CHEMISTRY

Coordination Compounds

1. Match List I with List II.

List I (Complex)		List II (Type of isomerism)	
A	$[Co(NH_3)_5(NO_2)]Cl_2$	I	Solvate isomerism
В	[Co(NH ₃) ₅ (SO ₄)]Br	II	Linkage isomerism
С	[Co(NH ₃) ₆][Cr(CN) ₆]	III	Ionization isomerism
D	[Co(H2O)6]Cl3	IV	Coordination isomerism

Choose the correct answer from the options given below: (2024)

- (a) A-I, B-III, C-IV, D-II
- (b) A-I, B-IV, C-III, D-II
- (c) A-II, B-IV, C-III, D-I
- (d) A-II, B-III, C-IV, D-I
- **2.** Given below are two statements:

Statement I: Both $[Co(NH_3)_6]^{3+}$ and $[CoF_6]^{3-}$ complex are octahedral but differ in their magnetic behaviour.

Statement II: $[CO(NH_3)_6]^{3+}$ is diamagnetic whereas $[CoF_6]^{3-}$ is paramagnetic.

In the light of the above statements, choose the correct answer the options given below: (2024)

- (a) Both Statement I and Statement II are false.
- (b) Statements I is true but statement II is false.
- (c) Statement I is false but statement II is true.
- (d) Both Statement I and statement II are true
- **3.** Given below are two statements:

Statements I: $[Co(NH_3)_6]^{3+}$ is a homoleptic Complex whereas $[Co(NH_3)_4Cl_2]^+$ is a heteroleptic complex. **Statement II**: Complex $[Co(NH_3)_6]^{3+}$ has only one kind of ligands but

only one kind of ligands but $[Co(NH_3)_4Cl_2]^+$ has more than one kind of ligands.

In the light of the above statements, choose the correct answer from the options given below: (2024)

- (a) Both statement I and statement II are false.
- (b) Statement I is true but statement II are false.
- (c) Statement I is false but statement II is true.
- (d) Both statement I and Statement II are true.
- 4. Select the element (M) whose trihalides cannot be hydrolysed to produce an ion of the form $[M(H_2O_6]^{3+}$ (2023)
 - (a) Ga
- (b) In
- (c) A1
- (d) B
- Which of the following forms a set of complex and a double salt, respectively?
 - (a) $CuSO_4 \cdot 5H_2O$ and $CuCl_2 \cdot 4NH_3$
 - (b) PtCl₂·2NH₃ and PtCl₄·2HCl
 - (c) $K_2PtCl_2\cdot 2NH_3$ and $KAl(SO_4)_2\cdot 12H_2O$
 - (d) NiCl₂·6H₂O and NiCl₂(H₂O)₄
- 6. Type of isomerism exhibited by compounds

 $[Cr(H_2O)_6]Cl_3$, $[Cr(H_2O)_5Cl]Cl_2\cdot H_2O$, $[Cr(H_2O)_4Cl_2]Cl\cdot 2H_2O$ and the value of coordination number (CN) of central metal ion in all these compounds, respectively is: (2023)

- (a) Geometrical isomerism, CN = 2
- (b) Optical isomerism, CN = 4
- (c) Ionisation isomerism, CN = 4
- (d) Solvate isomerism, CN = 6
- 7. Homoleptic complex from the following complexes is: (2023)
 - (a) Diamminechloridonitrito-N-platinum(II)
 - (b) Pentaamminecarbonatocobalt(III) chloride
 - (c) Triamminetriaquachromium(III) chloride
 - (d) Potassium trioxalatoaluminate(III)

- **8.** Which complex compound is most stable? (2023)
 - (a) $[Co(NH_3)_3(NO_3)_3]$
 - (b) $[CoCl_2(en)_2]NO_3$
 - (c) $[Co(NH_3)_6]_2(SO_4)_3$
 - (d) $[Co(NH_3)_4(H_2O)Br](NO_3)_2$
- **9.** Match List I with List II:

