CHEMISTRY Electrochemistry

1.	Match List I with List	II. (2024)	1	A. This equation applies to both strong
1.	List I (Conversion)	· · · ·		and weak electrolytes.
		of Faraday		B. Value of the constant A depends
		-		upon the nature of the solvent.
		required)		C. Value of constant A is same for both
	A. 1 mole of	I. 3F		
	H_2O to O_2			$BaCl_2$ and $MgSO_4$.
	B. 1 mol of MnO_4^- to Mn^{2+}	II. 2F		D. Value of constant A is same for both BaCl ₂ and Mg(OH) ₂ .
	C. 1.5 mol of Ca	III. 1F		Which of the above statemens are
	from molten			correct? (2023)
	CaCl ₂			(a) A and B only (b) A, B and C only
	1 mal of Eq. to	IV. 5F		(c) B and C only (d) B and D only
	D. Fe ₂ O_3		5.	The correct value of cell potential in volt
				for the reaction that occurs when the
	Choose then correct	answer from the		following two half cells are connected, is
	options given below:			$Fe^{2+}(aq) + 2e^- \rightarrow Fe(s), E^\circ = -0.44 V$
	(a) A-III, B-IV, C-I, D-			$Cr_2O_7^{-1}(aq) + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$
	(b) A-II, B-III, C-I, D-I			$E^{\circ} = +1.33 V$ (2023)
	(c) A-III, B-IV, C-II, D			(a) $+1.77$ V (b) $+2.65$ V
	(d) A-II, B-IV, C-I, D-	III		(d) $+0.01$ V (d) $+0.89$ V
2.	Mass in grams of co	opper deposited by	6.	The conductivity of centimolar solution
	passing 9.6487 A c	current through a	0.	of KCl at 25°C is 0.0210 ohm ⁻¹ cm ⁻¹ and
	voltmeter containing	copper sulphate		the resistance of the cell containing the
	solutions for 100 seco	onds is:		solution at 25° C is 60 ohm. The value of
	(Given : Molar mass of Cu : 63 g mol^{-1} .			
	(1F = 96487 C)	(2024)		cell constant is- (2023)
	(a) 0.315 g		· · · · ·	(a) 3.28 cm^{-1} (b) 1.26 cm^{-1}
	(b) 31.5 g		-	(c) 3.34 cm^{-1} (d) 1.34 cm^{-1}
	(c) 0.0315 g		7.	Given below are two statements: One is
	(d) 3.15 g			labelled as Assertion A and the other is
3.	The E^{\ominus} values for		11.	labelled as Reason R:
	Al ⁺ /Al = +0.55 V and Tl ⁺ /Tl = -0.34 V Al ³⁺ /Al = -1.66 V and T ³⁺ /Tl = $+1.26$ V Identify the incorrect statement			Assertion: In equation $\Delta_{rG} = -nFE_{cell}$,
				value of Δ_{rG} depends on n.
				Reason: E_{cell} is an intensive property and
	(2023)			Δ_{rG} is an extensive property.
	(a) Al is more electrop	positive than Tl		In the light of the above statements,
	(b) Tl^{3+} is a good redu			choose the correct answer from the
	(c) Al ⁺ is unstable in			options given below: (2023)
	(d) Al^+ can be easily of			(a) Both A and R are true but R is NOT
4.	Molar conductance			the correct explanation of A.
т.		-		(b) A is true but R is false.
	increase with dilution $A^{\circ} = A^{\circ}$			(c) A is false but R is true.
	equation: $\Lambda_{\rm m} = \Lambda_{\rm m}^{\circ} - A$			(d) Both A and R are true R is the correct
	Consider the following	g iour statements:		explanation of A.
		411.0451		

