Solutions

S1. Ans. (c)

(1)
$$KCIO_3 + I_2^0 \longrightarrow 2KIO_3 + CI_2^0$$
, Oxidation

Redox Reaction

(2)
$$H_2^0 + Cl_2^0 \longrightarrow 2HCl^{-1}$$
,
Oxidation

Redox Reaction

(3)
$$BaCl_2^{-1} + Na_2SO_4^{-2} \longrightarrow$$

 $BaSO_4 + 2NaCl^{-1}$

This is not a redox reaction as there is no change in oxidation state

(4)
$$Zn^{\circ} + CuSO_{4} \longrightarrow ZnSO_{4} + Cu^{\circ},$$
Oxidation

Redox Reaction

S2. Ans.(c)

Redox couples is both the reduced and oxidised form involve same element.

S3. Ans.(d)

Reaction has to be balanced in acidic medium 'O' atoms are balanced by adding H₂O and then H-atom is balanced by adding H⁺ ions and charge is balanced by e⁻.

Oxidation:
$$SO_3^{2-} + H_2O \rightarrow SO_4^{2-} + 2H^+ + 2e^- \times 3$$

Reduction:
$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$$

$$Cr_2O_7^{2-} + 3SO_3^{2-} + 8H^+ \rightarrow 2Cr^{3+} + 3SO_4^{2-} + 4H_2O$$

$$a = 1$$

$$b = 3$$

$$c = 8$$

S4. Ans.(b)

Decomposition redox reaction leads to breakdown of a compound into two or more compounds at least one of which must be in the elemental state with change in oxidation number.

$$2Pb(NO_3^{2-})_2(s) \rightarrow 2PbO(s) + 4NO_2(g) + O_2^{\circ}(g)$$

S5. Ans.(a)

Aluminium is more electropositive than Cr, so it displaced chromium from Cr_2O_3 .

$$Cr_2O_3 + Al \xrightarrow{\Delta} Al_2O_3 + Cr$$

$$CH_4(g) + 4Cl_2(g) \rightarrow CCl_4(l) + 4HCl(g)$$

In the given reaction

Let Carbon oxidation number assumes to

H oxidation state is +1

In CH_4

$$x + 4 \times 1 = 0$$

$$x = -4$$

In CCl_4

Cl oxidation state is -1

$$x + 4 \times (-1) = 0$$

$$x = +4$$

Thus, Change in oxidation state of carbon is from -4 to +4.

S7. Ans.(d)

(a)
$$Cl O_3^-$$

$$x + 3(-2) = -1$$

$$x = +5$$

(b)
$$K_2 Cr_2 O_7$$

$$2(+1) + 2x + 7(-2) = 0$$

$$X = +6$$

(c)
$$H\underline{Au}Cl_4$$

$$(+1) + x + 4(-1) = 0$$

$$x = +3$$

(d)
$$Cu_2\underline{O}$$

$$2(+1) + x = 0$$

$$x = -2$$

A.
$$2Cu^+ \xrightarrow{+2} Cu^{2(+)} + Cu$$
} Disproportionation

$$\begin{array}{c|c} & red \\ \hline B. \ 3Mn \ O_4^{2(-)} + 4H^{(+)} \longrightarrow \ 2Mn O_4^{-} + Mn O_2 \\ \hline oxd \ + 2H_2O \} Disproportionation \end{array}$$

C.
$$2KMnO_4^{-2} \longrightarrow K_2MnO_4 + MnO_2 + O_2$$

 \therefore not a disproportionation

D.
$$2M \stackrel{+7}{n} O_4^- + 3M \stackrel{+2}{n^{2(+)}} + 2H_2O \longrightarrow 5M \stackrel{+4}{nO_2} + 4H^{\oplus}$$

S9. Ans.(a)

The correct structure of Br_3O_8 .

The oxidation no of bromine is $\frac{16}{3}$ in this structure

Tribromooctaoxide

$$2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \rightarrow$$
$$2Mn^{2+} + 10CO_2 + 8H_2O$$

$$CaF_2 + H_2SO_4 \rightarrow CaSO_4 + 2HF$$

This reaction is not a oxidation reaction as none of the atom in the reaction is showing any change in the oxidation number. H_2SO_4 , here in the reaction is not acting as a reducing nor an oxidizing agent.

\$12. Ans.(b)

$$Fe(NO_2)_2 \to Fe^{3+} + 2NO_3^-$$

 $Fe^{2+} \rightarrow Fe^{3+}$ change in oxidation state = 1

 $2NO_2^- \rightarrow 2NO_3^-$ change in oxidation state = 4

Total change in oxidation state = 5

So, $Fe(NO_2)_2$ will have maximum number of moles.

 $Fe(NO_2)_2$ will need maximum amount of acidic $KMnO_4$

For FeSO₄

 $Fe^{2+} \rightarrow Fe^{3+}$ change in oxidation state = 1 $FeSO_4$ will need least amount of $KMnO_4$.

\$13. Ans.(b)

CrO₅ has a very famous butterfly structure

$$x + 4(-1) + 1(-2) = 0$$