Solutions

S1. Ans.(c)

The Arrhenius equation is given as

$$k = Ae^{-\frac{E_a}{RT}}$$

$$\therefore \ln k = \ln A - \frac{E_a}{RT}$$

ln k v/s 1/T gives a straight-line graph with slope = $-\frac{E_a}{R}$ and intercept = ln A

S2. Ans.(c)

To calculate value of E_a

Equation used is

 $\log\left(\frac{k_2}{k_1}\right) = \frac{E_a}{2.303 \text{ R}} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$

Hence E_a can be calculated if value of rate constant k is known at two different temperatures T_1 and T_2 .

$$\log\left(\frac{k_2}{k_1}\right) = \frac{E_a}{2.303 \text{ R}} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$
$$\log\left(\frac{4}{1}\right) = \frac{E_a}{2.303 \text{ R}} \left(\frac{1}{300} - \frac{1}{330}\right)$$
$$E_a = \frac{(\log(4)) \times 2.303 \times 8.314 \times 300 \times 330}{30}$$
$$= 3.804 \times 10^4 \text{ J/mol}$$
$$= 38.04 \text{ kJ/mol}$$
Ans.(c)

S4. Ans.(

$$3A \rightarrow 2B$$
$$r = \frac{1}{3} \frac{\Delta[A]}{\Delta t} = + \frac{1}{2} \frac{\Delta[B]}{\Delta t}$$
$$+ \frac{\Delta[B]}{\Delta t} = -\frac{2}{3} \frac{\Delta[A]}{\Delta t}$$

S5. Ans.(d)

r = k[A]^{-1/2}[B]^{3/2}
order =
$$-\frac{1}{2} + \frac{3}{2}$$

= 2/2

= 1

S6. Ans.(b)

Rate = $k[A]^2[B]$

If [A] is tripled and [B] is kept constant.

 $r^{1} = k[3A]^{2}[B]$

 $r^{1} = 9k[A]^{2}[B]$

 $r^{1} = 9r$

Increased by a factor of nine

S7. Ans.(c)

A reaction cannot have zero activation energy.

 E_a is minimum extra amount of energy absorbed by reactant molecules so that their energy becomes equal to threshold value.

S8. Ans.(b)

 $4A + 3B \rightarrow 6C + 9D$

Rate of reaction = $\frac{-d[A]}{dt} \times \frac{1}{4} = \frac{-d[B]}{dt} \times \frac{1}{3} =$ $\frac{+d[C]}{dt} \times \frac{1}{6} = \frac{+d[D]}{dt} \times \frac{1}{9}$ Rate of reaction = $\frac{+d[C]}{dt} \times \frac{1}{6} = \frac{6 \times 10^{-2}}{6} = 10^{-2}$ mol L-1 s-1 Rate of reaction = $\frac{-1}{3} \frac{d[B]}{dt}$ $\frac{-d[B]}{dt} = 3 \times \text{rate of reaction} = 3 \times 10^{-2} \text{ mol}$ L-1 s-1 After interval of 10 sec. = $3 \times 10^{-2} \times 10$ $= 30 \times 10^{-2} \text{ mol } \text{L}^{-1}$ Ans.(c) For zero order reaction: $r = k[A]^{0}$ r = k(constant)Hence, 'y' as 'rate' & 'x' as concentration will give desired graph. For first order reaction: $t_{1/2} = \frac{0.693}{k}$ (constant) Hence, 'y' as ' $t_{1/2}$ ' and 'x' as concentration will give desired graph.

S9.

For More Study Material Visit: adda247.com **S10.** Ans.(b) For first order reaction, $K = \frac{2.303}{t} \log \frac{[A_0]}{[A]}$; where A_0 is the initial concentration of reactant A. $A_0 = 0.1 M$ A = 0.001 Mt = 5 minutes $K = \frac{2.303}{5} \log \frac{0.1}{0.001} = \frac{2.303}{5} \log 10^2 = \frac{2.303}{5} \times 2$ $K = 0.9212 \text{ min}^{-1}$ **S11.** Ans.(a) For a given ΔH is negative. Hence potential energy profile is an exothermic reaction. **S12.** Ans.(d) $lnk = lnA - \frac{Ea}{R} \left(\frac{1}{T}\right)$ In lnk v/s 1/T graph Slope = -Ea/R $-5 \times 10^3 = -Ea/8.313$ $Ea = 5 \times 10^3 \times 8.314$ = 41500 J mol-1 = 41.5 KJ/mol **S13.** Ans.(c) When the concentrations of the reactants are raised, the reaction proceeds more quickly. This is due to an increase in the number of molecules that have the minimum required energy. Collision frequency \propto no. of reacting molecules or atoms.

> Higher the concentration of reactant molecules higher is the probability of collision and so the collision frequency.

S14. Ans.(b)

For first order reaction:

$$k = \frac{2.303}{t} \log \frac{[R_0]}{[R_t]}$$

4.606 × 10⁻³ = $\frac{2.303}{t} \log \frac{[2]}{[0.2]}$
$$t = \frac{2.303}{4.606 \times 10^{-3}} \log 10$$

$$t = \frac{10^3}{2} = 500 \text{ s}$$

S15. Ans.(a)

Rate of reaction according to collision theory can be expressed as

Rate = $Z_{AB} e^{-E_a/RT}$

Where, Z_{AB} represents the collision frequency of the reactants, A & B and $e^{-E_a/RT}$ represents the fraction of molecules with energies equal to or greater than E_a

The number of collisions per second per unit volume of the reaction mixture (A and B) is known as collision frequency Z_{AB} .