Adda247 Publications

8. 9.	Two half cell reactions are given below: $Co^{3+} + e^- \rightarrow Co^{2+}$, $E^{\circ}_{CO^{2+}/Co^{3+}} = -1.81 \text{ V}$ $2Al^{3+} + 6e^- \rightarrow 2Al(s)$, $E^{\circ}_{Al/Al^{3+}} = +1.66 \text{ V}$ The standard EMF of a cell with feasible redox reaction will be: (2022) (a) -3.47 V (b) $+7.09 \text{ V}$ (c) $+0.15 \text{ V}$ (d) $+3.47 \text{ V}$ Standard electrode potential for the cell with cell reaction $Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$ is 1.1 V. Calculate the standard Gibb's energy change for the cell reaction.		(Given that $E_{cell}^{\circ} = 1.05 \text{ V}$, $\frac{2.303 \text{ RT}}{\text{F}} = 0.059$ at 298 K) (2022 (a) 1.0385 V (b) 1.385 V (c) 0.9615 V (d) 1.05 V 13. The molar conductance of NaCl, HCl and CH ₃ COONa at infinite dilution ar 126.45, 426.16 and 91.0 S cm ² mol- respectively. The molar conductance of CH ₃ COOH at infinite dilution is. Choos the right option for your answer. (2021) (a) 390.71 S cm ² mol ⁻¹ (b) 698.28 S cm ² mol ⁻¹	
	(Given: $F = 96487 \text{ C mol}^{-1}$) (2022) (a) $-200.27 \text{ J mol}^{-1}$		(c) $540.48 S cm^2 mol^{-1}$ (d) $201.28 S cm^2 mol^{-1}$	
	(b) $-200.27 \text{ kJ mol}^{-1}$ (c) $-212.27 \text{ kJ mol}^{-1}$	14.	The molar conductivity of 0.007 M acetic acid is 20 S cm^2 mol ⁻¹ . What is the	
	(d) $-212.27 \text{ J mol}^{-1}$		dissociation constant of acetic acid?	
10.	At 298 K, the standard electrode		Choose the correct option. (2021)	
	potentials of Cu ²⁺ /Cu, Zn ²⁺ /Zn, Fe ²⁺ /Fe	1	$\left[\Lambda_{H^+}^{\circ} = 350 S cm^2 mol^{-1}\right]$	
	and Ag^+/Ag are 0.34 V, -0.76 V, -0.44 V		$\left[\Lambda_{CH_{3}COO^{-}}^{\circ} = 50 S cm^{2} mol^{-1}\right]$	
	and 0.80 V, respectively.		(a) $2.50 \times 10^{-4} \ mol \ L^{-1}$	
	On the basis of standard electrode potential, predict which of the following		(b) $1.75 \times 10^{-5} mol L^{-1}$	
	reaction can not occur?		(c) $2.50 \times 10^{-5} mol L^{-1}$	
	(a) $CuSO_4(aq) + Zn(s) \rightarrow ZnSO_4(aq) +$	15.	(d) $1.75 \times 10^{-4} \text{ mol } L^{-1}$	
	Cu(s)	15.	On electrolysis of dil sulphuric acid using Platinum (Pt) electrode, the product	
	(b) CuSO ₄ (aq) + Fe(s) \rightarrow FeSO ₄ (aq) +		obtained at anode will be: (2020)	
	Cu(s)		(a) Oxygen gas (b) H_2S gas	
	(c) $FeSO_4(aq) + Zn(s) \rightarrow ZnSO_4(aq) + Fe(s)$	16	(c) SO_2 gas (d) Hydrogen gas	
	Fe(s) (d) $2CuSO_4(aq) + 2Ag(s) \rightarrow 2Cu(s) +$	16.	The number of Faradays (F) required to produce 20 g of calcium from molten	
	$Ag_2SO_4(aq)$		$CaCl_2$ (Atomic mass of $Ca = 40 \text{ g mol}^{-1}$) is:	
11.	Given below are half cell reactions:		(2020)	
	$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$,		(a) 2 (b) 3	
	$E_{Mn^{2+}/MnO_{4}}^{\circ} = -1.510 V$	17.	(c) 4 (d) 1 Identify the reaction from following	
	$\frac{1}{2}O_2 + 2H^+ + 2e^- \rightarrow H_2O$		having top position in EMF series (Std.	
	$E_{0_2/H_20}^{\circ} = +1.223 \text{ V}$		red. Potential) according to their	
	will the permanganate ion, $Mn0_4^-$ liberate		electrode potential at 298 K.	
	O_2 from water in the presence of an acid?		(a) $Fe^{2+} + 2e^- \rightarrow Fe(s)$ (a)	
	(2022)		(a) $Fe^{-} + 2e^{-} \rightarrow Fe(s)$ (b) $Au^{3+} + 3e^{-} \rightarrow Au(s)$	
	(a) Yes, because $E_{cell}^{\circ} = +0.287 V$ (b) No, because $E_{cell}^{\circ} = -0.287 V$ (c) Yes, because $E_{cell}^{\circ} = +2.733 V$		(c) $K^+ + le^- \rightarrow K(s)$	
			(d) $Mg^{2+} + 2e^- \rightarrow Mg(s)$	
			In a typical fuel cell, the reactants (R) and	
	(d) No, because $\tilde{E_{cell}} = -2.733 \text{ V}$		product (P) are (2020 Covid Re-NEET) (a) $P = H$ (c) $Q = H Q = H$	
12.	Find the emf of the cell in which the		(a) $R = H_{2(g)}, O_{2(g)}; P = H_2O_{(l)}$ (b) $P = H_{2(g)}, O_{2(g)}; P = H_2O_{(l)}$	
	following reaction takes place at 298 K		(b) $R = H_{2(g)}, O_{2(g)}, Cl_{2(g)}; P = HClO_{4(aq)}$ (c) $R = H$ $N \leftarrow P = NH$	
	$Ni(s) + 2Ag^{+}(0.001 \text{ M}) \rightarrow Ni^{2+}(0.001 \text{ M}) + 2Ag(s)$		(c) $R = H_{2(g)}, N_{2(g)}; P = NH_{3(aq)}$ (d) $R = H_{2(q)}, O_{2(q)}; P = H_2O_{2(l)}$	
	2Ag(s)		$(a) n = n_2(g), \sigma_2(g), n = n_2 \sigma_2(l)$	

