Solutions

S1. Ans.(d)

A	[Co(NH3)5(NO2)]Cl2	II	Linkage isomerism due to 'N' and 'O' linkage by NO ₂
В	[Co(NH3)5(SO4)]Br	III	Ionization isomerism
С	[Co(NH ₃)6][Cr(CN)6]	IV	Coordination isomerism
D	[Co(H ₂ O) ₆]Cl ₃	Ι	Solvate isomerism

S2. Ans.(d)

In $[Co(NH_3)_6]^{3+}$, Co^{3+} ion is having 3d⁶ configuration.

Electronic configuration of Co³⁺:

In presence of NH₃ ligand, pairing of electrons takes place and it becomes diamagnetic complex ion.

In presence of NH₃ ligand :

 \therefore [Co(NH₃)₆]³⁺ is octahedral with d²sp³ hybridisation and it is diamagnetic in nature.

In case of $[CoF_6]^{3-}$, Co is in +3 oxidation state and it is having $3d^6$ configuration.

In presence of weak field F- ligand, pairing does not take place.

In presence of F- ligands :

 \therefore In $[CoF_6]^{3-}$, Co^{3+} is sp^3d^2 hybridised with four unpaired electrons, so it is paramagnetic in nature.

S3. Ans.(d)

 $[Co(NH_3)_6]^{3+}$ is a homoleptic complex as only one type of ligands (NH₃) is coordinated with Co^{3+} ion. While $[Co(NH_3)_4Cl_2]^+$ is a heteroleptic complex in which Co^{3+} ion is ligated with more than one type of ligands, i.e., NH_3 and Cl^-

S4. Ans.(b)

Maximum covalency of boron is four.

S5. Ans.(c)

Complex salt is K₂[Pt(NH₃)₂Cl₂]

Double salt is $KAl(SO_4)_2 \cdot 12H_2O$ (ptash alum)

S6. Ans.(d)

Given complex compounds exhibit solvate isomerism having co-ordination number = 6.

S7. Ans.(d)

(1) $[Pt(NH_3)_2Cl(NO_2)]$

(2) $[Co(NH_3)_5(CO_3)]C1$

(3) $[Cr(NH_3)_3(H_2O)_3]Cl_3$

(4) $K_3[A1(C_2O_4)_3]$

Option 4 contain all ligands are of same type i.e., why complex will be homoleptic.

S8. Ans.(b)

Due to Chelation effect of (en).

S9. Ans.(d)

S10. Ans.(d)

In case of metal carbonyls, the bonding has both σ and π nature, where ligand to metal bond is ' σ ' (coordinate) bond and metal to ligand bond is ' π ' (synergic) bond.

S11. Ans.(d)

 $[Ag(H_2O)_2][Ag(CN)_2]$

IUPAC name:

diaquasilver(I) dicyanidoargentate(I)

For More Study Material Visit: adda247.com **S12.** Ans.(c) Stronger the field strength of ligand, higher will be the energy absorbed by the complex. \Rightarrow 'en' has a stronger field strength than according to spectrochemical $'H_2O'$ series. : Correct order of energy absorbed will be: $[Ni(H_2O)_2(en)_2]^{2+}$ $[Ni(en)_3]^{2+}$ > $[Ni(H_2O)_4(en)]^{2+}$ i.e., C > A > B**S13.** Ans.(d) Conceptual **S14.** Ans.(c) Conceptual **\$15.** Ans.(d) Spectrochemical series the correct order of increasing field strength of ligands to form coordination compounds $I^{-} < Br^{-} < S^{2-} < SCN^{-} < Cl^{-} < N_{3}^{-}$ $< F^{-} < OH^{-} < C_2 O_4^{2-} < H_2 O <$ $NCS^- < EDTA^{4-} < NH_3 < en < CN^-$ < *CO* Thus option d is correct. **S16.** Ans.(a) Hybridisation Geometry Coordination number Sp^3 Tetrahedra 4 dsp^2 Square 4 planar

d²sp³ Octahedral

 $Sp^{3}d$

Spectrochemical

S17. Ans.(b)

1

Trigonal

bipyramida

5

6

S18. Ans.(b)

Based on the number of metal atoms present in a complex, they are classified into mononuclear, dinuclear, trinuclear and so on.

Eg: $Fe(CO)_5$: mononuclear

 $Co_2(CO)_8$: dinuclear

 $Fe_3(CO)_{12}$: trinuclear

Hence, option (b) should be the right answer.

S19. Ans.(a)

In $[CoCl_2(en)_2]$, coordination number of *Co* is 6 and this compound has octahedral geometry.

As per given option, type of isomerism is geometrical isomerism.

S20. Ans.(b)

 $Ni(28): [Ar] 3d^8 4s^2$

• Co is a strong field ligand configuration would be:

For, four 'CO'-ligands hybridization would be sp^3 and thus the complex would be diamagnetic and of tetrahedral geometry.

Adda247 Publications

For More Study Material Visit: adda247.com

S34. Ans.(d) $Co^{3^{+}}$ $1 1 1 \longrightarrow 1 1 1 \cdots \cdots \cdots \cdots \cdots$

As CN^- being a strong field ligand will form a low-spin complex.

\$35. Ans.(d)

Cobalt III Chloride means that the coordinate ion number of Co^{3+} is 6, so compound must be $[Co(NH_3)Cl_3]$.

S36. Ans.(d)

 $[M(en_2)(C_2O_4)]Cl$

Oxidation number of metal = 3

```
Coordination number of metal = 6
Sum of oxidation and coordination
number
= 3 + 6
```

= 9

S37. Ans.(a)

In $[Fe(H_2O)_6]^{3+}$, Fe has oxidation state of +3 $d^5 = t_{2g}^3 \& e_g^2$

C.F.S.E. = 0

A high spin complex is formed because H_2O is a weak field ligand.

 $+0.6 \times 2 - 0.4 \times 3 = 0$

S38. Ans.(a)

Cis platin: Cis $[PtCl_2(NH_3)_2]$ is used as an anticancer agent.

Adda247 Publications

For More Study Material Visit: adda247.com