

Physics


- 1. A 800 turn coil of effective are $0.05 m^2$ is kept perpendicular to a magnetic field $5 \times 10^{-5}T$. When the plane of the coil is rotated by 90° around any of its coplanar axis in 0.1 s, the emf induced in the coil will be.
 - (a) 0.02 V
 - (b) 2 V
 - (c) 0.2 V
 - (d) $2 \times 10^{-3} V$
- 2. A conducting circular loop is placed in a uniform magnetic field, B =0.025 *T* with its plane perpendicular to the loop. The radius of the loop is made to shrink at a constant rate of 1 mm s⁻¹. The induced emf when the radius is 2 cm, is
 - (a) $2\pi\mu V$
 - (b) $\pi\mu V$
 - (c) $\frac{\pi}{2}\mu V$
 - (d) 2 µV
- 3. A magnetic field of $2 \times 10^{-2}T$ acts at right angles to a coil of area 100 cm^2 , with 50 turns. The average e.m.f. induced in the coil is 0.1 V, when it is removed from the filed in t sec. The value of t is.
 - (a) 10 s
 - (b) 0.1 s
 - (c) 0.01 s
 - (d) 1 s
- 4. An electron moves on a straight-line path XY as shown. The abcd is a coil adjacent to the path of electron. What will be the direction of current, if any, induced in the coil?

- (a) The current will reverse its direction as the electron goes past the coil
- (b) No current induced
- (c) abcd
- (d) adcb
- 5. In the given circuit the reading of voltmeter V_1 and V_2 are 300 volts each. The reading of the voltmeter V_3 and ammeter A are respectively.

- 220 V,50 Hz
- (a) 150 V, 2.2 A
- (b) 220 V, 2.2 A
- (c) 220 V, 2.0 A
- (d) 100 V, 2.0 A
- 6. An series L-C-R circuit is connected to a source of A.C. current. At resonance, the phase difference between the applied voltage and the current in the circuit is,
 - (a) π
 - (b) zero
 - (c) π/4
 - (d) $\pi/2$
- 7. Find the value of the angle of emergence from the prims. Refractive index of the glass is $\sqrt{3}$.

- 8. A charged particle having drift velocity of $7.5 \times 10^{-4} m s^{-1}$ in an electric field of $3 \times 10^{-10} V m^{-1}$, has a mobility in $m^2 V^{-1} s^{-1}$ of
 - (a) 2.25×10^{15}
 - (b) 2.5×10^6
 - (c) 2.5×10^{-6}
 - (d) 2.25×10^{-15}
- 9. In order to increase the magnifying power of a compound microscope.
 - (a) The focal lengths of the objective and the eye piece should be small
 - (b) Objective should have small focal length and the eye piece large
 - (c) Both should have large focal lengths
 - (d) The objective should have large focal length and eye piece should have small
- 10. Match the Column I and Column II

	Column I		Column II
(A)	Forward	(1)	Due to
	bias		concentration
			gradient
			across P and
			N side of a
			diode
(B)	Reverse	(2)	Due to flow of
()	bias		<mark>charges in t</mark> he
			presence of
			electric filed
(C)	Drift	(3)	Width of
	current		depletion
			layer
			decreases
(D)	Diffusion	(4)	Width of
. ,	current		depletion
			layer
			increases

- (a) A-3,B-4,C-2,D-1
- (b) A-4,B-3,C-2,D-1
- (c) A-3,B-4,C-1,D-2
- (d) A-1,B-4,C-2,D-3

Answer Key

Physics
S1.Ans.(a)
S2.Ans.(b)
S3.Ans.(b)
S4.Ans.(a)
S5.Ans.(b)
S6.Ans.(b)
S7.Ans.(b)
S8.Ans.(b)
S9.Ans.(a)
S10.Ans.(a)