CHEMISTRY Equilibrium

1.	For the reaction $2A \rightleftharpoons B + C$, $K_C = 4 \times 10^{-3}$. At a given time, the composition of reaction mixture is : $[A] = [B] = [C] = 2 \times 10^{-3} M$. Then, which of the following is correct?	6.		cid solution is 1% ionised, acetic acid solution is: (2022)
2.	 (2024) (a) Reaction has a tendency to go in forward direction (b) Reaction has a tendency to go in backward direction (c) Reaction has gone to completion in forward direction (d) Reaction is at equilibrium In which of the following equilibria, k_p and k_c are NOT equal? (2024) (a) H_{2(g)} + I_{2(g)} ≒ 2 HI_(g) (b) CO_(g) + H₂O_(g) ≒ CO_{2(g)} + H_{2(g)} (c) 2 BrCl_(g) ≒ Br_{2(g)} + Cl_{2(g)} (d) PCl_{5(g)} ≒ PCl_{3(g)} + Cl_{2(g)} 	7.	(d) 4 $K_{\rm H}$ value for s temperature 'T' Gas Ar CO ₂ HCHO CH ₄ Where $K_{\rm H}$ is F water. The ord water is:	$K_{\rm H}/k$ bar 40.3 1.67 1.83 × 10 ⁻⁵ 0.413 Henry's Law constant in the of their solubility in
3.	Consider the following reaction in a sealed vessel at equilibrium with concentrations of $N_2 = 3.0 \times 10^{-3} \text{ M}, 0_2 = 4.2 \times 10^{-3} \text{ M}$ and $NO = 2.8 \times 10^{-3} \text{ M}$. $2NO_{(g)} \Leftrightarrow N_{2(g)} + O_{2(g)}$ If 0.1 mol L ⁻¹ of NO _(g) is taken in a closed	8.	1000 K. CO ₂ (g) + C(s) \rightleftharpoons	$CH_4 < HCHO$ $CO_2 < HCHO$ $O_2 < CH_4 < Ar$ powing reaction is 3.0 at
4.	vessel. What will be degree of dissociation (α) of NO _(g) at equilibrium? (2024) (a) 0.0889 (b) 0.8889 (c) 0.717 (d) 0.00889 For a weak acid HA, the percentage of dissociation is nearly 1% at equilibrium. If the concentration of acid is 0.1 mol L- ¹ , then the correct option for its K _a at the	9.	same temperature? 33 L bar K ⁻¹ mol ⁻¹) (2022) olution containing 50 mL sodium acetate and 0.01	
5.	 same temperature is: (2023) (a) 1 × 10⁻⁴ (b) 1 × 10⁻⁶ (c) 1 × 10⁻⁵ (d) 1 × 10⁻³ An acidic buffer is prepared by mixing: (2023) (a) weak acid and it's salt with strong base (b) equal volumes of equimolar solutions of weak acid and weak base (c) strong acid and it's salt with strong base (d) strong acid and it's salt with base (The pK_a of acid = pK_b of the base) 	10.	(a) 5.57 (c) 4.57 $3O_2(g) \rightleftharpoons 2O_3(g)$ For the above found to be concentration	$CH_{3}COOH = 4.57]$ (b) 3.57 (d) 2.57 reaction at 298 K, K _c is 3.0 × 10 ⁻⁵⁹ . If the of O ₂ at equilibrium is oncentration of O ₃ in M is (2022)
24	8 Adda247 F	Publicat	tions	For More Study Material Visit: adda247.com