List I (Complexes)		List II (Types)	
A.	[Co(NH ₃) ₅ NO ₂]Cl ₂ and [Co(NH ₃) ₅ ONO]Cl ₂	1.	Ionisation isomerism
В.	[Cr(NH ₃) ₆][Co(CN) ₆] and [Cr(CN) ₆][Co(NH ₃) ₆	2.	Coordination isomerism
C.	[Co(NH ₃) ₅ (SO ₄)]Br and [Co(NH ₃) ₅ Br]SO ₄	3.	Linkage isomerism
D.	[Cr(H ₂ O) ₆]Cl ₃ and [Cr(H ₂ O) ₅ Cl]Cl ₂ ·H ₂ O	4.	Solvate isomerism

Choose the correct answer from the options given below: (2022)

- (a) A-4, B-3, C-2, D-1
- (b) A-3, B-1, C-2, D-4
- (c) A-2, B-3, C-4, D-1
- (d) A-3, B-2, C-1, D-4
- **10.** Given below are two statements: One is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): The metal carbon bond in metal carbonyls possesses both σ and π character.

Reason (R): The ligand to metal bond is a π bond and metal to ligand bond is a σ bond.

In the light of the above statements, choose the most appropriate answer from the options given below: (2022)

- (a) (A) is not correct but (R) is correct.
- (b) Both (A) and (R) are correct and (R) is the correct explanation of (A).
- (c) Both (A) and (R) are correct but (R) is the not the correct explanation of (A).
- (d) (A) is correct but (R) is not correct.

- 11. The IUPAC name of the complex- $[Ag(H_2O)_2][Ag(CN)_2]$ is: (2022)
 - (a) dicyanidosilver(II) diaquaargentate(II)
 - (b) diaquasilver(II) dicyanidoargentate(II)
 - (c) dicyanidosilver(I) diaquaargentate(I)
 - (d) diaquasilver(I) dicyanidoargentate(I)
- **12.** The order of energy absorbed which is responsible for the color of complexes
 - (A) $[Ni(H_2O)_2(en)_2]^{2+}$
 - (B) $[Ni(H_2O)_4(en)]^{2+}$ and
 - (C) $[Ni(en)_3]^{2+}$

is: (2022)

- (a) A > B > C
- (b) C > B > A
- (c) C > A > B
- (d) B > A > C
- **13.** Ethylene diaminetetraacetate (EDTA) ion is: (2021)
 - (a) Unidentate ligand
 - (b) Bidentate ligand with two "N" donor atoms
 - (c) Tridentate ligand with three "N" donor atoms
 - (d) Hexadentate ligand with four "O" and two "N" donor atoms
- 14. Match List-I with List-II: (2021)

	THE COLUMN TO THE PROPERTY OF		(,	
	List-I		List-II	
(A)	$[Fe(CN)_6]^{3-}$	(i)	5.92 BM	
(B)	$[Fe(H_2O)_6]^{3+}$	(ii)	0 BM	
(C)	$[Fe(CN)_6]^{4-}$	(iii)	4.90 BM	
(D)	$[Fe(H_2O_6)^{2+}]$	(iv)	1.73 BM	

Choose the correct answer from the options given below

- (a) A-(ii) B-(iv) C-(iii) D-(i)
- (b) A-(i) B-(iii) C-(iv) D-(ii)
- (c) A-(iv) B-(i) C-(ii) D-(iii)
- (d) A-(iv) B-(ii) C-(i) D-(iii)
- **15.** Which of the following is the correct order of increasing field strength of ligands to form coordination compounds? **(2020)**
 - (a) $SCN^- < F^- < CN^- < C_2O_4^{2-}$
 - (b) $F^- < SCN^- < C_2O_4^{2-} < CN^-$
 - (c) $CN^- < C_2O_4^{2-} < SCN^- < F^-$
 - (d) $SCN^- < F^- < C_2O_4^{2-} < CN$

16. Match the coordination number and type of hybridization with distribution of hybrid orbitals in space based on Valence bond theory:

(2020 Covid Re-NEET)

