write the balanced chemical equation.
 - (b) Name the gas released.
 - (c) How will you test this gas?
- 2. A student used copper vessels for storing silver nitrate solution. After a few days, he observed holes in the vessel. Explain the reason with chemical reaction.
- 3. Assertion (A): Neutralisation reaction is always exothermic. Reason (R): Formation of water from H^+ and OH^- releases energy.
- 4. Assertion (A): Combustion of methane is an oxidation reaction. Reason (R): Methane loses hydrogen during burning.
- 5. A reddish-brown gas is liberated when lead nitrate is heated.
 - (a) Write the balanced chemical equation.
 - (b) Name the gas evolved.
 - (c) Identify the type of reaction.
- 6. A reaction mixture contains Fe^{3+} , Al^{3+} and Cu^{2+} ions. Which metal will be displaced first if zinc granules are added? Justify using reactivity series.
- 7. A student added dilute sulphuric acid to marble chips and observed effervescence.
 - (a) Write the balanced equation.
 - (b) Which gas is evolved?
 - (c) How can you confirm this gas?
- 8. A silver spoon turns black after a few days of exposure to air.
 - (a) Which chemical reaction is responsible?
 - (b) Write the equation.
 - (c) Suggest one method to prevent it.
- 9. Why is respiration considered an exothermic redox reaction? Support with balanced chemical equation.
- 10. Explain why electrolysis of acidified water is considered a decomposition reaction, but rusting of iron is considered a combination reaction.
- 11. A piece of magnesium ribbon is burnt in nitrogen gas.
 - (a) Write the balanced reaction.
 - (b) Name the product formed.
 - (c) State the type of reaction.
- 12. A student burnt magnesium ribbon in air.
 - (a) Write the balanced equation.
 - (b) Identify type of reaction.
 - (c) Is it exothermic or endothermic?
- 13. 2g of ferrous sulphate crystals were heated strongly in a dry boiling tube.

Chemistry

A

Chemical Reactions & Equations

- (a) Write the observations.
- (b) Write balanced chemical equation.
- (c) Name type of reaction.
- During whitewashing, $Ca(OH)_2$ is applied on walls. After a few days, walls appear shiny due to the formation of $CaCO_3$.
 - (a) Write the balanced chemical equation.
 - (b) Identify the type of reaction.
- Assertion (A): Electrolysis of water gives hydrogen and oxygen gases in the ratio of 2 : 1. Reason (R): The molecular formula of water is H_2O .

Solution

- S1. Sol. (a) $Zn + 2HCl \rightarrow ZnCl_2 + H_2 \uparrow$
 - (b) Hydrogen gas.
 - (c) Bring a burning splinter near it →burns with a 'pop' sound.
- S2. Sol. Cu displaces Ag from $AgNO_3$:

 $Cu + 2AgNO_3 \rightarrow Cu(NO_3)_2 + 2Ag$

Cu is oxidised to Cu^{2+} ; $Cu(NO_3)_2$ formed is soluble and the metal dissolves away, thinning the vessel and causing perforation.

- S3. Sol. Both A and R are true, R correct explanation.
- S4. Sol. Both A and R are true, but R not the correct explanation.
- S5. Sol. (a) $2Pb(NO_3)_2 \rightarrow 2PbO + 4NO_2 + O_2$
 - (b) Nitrogen dioxide (NO_2)
 - (c) Thermal decomposition.
- S6. Sol. Cu^{2+} is displaced first to copper metal:

 $Zn + Cu^{2+} \longrightarrow Zn^{2+} + Cu(s)$

Reactivity series: ... Al > Zn > Fe > H > Cu

 \overline{Zn} can reduce $Cu^{2+} \to Cu$ readily.

 Fe^{3+}/Fe^{2+} can also be reduced by Zn but Cu^{2+} has a greater tendency to get reduced, so it occurs first readily.

 Al^{3+} is not displaced to Al(s) in aqueous solution by Zn because Al is more reactive than Zn (and protected by a stable oxide layer).

- S7. Sol. (a) $CaCO_3 + H_2SO_4 \rightarrow CaSO_4 + CO_2 \uparrow + H_2O$
 - (b) CO_2
 - (c) Pass through limewater \rightarrow turns milky ($CaCO_3 ppt$.). (Extra: excess CO_2 clears milkiness due to $Ca(HCO_3)_2$).
- S8. Sol. (a) Corrosion/tarnishing due to silver sulphide formation.
 - (b) Simplified: $2Ag + H_2S \rightarrow Ag_2S + H_2$
 - (c) Keep airtight.
- S9. Sol. $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + \text{energy}$

Glucose is oxidised (adds O/loses H), O_2 is reduced to H_2O .

Energy released \rightarrow exothermic.

Chemistry

Chemical Reactions & Equations

S10. Sol. Electrolysis of acidified water:

Single compound decomposes $\to 2H_2O \to 2H_2 + O_2$ (decomposition). Rusting: Overall combination of Fe with O_2/H_2O to form hydrated Fe_2O_3 $Fe + O_2 + H_2O \to Fe_2O_3 \cdot xH_2O$ (rust).

- S11. Sol. (a) $3Mg + N_2 \rightarrow Mg_3N_2$
 - (b) Magnesium nitride.
 - (c) Combination reaction.
- S12. Sol. (a) $2Mg + O_2 \rightarrow 2MgO$
 - (b) Combination reaction.
 - (c) Exothermic.
- S13. Sol. (a) Green crystals \rightarrow brown solid + smell of SO_2/SO_3
 - (b) $2FeSO_4 \rightarrow Fe_2O_3 + SO_2 + SO_3$
 - (c) Thermal decomposition.
- S14. Sol. (a) $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 \downarrow +H_2O$
 - (b) Reaction type = Combination reaction.
- S15. Sol. Both true; correct explanation (from $2H_2O \rightarrow 2H_2 + O_2$).