Adda247 Publications

For More Study Material Visit: adda247.com 19. For a cell involving one electron E° cell = 24. The zinc/silver oxide cell is used in 0.59 V at 298 K, the equilibrium electric watches. The reaction is as constant for the cell reaction is: (2019) following: $\left[Given that \frac{2.303RT}{F} = 0.059V at T = 298K\right]$ $Zn^{2+} + 2e^- \rightarrow Zn$; $E^{\circ} = -0.760 V$ $Ag_2O+H_2O+2e^-\rightarrow 2Ag+2OH^-$; (a) 1.0×10^2 (b) 1.0 × 10⁵ $E^{\circ} = 0.344 V$ (c) 1.0×10^{10} (d) 1.0×10^{30} If F is 96,500 C mol⁻¹, ΔG° of the cell will 20. For the cell reaction be: (2017-Gujarat) $2Fe^{3+}(aq) + 2I^{-}(aq) \rightarrow 2Fe^{2+}(aq) + I_2(aq)$ $E_{cell}^{\ominus} = 0.24 V$ at 298 K. The standard (a) 413.21 kJ mol⁻¹ (b) 113.072 kJ mol⁻¹ Gibbs energy $(\Delta_r G^{\ominus})$ of the cell reaction (c) -213.072 kJ mol⁻¹ is (d) 4313.082 kJ mol⁻¹ [Given that Faraday constant F = 9650025. During the electrolysis of molten sodium $C \text{ mol}^{-1}$] (2019)chloride, the time required to produce (a) -46.32 kJ mol-1 0.10 mol of chlorine gas using a current (b) -23.16 kJ mol-1 of 3 amperes is: (2016-II) (c) 46.32 kJ mol⁻¹ (a) 220 minutes (b) 330 minutes (d) 23.16 kJ mol-1 (c) 55 minutes (d) 110 minutes 26. Zinc can be coated on iron to produce 21. Consider the change in oxidation state of galvanized iron but the reverse is not Bromine corresponding to different emf possible. It is because: (2016-II) values as shown in the diagram below: (a) Zinc has lower negative electrode $BrO_{4}^{-} \xrightarrow{1.82 \text{ V}} BrO_{3}^{-} \xrightarrow{1.5 \text{ V}} HBrO_{4}^{-}$ potential than iron (b) Zinc has higher negative electrode potential than iron $Br \leftarrow 1.0652 V Br_2 \leftarrow 1.595 V$ (c) Zinc is lighter than iron (d) Zinc has lower melting point than Then undergoing the species iron disproportionation is: (2018)27. The number of electrons delivered at the (a) BrO_{3}^{-} (b) *BrO*₄ cathode during electrolysis by a current (c) *HBr0* (d) Br_2 of 1 ampere in 60 seconds is: (2016-II) 22. In the electrochemical cell (charge on electron = 1.60×10^{-19} C) (a) 3.75×10^{20} (b) 7.48×10^{23} $Zn|ZnSO_4(0.01M)||CuSO_4(1.0M)|Cu$, the (c) 6×10^{23} (d) 6×10^{20} emf of this Daniel cell is E_1 . When the If the E[°]cell for a given reaction has a 28. concentration of $ZnSO_4$ is changed to 1.0 negative value, which of the following M and that of $CuSO_4$ changed to 0.01 M, gives the correct relationships for the the emf changes to E₂. From the values of ΔG° and K_{eq} ? (2016-II) following, which one is the relationship (a) $\Delta G^0 < 0; K_{eq} > 1$ between E_1 and E_2 ? (Given, $\frac{RT}{F} = 0.059$) (b) $\Delta G^0 < 0; K_{eq} < 1$ (2017-Gujarat) (c) $\Delta G^0 > 0; K_{eq} < 1$ (a) $E_2 = 0 \neq E$ (b) $E_1 = E_2$ (c) $E_1 < E_2$ (d) $E_1 > E_2$ (d) $\Delta G^0 > 0$; $K_{eq} > 1$ 29. The molar conductivity of a 0.5 mol dm⁻³ 23. Given that solution of AgNO₃ with electrolytic $\Lambda_{m}^{\circ} = 133.4, 5 \ cm^{2} \ mol^{-1} \ (AgNO_{3});$ conductivity of 5.76×10^{-3} S cm⁻¹ at 298 $\Lambda_m^{\circ} = 149.9 \, S \, cm^2 \, mol^{-1} \, (KCl);$ K is: (2016-II) $\Lambda_m^{\circ} = 144.9 \ S \ cm^2 \ mol^{-1} \ (KNO_3)$ the molar (a) 0.086 S cm² mol⁻¹ conductivity at infinite dilution for AgCl (b) 28.8 S cm² mol⁻¹ (2017-Gujarat) is: (c) 2.88 S cm² mol⁻¹ (a) $132 S cm^2 mol^{-1}$ (b) $140 S cm^2 mol^{-1}$ (d) 11.52 S cm² mol⁻¹ (c) $138 S cm^2 mol^{-1}$ (d) $134 S cm^2 mol^{-1}$