Coordination number and type of hybridization		Distribution of hybrid orbitals in space	
(A)	4, sp ³	(i)	Trigonal bipyramidal
(B)	$4, dsp^2$	(ii)	Octahedral
(C)	$5, sp^3d$	(iii)	Tetrahedral
(D)	$6, d^2sp^3$	(iv)	Square planar

Select the correct option:

- (a) A-(iii) B-(iv) C-(i) D-(ii)
- (b) A-(iv) B-(i) C-(ii) D-(iii)
- (c) A-(iii) B-(i) C-(iv) D-(ii)
- (d) A-(ii) B-(iii) C-(iv) D-(i)
- **17**. What is the correct electronic configuration of the central atom in $K_4[Fe(CN)_6]$ based on crystal field theory?

(2019)

- (a) $t_{2g}^4 e_g^2$
- (b) $t_{2g}^6 e_g^0$ (d) $e^4 t_{2a}^2$
- (c) $e^3t_{2a}^3$

- 18. Iron carbonyl, $Fe(CO)_5$ is (2018)
 - (a) Tetranuclear (b) Mononuclear
 - (c) Dinuclear
- (d) Trinuclear
- 19. The type of isomerism shown by the complex $[CoCl_2(en)_2]$ is: (2018)
 - (a) Geometrical isomerism
 - (b) Coordination isomerism
 - (c) Linkage isomerism
 - (d) Ionization isomerism
- 20. The geometry and magnetic behaviour of the complex $[Ni(CO)_4]$ are? (2018)
 - (a) Square planar geometry and diamagnetic
 - (b) Tetrahedral geometry and diamagnetic
 - (c) Tetrahedral geometry and paramagnetic
 - (d) Square planar geometry and paramagnetic
- 21. increasing order Correct for the wavelengths of absorption in the visible region for the complexes of Co^{3+} is:

(2017-Delhi)

- (a) $[Co(NH_3)_6]^{3+}$, $[Co(en)_3]^{3+}$, $[Co(H_2O)_6]^{3+}$
- (b) $[Co(en)_3]^{3+}$, $[Co(NH_3)_6]^{3+}$, $[Co(H_2O)_6]^{3+}$
- (c) $[Co(H_2O)_6]^{3+}$, $[Co(en)_3]^{3+}$, $[Co(NH_3)_6]^{3+}$
- (d) $[Co(H_2O)_6]^{3+}$, $[Co(NH_3)_6]^{3+}$, $[Co(en)_3]^{3+}$
- 22. Pick out the correct statement with respect to $[Mn(CN)_6]^{3-}$ (2017-Delhi)
 - (a) It is dsp^2 hybridised and square
 - (b) It is sp^3d^2 hybridised and octahedral
 - (c) It is sp^3d^2 hybridised and tetrahedral
 - (d) It is d^2sp^3 hybridised and octahedral
- 23. The correct order of the stoichiometries of AgCl formed when $AgNO_3$ in excess is treated with the complexes:

CoCl₃.6NH₃, CoCl₃.5NH₃ CoCl₃.4NH₃ (2017-Delhi)

respectively is:

- (a) 2AgCl, 3AgCl, 1AgCl
- (b) 1AgCl, 3AgCl, 2AgCl
- (c) 3AgCl, 1AgCl, 2AgCl
- (d) 3AgCl, 2AgCl, 1AgCl
- 24. Which of the following complex ions is not diamagnetic? (2017-Gujarat)
 - (a) $[Sc(H_2O)_3(NH_3)_3]^{3+}$
 - (b) $[Ti(en)_2(NH_3)_2]^{4+}$
 - (c) $[Cr(NH_3)_6]^{3+}$
 - (d) $[Zn(NH_3)_6]^{2+}$
- 25. For the tetrahedral complex $[MnBr_4]^{2-}$, the spin only magnetic moment value is:

(2017-Gujarat)