11. 12.	The pK _b of dimethylamine and pK _a of acetic acid are 3.27 and 4.77 respectively at T(K). The correct option for the pH of dimethylammonium acetate solution is: (2021) (a) 5.50 (b) 7.75 (c) 6.25 (d) 8.50 Find out the solubility of Ni(OH) ₂ in 0.1 M NaOH. Given that the ionic product of Ni(OH) ₂ is 2×10^{-15} . (2020) (a) 2×10^{-8} M (b) 1×10^{-13} M	19.	 (a) OH- and H₂F⁺, respectively (b) H₃O⁺ and F⁻, respectively (c) OH- and F⁻, respectively (d) H₃O⁺ and H₂F⁺, respectively Which will make basic buffer? (2019) (a) 50 mL of 0.1 M NaOH + 25 mL of 0.1 M CH₃COOH (b) 100 mL of 0.1 M CH₃COOH + 100 mL of 0.1 M NaOH (c) 100 mL of 0.1 M HCl + 200 mL of 0.1 M NH₄OH
13.	(c) 1×10^8 M (d) 2×10^{-13} M HCl was passed through a solution of CaCl ₂ , MgCl ₂ and NaCl. Which of the following compound(s) crystallize? (2020)	20.	 (d) 100 mL of 0.1 M HCl + 100 mL of 0.1 M NaOH Which one of the following conditions will favour maximum formation of the product in the reaction,
14.	 (a) Only NaCl (b) Only MgCl₂ (c) NaCl, MgCl₂ and CaCl₂ (d) Both MgCl₂ and CaCl₂ (d) Both MgCl₂ and CaCl₂ Which among the following salt solutions is basic in nature? (2020 covid Re-NEET) (a) Ammonium sulphate (b) Ammonium nitrate 	21.	$A_2(g) + B_2(g) \rightleftharpoons X_2(g) \Delta_r H = -X kJ$ (2018) (a) Low temperature and high pressure (b) Low temperature and low pressure (c) High temperature and low pressure (d) High temperature and high pressure The solubility of BaSO ₄ in water is 2.42 × 10 ⁻³ gL ⁻¹ at 298 K. The value of its solubility product (K _{sp}) will be: (2018)
15.	 (c) Sodium acetate (d) Ammonium chloride The solubility product for a salt of the type AB is 4 × 10⁻⁸. What is the molarity of its standard solution? 		(Given molar mass of $BaSO_4 = 233 \text{ g mol}^{-1}$) (a) $1.08 \times 10^{-10} \text{ mol}^2 \text{ L}^{-2}$ (b) $1.08 \times 10^{-12} \text{ mol}^2 \text{ L}^{-2}$ (c) $1.08 \times 10^{-8} \text{ mol}^2 \text{ L}^{-2}$
16.	(a) $16 \times 10^{-16} \text{ mol/L}$ (b) $2 \times 10^{-16} \text{ mol/L}$ (c) $4 \times 10^{-4} \text{ mol/L}$ (d) $2 \times 10^{-4} \text{ mol/L}$ Hydrolysis of sucrose is given by the following reaction. Sucrose + H ₂ 0 \rightleftharpoons Glucose + Fructose If the equilibrium constant (K _c) is 2×10^{13} at 300 K, the value of $\Delta_{\rm r}$ G° at the same	22.	(d) $1.08 \times 10^{-14} \text{ mol}^2 \text{ L}^{-2}$ Following solutions were prepared by mixing different volumes of NaOH and HCl of different concentrations : (2018) (A) $60mL \frac{M}{10} HCl + 40mL \frac{M}{10} NaOH$ (B) $55mL \frac{M}{10} HCl + 45mL \frac{M}{10} NaOH$ (C) $75mL \frac{M}{5} HCl + 25mL \frac{M}{5} NaOH$ (D) $100mL \frac{M}{10} HCl + 100mL \frac{M}{10} NaOH$
17.	temperature will be : (a) $8.314 J mol^{-1}K^{-1} \times 300 K \times \ln(2 \times 10^{13})$ (b) $8.314 J mol^{-1}K^{-1} \times 300 K \times \ln(3 \times 10^{13})$ (c) $-8.314 J mol^{-1} K^{-1} \times 300 K \times \ln(4 \times 10^{13}))$ (d) $-8.314 J mol^{-1} K^{-1} \times 300 K \times \ln(2 \times 10^{13}))$ pH of a saturated solution of Ca(OH ₂) is 9. The solubility product (K _{sp}) of Ca(OH ₂)	23.	pH of which one of them will be equal to 1? (a) B (b) A (c) C (d) D The equilibrium constants of the following are : (2017-Delhi) $N_2 + 3H_2 \rightleftharpoons 2NH_3$ K_1 $N_2 + O_2 \rightleftharpoons 2NO$ K_2 $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$ K_3 The equilibrium constants of the following are interval of the following are inter
18.	is: (2019) (a) 0.5×10^{-15} (b) 0.25×10^{-10} (c) 0.125×10^{-15} (d) 0.5×10^{-10} Conjugate base for Bronsted acids H ₂ O and HF are : (2019) Adda247 B		The equilibrium constant (K) of the reaction: $2NH_3 + \frac{5}{2}O_2 \rightleftharpoons 2NO + 3H_2O$, will be: (a) $K_2^3K_3/K_1$ (b) $K_1K_3^3/K_2$