S16. Ans.(d)

For zero order reaction

$$t_{1/2} = \frac{a}{2k}$$

$$k = \frac{a}{2t_{1/2}}$$

$$k = \frac{0.02}{2 \times 100}$$

$$= 1 \times 10^{-4} \text{ mol } L^{-1} \text{ s}^{-1}$$

S17. Ans.(c)

First order rate constant is given as,

$$k = \frac{2.303}{t} \log \frac{[A_0]}{[A]}$$

99% completion of reaction,

$$k = \frac{2.303}{t} \log \frac{100}{1}$$
$$k = \frac{2.303}{t} \times 2\log 10$$
$$t = \frac{2.303}{k} \times 2$$
$$t = \frac{4.606}{k}$$

S18. Ans.(c)

 $N_2 + 3H_2 \rightleftharpoons 2NH_3$

Rate of reaction is given as

$$-\frac{d[N_2]}{dt} = -\frac{1}{3}\frac{d[H_2]}{dt} = +\frac{1}{2}\frac{d[NH_3]}{dt}$$

S19. Ans.(b)

$$(t_{1/2})_{zero} = \frac{[A]_0}{2K}$$

 \therefore If $[A]_0$ = doubled, $t_{1/2}$ = doubled

Adda247 Publications

For More Study Material Visit: adda247.com

282

S20 .	Ans.(b)		$t_{1/2} = \frac{0.693}{k} = \frac{0.693}{0.0287 \text{ sec}^{-1}} = 24.14 \text{ sec}$
	- For first order reaction, $t_{1/2} = \frac{0.693}{k}$	S27.	Ans (a)
	which is independent of initial	Ser.	
	concentration of reactant.		when we add catalysts to any chemical
	- For second order reaction, $t_{1/2} = \frac{1}{1+1}$,		reaction. It provides an alternative
	which depends on initial		pathway for the reaction and lowers the
	concentration of reactant.		activation energy. So the reaction
\$21	Ans (a)		becomes fast. As E_f and E_b (activation
521.	Alls.(a)		energy for forward and backward
	In the slowest step.		reaction) is reduced to same extent, so
	$X + Y_2 \rightleftharpoons XY + Y$ Half malagula of V reports with the one		there is no change in enthalpy of
	molecule of X		reaction.
	$\therefore 1 + 0.5 = 1.5$	S28.	Ans.(a)
S22.	Ans.(c)		Reaction is of zero order as the unit of
	$K = 10^{-2} \text{ s}^{-1}, t = ? [R_0] = 20 \text{ g}$		rate constant is mol $L^{-1} s^{-1}$.
	[R] = 5 g		:. Concentration of B = $k \times t = 0.6 \times 10^{-3}$
	$t = \frac{2.303}{\log \frac{[R_0]}{1}}$		$\times 20 \times 60 = 0.72 \text{ M}$
	$k \in [R]$	S29.	Ans.(a)
	$t = \frac{10^{-2}}{10^{-2}} \log \frac{10}{5}$		$t_{112} = \frac{0.693}{2} Sec$
	$t = 138.6 \ sec$		$t_{1/2} = \frac{1}{k}$ see
S23.	Ans.(d) $V(c) = V(c)^2$		Ist order reaction is independent of
	$K = K[cl_2][NO]^{-}$		concentration of reactant.
	\therefore Order with respect to NO = 2	S 30.	Ans.(b)
S24.	Ans.(c)		According to Arrhenius equation:
	$\frac{-d[A]}{-d[B]} = \frac{-d[B]}{-d[B]} = \frac{1.5d[C]}{-d[B]} $ (i)		$k = A^{e^{-L_a/Kl}}$
	dt = dt = dt(1)		$\ln k = \ln A - \frac{E_a}{p_T}$
	$rA + vB \Rightarrow 7c$		Comparing with $y = c + mx$
	-d[A] - d[B] - d[C] (ii)		Slope will be ln k
	$\frac{1}{Xdt} = \frac{1}{Ydt} = \frac{1}{Zdt} \qquad \dots (11)$	S 31.	Ans (d)
	Comparing equation (i) and (ii)	501.	$k_r > k'_r$ that is the previous pressure
	$X:Y:Z = 1:1:\frac{1.5}{1.5}$		constant was higher as the reaction
	$= 1: 1: \frac{2}{3} = 3: 3: 2$		being evolver $T_{1} > T_{2}$
	X = Y = 3, Z = 2	620	being exothermic $1_2 > 1_1$.
S25.	Ans.(a)	554.	$Firsthalpy (AH) = F_{a} activation anarray of$
	At Low P, rate is proportional to the		Entitalpy $(\Delta H) = E_{\rm f}$ activation energy of
	surface coverage and is of Ist order while		101 ward $- E_b$ activation energy of
	at high P, it follows zero order due to		Dackward reaction
\$26	Ans (b)		when $E_f = E_b$
520.	End for the large stime A second large		$\Delta H = 0$
	For a first order reaction, $A \rightarrow \text{products}$	S33.	Ans.(c)
	two different times		$\log \frac{k_2}{k_1} = \frac{E_a}{2303R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
	2 303 [4]		$k_1 = 2k_1 T_1 = 20 + 273 = 293 K$
	$k = \frac{2.303}{t_2 - t_1} \log \frac{[A]_1}{[A]_2}$		or $T_2 = 35 + 273 = 308 K$
	$k = \frac{2.303}{t_{-}-t_{+}} \log \frac{(rate)_{1}}{(rate)_{-}} \qquad (\because rate \propto [A])$		$R = 8.314 J mol^{-1}K^{-1}$
	$k = \frac{2.303}{(20-10)} \log\left(\frac{0.04}{0.02}\right) = 0.0287 \text{ sec}^{-1}$		
	(20-10) (0.037		