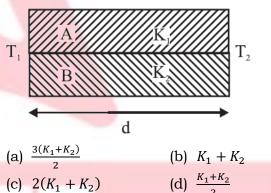
PHYSICS **Thermal Properties of Matter**

- The energy that will be ideally radiated by a 1. 100 kW transmitter in 1 hour is: (2022)(a) 36×10^4 J (b) $36 \times 10^5 J$ (c) 1×10^5 / (d) 36×10^7 J
- **2.** A cup of coffee cools from 90°C to 80°C in t minutes, when the room temperature is 20°C. The time taken by a similar cup of coffee to cool from 80° C to 60°C at a room (2021)temperature same at 20°C is:
 - (b) $\frac{10}{13}t$ (d) $\frac{13}{10}t$ (a) $\frac{13}{5}t$ (c) $\frac{5}{13}t$
- 3. The quantities of heat required to raise the temperature of two solid copper sphere of radii r_1 and $r_2(r_1 = 1.5 r_2)$ through 1 K are in the ratio : (2020)(a) 9/4 (b) 3/2
 - (c) 5/3 (d) 27/8
- 4. Two cylinders A and B of equal capacity are connected to each other via a stop cock. A contains an ideal gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stop cock is suddenly (2020)opened. The process is : (b) Isochoric
 - (a) Adiabatic (d) Isothermal (c) Isobaric
- 5. A copper rod of 88 cm and an aluminium rod of unknown length have their increase in length independent of increase in temperature. The length of aluminium rod is : (2019)

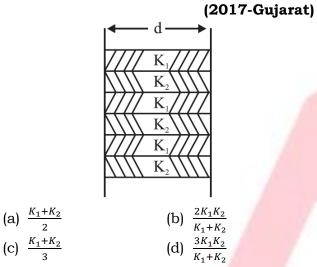

$$(\alpha_{Cu} = 1.7 \times 10^{-5} K^{-1} \text{ and } \alpha_{Al} = 2.2 \times 10^{-5} K^{-1})$$

- (d) 68 cm (c) 88 cm
- The unit of thermal conductivity is : (2019) 6.
 - (b) $J m^{-1} K^{-1}$ (a) $J m K^{-1}$ (d) $W m^{-1} K^{-1}$
 - (c) $W m K^{-1}$

- The power radiated by a black body is P and 7. it radiates maximum energy at wavelength, λ_0 . If the temperature of the black body is now changed so that it radiates maximum energy at wavelength $\frac{3}{4}\lambda_0$, the power radiated by it becomes nP. The value of n is: (2018)
 - (b) 4/3 (a) 256/81

(c) $\frac{3}{4}$

- - (d) 81/256
- **8.** Two rods A and B of different material are welded together as shown in figure. Their thermal conductivities are K_1 and K_2 . The thermal conductivity of the composite rod (2017-Delhi) will be:


- 9. A spherical black body with a radius of 12 cm radiates 450 watt power at 500 K. If the radius were halved and the temperature doubled, the power radiated in watt would be: (2017-Delhi)
 - (a) 450 (b) 1000

(c) 1800

- (d) 225
- **10.** In a certain planetary system, it is observed that one of the celestial bodies having a surface temperature of 200 K, emits radiation of maximum intensity near the wavelength 12µm. The surface temperature of a nearby star which emits light of maximum intensity at a wavelength $\lambda =$ 4800 Å, is: (2017-Gujarat)(a) 7500 K (b) 5000 K (c) 2500 K (d) 10000 K

For More Study Material Visit: adda247.com

11. A wall consists of alternating blocks of length 'd' and coefficient of thermal conductivity K_1 and K_2 respectively as shown in figure. The cross sectional area of the blocks are the same. The equivalent coefficient of thermal conductivity of the wall between left and right is:

- 12. Two identical bodies are made of a material for which the heat capacity increases with temperature. One of these is at 100°C, while the other one is at 0°C. If the two bodies are brought into contact, then, assuming no heat loss, the final common temperature is: (2016-II)
 - (a) Less than 50°C but greater than 0°C
 - (b) 0°C
 - (c) 50°C
 - (d) More than 50°C
- 13. Coefficient of linear expansion of brass and steel rods are α₁ and α₂. Lengths of brass and steel rods are l₁ and l₂ respectively. If (l₂ l₁) is maintained same at all temperatures, which one of the following relations holds good? (2016-I)

 (a) α₁l₂ = α₂l₁
 (b) α₁l₂² = α₂l₁²
 (c) α₁²l₂ = α₂²l₁
 (d) α₁l₁ = α₂l₂
- 14. A black body is at a temperature of 5760 K. The energy of radiation emitted by the body at wavelength 250 nm is U_1 , at wavelength 500 nm is U_2 and that at 1000 nm is U_3 . Wien's constant, b = 2.88×10^6 nmK. Which of the following is correct? (2016-I) (a) $U_1 = 0$ (b) $U_3 = 0$

- 15. The two ends of a metal rod are maintained at temperatures 100°C and 110°C. The rate of heat flow in the rod is found to be 4.0 J/s. If the ends are maintained at temperatures 200°C and 210°C, the rate of heat flow will be: (2015)
 - (a) 16.8 J/s (b) 8.0 J/s
 - (c) 4.0 J/s (d) 44.0 J/s
- 16. The value of coefficient of volume expansion of glycerin is 5×10⁻⁴/K. The fractional change in the density of glycerin for a rise of 40°C in its temperature, is: (2015 Re) (a) 0.010 (b) 0.015
 - (c) 0.020 (d) 0.025
- 17. Certain quantity of water cools from 70°C to 60°C in the first 5 minutes and to 54°C in the next 5 minutes. The temperature of the surroundings is: (2014)
 - (a) 45° C (b) 20° C
 - (c) 42° C (d) 10° C
- 18. Steam at 100°C is passed into 20 g of water at 10°C. When water acquires a temperature of 80°C, the mass of water present will be: (2014)
 [Take specific heat of water = 1cal /g/°C and

latent heat of steam = $540cal g^{-1}$]:

- (a) 24 g (b) 31.5 g
- (c) 42.5 g (d) 22.5 g
- 19. A piece of iron is heated in a flame. It first becomes dull red then becomes reddish yellow and finally turns to white hot. The correct explanation for the above observation is possible by using: (2013)
 - (a) Newton's Law of cooling
 - (b) Stefan's Law
 - (c) Wien's displacement Law
 - (d) Kirchoff's Law