Adda247 Publications

For More Study Material Visit: adda247.com

24.	(c) $K_2 K_3^3 / K_1$ (d) $K_2 K_3 / K_1$ Concentration of Ag ⁺ ions in a saturated solution of Ag ₂ C ₂ O ₄ is 2.2 × 10 ⁻⁴ mol L ⁻¹ . Solubility product of Ag ₂ CO ₄ is: (2017-Delhi) (a) 5.3×10^{-12} (b) 2.42×10^{-8} (c) 2.66×10^{-12} (d) 4.5×10^{-11}	32.	M aqueous pyridine solution (K _b for $C_5H_5N = 1.7 \times 10^{-9}$) is : (2016-II) (a) 0.77% (b) 1.6% (c) 0.0060% (d) 0.013% Consider the nitration of benzene using mixed conc. H ₂ SO ₄ and HNO ₃ . If a larger amount of KHSO ₄ is added to the
25.	 Which one of the following statements is not correct? (2017-Delhi) (a) Coenzymes increase the catalytic activity of enzyme (b) Catalyst does not initiate any reaction 	33.	 mixture, the rate of nitration will be: (2016-I) (a) Doubled (b) Increase (c) Decrease (d) Unchanged MY and NY₃, two nearly insoluble salts, have the same K_{sp} values of 6.2 × 10⁻¹³ at
26.	 (c) The value of equilibrium constant is changed in the presence of a catalyst in the reaction at equilibrium (d) Enzymes catalyse mainly biochemical reactions The standard equilibrium constant K_P at 298 K for the reaction, N₂(g) + 3H₂(g) ≓ 2NH₃(g) is 5.8 × 10⁵. The value of standard equilibrium constant, if the concentration of gases is expressed in terms of mol L⁻¹, will be: [Given : R = 0.08314 L bar K⁻¹ mol⁻¹] 		 room temperature, which statements would be true in regard to MY and NY₃? (2016-I) (a) The addition of the salt of KY to solution of MY and NY₃ will have no effect on their solubilities (b) The molar solubilities of MY and NY₃ in water are identical (c) The molar solubility of MY in water is less than of NY₃ (d) The salts MY and NY₃ are more soluble in 0.5 M KY than in pure
27.	(a) 3.99×10^9 (b) 3.51×10^6 (c) 3.84×10^7 (d) 3.56×10^8 Consider the following reaction for which the change in enthalpy is positive $2A(g) + B(g) \rightleftharpoons C(g) + D(g)$ Which of the following will not affect the	34.	water If the equilibrium constant for $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ is K, the equilibrium constant for $\frac{1}{2}N_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons NO(g)$ will be: (a) K^2 (b) $K^{1/2}$
28.	equilibrium?(2017-Gujarat)(a) Presence of catalyst(b) Change in concentration of reactants(c) Change in pressure(d) Change in temperatureFor the reaction $CO(g) + Cl_2(g) \rightleftharpoons$ $COCl_2(g) \frac{K_p}{K_c}$ is equal to:(2017-Gujarat)	35.	(c) $\frac{1}{2}K$ (d) K Which one of the following pairs of solution is not an acidic buffer? (2015 Re) (a) H ₃ PO ₄ and Na ₃ PO ₄ (b) HClO ₄ and NaClO ₄
29.	(a) $(RT)^2$ (b) $\frac{1}{RT}$ (c) RT (d) \sqrt{RT} Which of the following fluoro-compounds is most likely to behave as a Lewis base? (2016-II)	36.	 (c) CH₃COOH and CH₃COONa (d) H₂CO₃ and Na₂CO₃ If the value of an equilibrium constant for a particular reaction is 1.6 × 10¹², then at equilibrium the system will contain: (2015)
30.	(a) CF_4 (b) SiF_4 (c) BF_3 (d) PF_3 The solubility of $AgCl(s)$ with solubility product 1.6×10^{-10} in 0.1 M NaCl solution would be: (2016-II) (a) 1.6×10^{-11} M (b) Zero		 (a) Mostly reactants (b) Mostly products (c) Similar amounts of reactants and products (d) All reactants
31.	(c) 1.26×10^{-5} M (d) 1.6×10^{-9} M The percentage of pyridine (C ₅ H ₅ N) that forms pyridinium ion (C ₅ H ₅ N ⁺ H) in a 0.10	37.	The K_{sp} of Ag ₂ CrO ₄ , AgBr and AgI are respectively, 1.1×10^{-12} , 1.8×10^{-10} , 5.0
250	Adda247 P	ublicat	ions For More Study Material Visit: adda247.com

