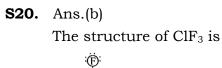

Solutions


Adda247 Publications

For More Study Material Visit: adda247.com

297

or More Study Material Visit: adda247.com

The number of lone pair of electrons on central Cl is 2.

S22. Ans.(d)

$$\operatorname{IBr}_{2}^{-} \otimes \operatorname{IBr}_{1}^{-} = 7 + 14 + 1$$
$$\operatorname{IBr}_{2}^{-} \otimes \operatorname{IBr}_{1}^{-} = 7 + 15$$
$$\operatorname{Br}_{1} = 22$$
$$\operatorname{F}_{1}$$

$$XeF_{2} \bigcirc \bigvee_{F}^{F} \bigcup_{F}^{O} = 8 + 14$$

S23. Ans.(c)

$$XX' = \text{Linear} \qquad \bigcirc X - X'$$
$$XX'_{3} = \text{T-shape} \qquad X - X - X'$$
$$\downarrow X'$$

0

 $XX'_{s} = square pyramidal$

XX', = Pentagonal bipyramidal

S24. Ans.(c)

S25. Ans.(c)

 KO_2 absorb CO_2 and release oxygen.

 $2KO_2+CO_2\rightarrow K_2CO_3+3/2O_2$

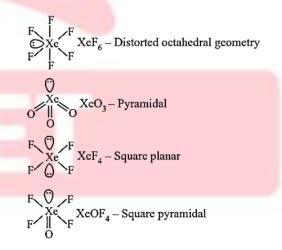
Bond dissociation enthalpy $\propto \frac{1}{\text{Bond length}}$

S27. Ans.(c)

Strong reducing behaviour of H_3PO_2 is due to presence of 1 –OH group and 2 P–H group.

S28. Ans.(d)

Fluorine is the most electronegative element of the periodic table. Therefore, it can oxidise water to oxygen.


 $2F_2+2H_2O\to 4HF+O_2$.

S29. Ans.(c)

XeF₄ is a AB⁴L² type molecule with 4 – bond pair and 2 lone pair. Octahedral geometry and shape is square planar with hybridization sp³d².

S31. Ans.(c)

Bond dissociation energy of halogen family decreases down the group as the size of the atom increases. The bond dissociation energy of fluorine is, however, lower than that of chlorine and bromine because of inter electronic repulsions present in the small atom of fluorine.

S38. Ans.(c) Hence bond energy decreases in the order: OF_2 (oxygen difluoride) is a fluoride of $Cl_2 > Br_2 > F_2 > I_2$ because fluorine oxygen is more electronegative than oxygen. **S32.** Ans.(c) **S39.** Ans.(b) Correct order of acidity among oxo acids of Cl is $HClO_4 > HClO_3 > HClO_2 >$ NO_2 is not used as a food preservative. HClO because the oxidation number of **S40.** Ans.(d) central atom increases, acidic nature Order for acidity is $H_2S < H_2Se < H_2Te$, as increases. we move down the group atomic radius **S33.** Ans.(b) of atom increases because of which size Phosphinic acid (Hypophosphorous acid) also increases and bond dissociation is a monoprotic acid (H₃PO₃). enthalpy decreases and such atoms can easily furnish H⁺ in aqueous medium. S41. Ans.(b) OH / XeF₂ is isostructural with ICl₂ While phosphonic acid - H,PO, H/ is a diprotic acid. **S34.** Ans.(b) $Cu + HNO_3(conc.) \rightarrow Cu(NO_3)_2 + (Brown gas)$ Sp³d hybridization and linear geometry $2NO_2 + H_2O$ S42. Ans.(d) With HNO_3 (dil) gives NO gas. Heating of ammonium dichromate yields S35. Ans.(b) nitrogen: In H₃PO₂, presence of 2H makes H₃PO₂ a It is a laboratory preparation for reducing agent. nitrogen. $(NH_4)_2 Cr_2 O_7 \xrightarrow{\Delta} N_2 + Cr_2 O_3 + H_2 O_3$ $2KClO_3 \xrightarrow{\Delta} 2KCl + 3O_2$ $Zn(ClO_3)_2 \xrightarrow{\Delta} ZnCl_2 + 3O_2$ S36. Ans.(c) $K_2Cr_2O_7 \xrightarrow{\Delta} 2K_2CrO_4 + Cr_2O_2 + \frac{3}{2}O_2$ Fluorine forms strongest hydrogen bond among all halogens. **S43.** Ans.(c) S37. Ans.(a) $HClO_4$ is the strongest acid, as it has greater number of 'O' atoms, so more e-s will be pulled away from O-H bond and more this bond will be weakened. $XeF_4 \rightarrow Square planar$ Between H_2SO_4 and $HClO_4$, $HClO_4$ is strong because perchlorate ion formed by removal of hydrogen atom is more stabilized than sulphate ion as negative charge is more dispersed in perchlorate $XeO_A \rightarrow$ Tetrahedral structure non-identical geometry. ion.