Solutions

S4.

S5.

S1. Ans.(d)

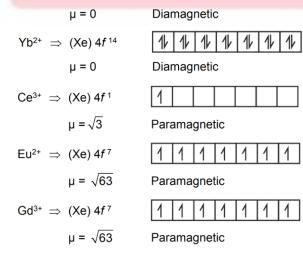
Ions	No. of unpaired electrons	Configuration
Ti ³⁺	1	3d1
Cr^{2+}	4	3d ⁴
Mn^{2+}	5	3d ⁵
Fe^{2+}	4	3d ⁶
Sc^{3+}	0	3d ⁰

Spin magnetic moment is given by $\sqrt{n(n+2)}BM$

 \therefore $Cr^{2\scriptscriptstyle +}$ and $Fe^{2\scriptscriptstyle +}$ will have same spin only magnetic moment.

S2. Ans.(b)

 $E_{Mn^{3+}/Mn^{2+}}^{\circ} > E_{Cr^{3+}/Cr^{2+}}^{\circ} \text{ or } E_{Fe^{3+}/Fe^{2+}}^{\circ}$


Electronic configuration of $Mn^{3+} = [Ar]3d^4$ Electronic configuration of $Mn^{2+} = [Ar]3d^5$ Electronic configuration of $Cr^{3+} = [Ar]3d^3$ Electronic configuration of $Cr^{2+} = [Ar]3d^4$ As Mn^{3+} from d⁴ configuration goes to more stable d⁵ configuration (Half-filled), due to more exchange energy in d⁵ configuration.

S3. Ans.(d)

Magnetic moment $\mu = \sqrt{n(n+2)}BM$

 $n \rightarrow$ number of unpaired electrons $n \rightarrow$ number of unpaired electron

 $Ce^{4+} \Rightarrow (Xe) 4f^{0}$

$Eu^{3+} \Rightarrow (Xe) 4f^{6}$	1 1 1 1 1 1
$\mu = \sqrt{48}$	Paramagnetic
${\sf Pm^{3+}} \Rightarrow ~({\sf Xe})~4f^4$	1 1 1 1
$\mu = \sqrt{24}$	Paramagnetic
${ m Sm^{3+}} \Rightarrow ~({ m Xe})~4f^{5}$	
$\mu = \sqrt{35}$	Paramagnetic
Hence Ce ⁴⁺ & Yb ²	+ are only diamagnetic.

Ans.(c) Reason is the correct explanation of Assertion.

 $\begin{array}{ll} Ans.(b)\\ Cu(s) \rightarrow Cu(g) \rightarrow Cu^{+}(g) \rightarrow Cu^{+2}(g) \rightarrow Cu^{+2}(aq)\\ \Delta H_{atomisation} & IE_{1} & IE_{2} & Hydration\\ & & energy \end{array}$

Cu⁺² is more stable than Cu⁺¹ because released hydration energy is more in case of Cu⁺² than Cu⁺¹.

S6. Ans.(b)

$$C \longrightarrow \overset{+3}{V_2O_3} \xrightarrow{+4} \overset{+4}{V_2O_4} \xrightarrow{+5} \overset{+5}{V_2O_5}$$

Acidic Nature ↑

 $D \rightarrow V_2O_5$ dissolve in acid to give VO_4^{-3} salts. This doesn't shown by V_2O_4

S7. Ans.(a)

Statement I: Cr^{2+} is reducing as its configuration changes from d⁴ to d³, the latter having a half-filled t_{2g} level. On the other hand, the change from Mn³⁺ to Mn²⁺ results in the half-filled (d⁵) configuration which has extra stability.

Statement II: Sc^{3+} has zero unpaired electron, so magnetic moment is also zero. Hence, Sc^{3+} will repelled by the applied magnetic field.

S8. Ans.(b)