38. 39. 40. 41.	× 10 ⁻¹³ , 8.3 × 10 ⁻¹⁷ . Which one of the following salts will precipitate last if AgNO ₃ solution is added to the solution containing equal moles of NaCl, NaBr, NaI and Na ₂ CrO ₄ ? (2015) (a) AgCl (b) AgBr (c) Ag ₂ CrO ₄ (d) AgI What is the pH of the resulting solution when equal volumes of 0.1 M NaOH and 0.01 M HCl are mixed? (2015 Re) (a) 2.0 (b) 7.0 (c) 1.04 (d) 12.65 Aqueous solution of which of the following compounds is the best conductor of electric current? (2015 Re) (a) Hydrochloric acid, HCl (b) Ammonia, NH ₃ (c) Fructose, C ₆ H ₁₂ O ₆ (d) Acetic acid, C ₂ H ₄ O ₂ Which of the following statements is correct for a reversible process in a state of equilibrium? (2015) (a) $\Delta G^{\circ} = -2.303$ RT log K (b) $\Delta G^{\circ} = 2.303$ RT log K (c) $\Delta G = 2.303$ RT log K (d) $\Delta G = 2.303$ RT log K Which of the following salts will give highest pH in water? (2014) (a) NaCl (b) Na ₂ CO ₃	The I (R = 1) (a) 3 (b) 8. (c) 2 (d) 7. 43. For t $N_2(g)$ The direct (a) B (b) B (b) B (c) B (d) B (d) B (d) B (e) B (f) B	By decreasing the pressure By decreasing the concentration $I_2(g)$ and $H_2(g)$ By Increasing pressure accreasing temperature By increasing the concentration $IH_3(g)$ The of these is least likely to s base? CO (b) F- BF_3 (d) PF_3 O_4 can be prepared from K_2I he reaction: $D_4^{2^-} + 2H_2O \rightleftharpoons 2MnO_4^- + MnO_2$ reaction can go to complete oving OH- ions by adding: ICI COH	(2014) forward (2014) ation of ation of act as a (2013) MnO ₄ as $+ 40H^-$
42.	(c) CuSO ₄ (d) 4KCl Using the Gibb's energy change, ΔG° = +63.3 kJ, for the following reaction,	(d) S	3O ₂	
25	Adda247 F	Publications	For More Study M	faterial

Visit: adda247.com