- (a) 2.4
- (b) 1.7
- (c) 5.9
- (d) 4.8
- distribution d^n 26. The electron coordination complexes depends magnitude of crystal field splitting, (Δ_0) and pairing energy (P). The condition which favours formation of high spin complexes is: (2017-Gujarat)
 - (a) $t_{2g} {}^4e_g^0$
- (b) $\Delta_0 > P$
- (c) $\Delta_0 < P$
- (d) $\Delta_0 = P$
- The $[Co(H_2O)_6]^{2+}$ ion has three unpaired 27. electrons. The hybridization of Co in $[Co(H_2O)_6]^{2+}$ is: (2017-Gujarat)
 - (a) $d^2 s p^3$
- (b) sp^{3}
- (c) dsp^2
- (d) $sp^{3}d^{2}$
- 28. The correct increasing order of transeffect of the following species is:
 - (a) $NH_3 > CN^- > Br^-C_6H_5^-V$
 - (b) $CN^- > C_6H_5^- > Br^- > NH_3$
 - (c) $Br^- > CN^- > NH_3 > C_6H_5^-$
 - (d) $CN^- > Br^- > C_6H_5^- > NH_3$

- **29.** Jahn-Teller effect is not observed in high spin complexes of:
 - (a) d^{7}

(b) d^{8}

- (c) d^4
- (d) d^{9}
- **30.** Which of the following has longest C-O bond length?

(Free C–O bond length in CO is 1.128Å) (2016-I)

- (a) $[Mn(CO)_6]^+$
- (b) $Ni(CO)_4$
- (c) $[Co(CO)_4]^-$
- (d) $[Fe(CO)_4]^{2-}$
- 31. The name of complex ion, $[Fe(CN)_6]^{3-}$ is: (2015 Re)
 - (a) Hexacyanidoferrate (III) ion
 - (b) Hexacyanoiron (III) ion
 - (c) Hexacyanoferrate (III) ion
 - (d) Tricyanoferrate (III) ion
- **32.** The hybridization involved in complex $[Ni(CN)_4]^{2-}$ is

(Atomic Number Ni = 28)

(2015 Re)

- (a) $d^2 s p^3$
- (b) dsp^2
- (c) sp^3
- (d) d^2sp^2
- **33.** Number of possible isomers for the complex $[Co(en)_2Cl_2]$ Cl will be:

(en = ethylenediamine)

(2015 Re)

- (a) 4
- (b) 2
- (c) 1
- (d) 3
- **34.** Which of these statements about $[Co(CN)_6]^{3-}$ is true? (2015)
 - (a) $[Co(CN)_6]^{3-}$ has four unpaired electrons and will be in a low-spin configuration
 - (b) $[Co(CN)_6]^{3-}$ has four unpaired electrons and will be in a high-spin configuration

- (c) $[Co(CN)_6]^{3-}$ has no unpaired electrons and will be in a high-spin configuration
- (d) $[Co(CN)_6]^{3-}$ has no unpaired electrons and will be in a low-spin configuration
- octahedral complexes with ammonia. Which of the following will not give test for chloride ions with silver nitrate at 25°C? (2015)
 - (a) $CoCl_3$. $4NH_3$
 - (b) $CoCl_3.5NH_3$
 - (c) $CoCl_3$. $6NH_3$
 - (d) $CoCl_3$. $3NH_3$
- **36.** The sum of corrdination number and oxidation number of the metal M in the complex $[M(en)_2(C_2O_4)]Cl$ (where en is ethylenediamine) is: (2017 Re)
 - (a) 6
- (b) 7
- (c) 8
- (d) 9
- **37.** Among the following complexes the one which shows zero crystal field stabilization energy (CFSE) is: **(2014)**
 - (a) $[Fe(H_2O)_6]^{3+}$
 - (b) $[Co(H_2O)_6]^{2+}$
 - (c) $[Co(H_2O)_6]^{3+}$
 - (d) $[Mn(H_2O)_6]^{3+}$
- **38.** Which of the following complexes is used to be as an anticancer agent? **(2014)**
 - (a) $cis [PtCl_2(NH_3)_2]$
 - (b) $cis K_2[PtCl_2Br_2]$
 - (c) $Na_2[CoCl_4]$
 - (d) $mer [Co(NH_3)_3Cl_3]$