Conceptual

S9. Ans.(a) Conceptual

For More Study Material Visit: adda247.com

S10.	Ans.(a)				Mn=0
	The electronic configuration of $Cr^{2+}[Ar]3d^4$ So, Number of unpaired electron is 4 Spin only magnetic moment =					• Permanganate (MnO_4^-) :
						$2^{5}Mn - 3d^{5}4s^{2}$
				(+2) = 4.9 B. M.		If bonding take place by overlap of p- orbital of oxygen & d-orbital of Mn, then
S 11			V	,		manganate and permaganate ions are
511.	Ans.(c) In the +6 oxidation state, the most					tetrahedral.
				rmed by chromium		
	are	the ch	roma	te, CrO_4^{-2} , and	S17.	Ans.(a)
	dichromate, $Cr_2 O_7^{2-}$, ion					$Co^{3+} = [Ar]3d^6$, Unpaired electron (n) = 4
010		, correct op	otion i	is c.		Spin magnetic moment = $4\sqrt{4(4+2)}$
S12.	Ans.(~ 1	Assesses shows		$=\sqrt{24}$ B.M
	(A) In m			Manganese shows r of oxidation states		$Cr^{3+} = [Ar]3d^3$, Unpaired electron (n) = 3
		e., (+2, to +		r or omdation states		Spin magnetic moment = $\sqrt{3(3+2)}$
		•		completely filled d-		$=\sqrt{15}$ B.M
			-	and state as well as		$Fe^{3+} = [Ar]3d^5$, Unpaired electron (n) = 5
				ate, thus it is not		Spin magnetic moment = $\sqrt{5(5+2)}$
		-		nsition element. only one oxidation		$=\sqrt{35}$ B.M
		ate i.e., +3.		only one onduction		$Ni^{2+} = [Ar] 3d^8$, Unpaired electron (n) = 2
	(D) Cı	u ⁺ underg	goes	disproportionation		Unpaired electron (n) = 0; Diamagnetic
			-	us solution	S18.	
		$Cu^+(aq) \to C$	'u ²⁺ (0	uq) + Cu(s)		SO_2 is a gas that can readily decolourise
\$13.	Ans.(,	m al	a a b a + 0 a + 4		acidified $KMnO_4$ solution.
				so show +2 or +4 solution or in solid	S19.	Ans.(d)
		ounds.		oracion or in cona		5f, 6d, 7s level having comparable
	Most common oxidation state of					energies. There is very less energy gap
	Lanth	nanoids is -	+3			between them.
S14.	Ans.(,			S20.	Ans.(d)
	(A)	Copper	(ii)	Transition metal		In a solution containing $HgCl_2, I_2$ and I^- ,
	(B)	Fluorine	(i)	Non-metal		both $HgCl_2$ and l_2 compete for I^- .
	(C)	Silicon	(iv)	Metalloid		Since formation constant of $[HgI_4]^{2-}$ is
	(D)	Cerium	(iii)	Lanthanoid		1.9×10^{30} which is very large as
	(-)		()			compared with $I_3^-(K_f = 700)$
S15.	Ans.(Ans.(a)				\therefore I^- will preferentially combine with
						$HGCl_2 + 2I^- \rightarrow HgI_2 \downarrow + 2Cl^-$
						Red ppt
	• Mar	• Manganate $(Mn0_4^{2-})$:				$HgI_2 + 2I^- \rightarrow [HgI_4]^{2-}$
						$IIgI_2 + 2I \rightarrow [IIgI_4]$ soluble
					ļ	

For More Study Material Visit: adda247.com

S21.	Ans.(b)	S28.	Ans.(d)
	Ce a have +4 oxidation state.		Magnetic moment (μ) for $Ni^{2+} = \sqrt{n(n+2)}$
S22.	Ans.(a)		
	Lanthanon's or lanthanoids are much		1, 1, 1, 1, 1 1 3d ⁸
	less reactive as compared to aluminium because of high ionization potential		n = 2
	because of lanthanoid contraction		$\mu = \sqrt{2(2+2)} = 2\sqrt{2}$
	extremely over dominates on inert pair		$\mu = \sqrt{2(2+2)} = 2\sqrt{2}$
	effect.		~ 2.84 B.M
	Ce^{4+} is a good oxidizing agent +4 state	S29.	Ans.(d)
	and readily converts to +3 state. As one moves from Ce to Lu, ionic radius		Lanthanoid contraction is a significant
	regularly decreases or covalent character		decrement in atomic size of atoms in ' f '
	increases because of which basic		block because of poor shielding effect of
602	character decreases.		'f' orbital electrons as nuclear charge
543.	Ans.(a) Electronic configuration of <i>Eu,Gd</i> and <i>Tb</i> :		effectively increases & atom shrinks.
	$Eu = [Xe]4f^{7}6s^{2}Gd = [Xe]4f^{7}5d^{1}6s^{2}$	S30.	Ans.(a)
			$\mu = \sqrt{n(n+2)}$
S24.	$Tb = [Xe]4f^{9}6s^{2}$ Ans.(b)		
	$K_2Cr_2O_7 + H_2SO_4 + 3SO_2 \rightarrow K_2SO_4$		n = unpaired electron
	$+Cr_2(SO_4)_3 + H_2O$		$Ni^{2+} = 3d^8$ 2 unpaired electron
S 25	Ans.(d)		$= 2\sqrt{2} = 2.83$ BM
	Gadolinium belongs to 4 <i>f</i> series.	S31.	Ans.(b)
	Atomic number = 64		Interstitial compounds are chemically
	Electronic configuration for ' f ' series is		inert. They do not show reactivity & lie at
	$(n-2)f^{1-14}(n-1)d^{1-10}ns^2$	000	the end in reactivity series
	So, electronic configuration is	S32.	Ans.(d) $Yb(70) = [Xe]4f^{14}5d^{0}6s^{2}$
	$[Xe]4f^{7}5d^{1}6s^{2}$ $4f^{7} \text{ provides extra stability.}$		$Yb^{2+} = [Xe]4f^{14}5d^{0}6s^{0}$
S26.	Ans.(b)		Yb^{2+} has no unpaired electron so, it is a
	Zr (40) and Hf (72) will have same atomic		diamagnetic species.
	size because of lanthanoid contraction	S33.	Ans.(b)
	and poor shielding effect.		Sodium sulphide is soluble in water. The
S27.	Ans.(b)		solubility product (and hence solubility) of ZnS is larger than that of CuS.
	Formation of $Fe(CO)_5$ does not involve		
	oxidation of Fe because here oxidation		
	state of Fe is 0.		