30. 31.	The pressure of H_2 required to make the potential of H_2 electrode zero in pure water at 298 K is: (2016-I) (a) 10^{-4} atm (b) 10^{-14} atm (c) 10^{-12} atm (d) 10^{-10} atm A device that converts energy of combustion of fuels like hydrogen and methane, directly into electrical energy is	36.	(c) 108.0 g (d) 5.4 g At 25° C, molar conductance of 0.1 molar aqueous solution of ammonium hydroxide is $9.54 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$ and at infinite dilution its molar conductance is $238 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$. The degree of ionization of ammonium hydroxide at the same concentration and temperature is:
32.	known as:(2015)(a) Electrolytic cell (b) Dynamo(c) Ni-Cd cell(d) Fuel cellThe pair of compounds that can exist	37.	(2013) (a) 2.080% (b) 20.800% (c) 4.008% (d) 40.800% A hydrogen gas electrode is made by
	together is:(2014)(a) $HgCl_2, SnCl_2$ (b) $FeCl_2, SnCl_2$ (c) $FeCl_3, KI$ (d) $FeCl_3, SnCl_2$		dipping platinum wire in a solution of HCl of pH = 10 and by passing hydrogen gas around the platinum wire at one atm
33.	Using the Gibbs energy change, $\Delta G^0 =$ +63.3 kJ, for the following reaction, $Ag_2CO_3(s) \rightleftharpoons 2Ag^+(aq) + CO_3^{2-}(aq)$ the K_{sp} of $Ag_2CO_3(s)$ in water at 25°C is: (2014) ($R = 8.314 JK^{-1}mol^{-1}$) (a) 8.0×10^{-12} (b) 2.9×10^{-3} (c) 7.9×10^{-2} (d) 3.2×10^{-26}	38.	pressure. The oxidation potential of electrode would be? (2013) (a) 0.059 V (b) 0.59 V (c) 0.118 V (d) 1.18 V A button cell used in watches functions as following $Zn(s) + Ag_2O(s) + H_2O(l) \rightleftharpoons$ $2Ag(s) + Zn^{2+}(aq) + 2OH^-(aq).$
34.	When 0.1 mol MnO_4^{2-} is oxidized, the quantity of electricity required to completely oxidise MnO_4^{2-} to MnO_4^{-} is: (2014)		If half cell potentials are $Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)$; $E^\circ = -0.76 V$ $Ag_2O(s) + H_2O(l) + 2e^- \rightarrow 2Ag(s) + 2OH^-(aq)$
35.	(a) 96500 C (b) $2 \times 96500 \text{ C}$ (c) 9650 C (d) 96.50 C The weight of silver (atomic weight = 108) displaced by a quantity of electricity which displaces 5600 mL of O ₂ at STP will be: (2014) (a) 10.8 g (b) 54.0 g		$E^{\circ} = 0.34 V \text{ . The cell potential will be:}$ (2013) (a) 1.10 V (b) 0.42 V (c) 0.84 V (d) 1.34 V
	(a) 10.0 g (b) 07.0 g		

For More Study Material Visit: adda247.com