PHYSICS Kinetic Theory

1. The following graph represents the T-V curves of an ideal gas (where T is the temperature and V the volume) at three pressures P_1, P_2 and P_3 compared with those of Charles's law represented as dotted lines. (2024)

Then the correct relation is

(a) $P_1 > P_3 > P_2$ (b) $P_2 > P_1 > P_3$ (c) $P_1 > P_2 > P_3$ (d) $P_3 > P_2 > P_1$

- **2.** The volume occupied by the molecules contained in 4.5 kg water at STP, if the intermolecular forces vanish away is:
 - (2022)

(a)	$5.6 \times 10^3 m^3$	(b)	$5.6 \times 10^{-3} m^3$
(c)	$5.6 m^3$	(d)	$5.6 \times 10^6 m^3$

3. The temperature of a gas is -50 °C. To what temperature the gas should be heated so that the rms speed is increased by 3 times?

(2023)

- (a) 223 *K* (b) 669°C (c) 3295°C (d) 3097 *K*
- **4.** Match Column-I and Column-II and choos the correct match from the given choices.

			(2021
	Column-I	Col	umn-II
(a)	Root mean square speed of gas molecules	(P)	$\frac{1}{3}$ nmv ²
(b)	Pressure exerted by ideal gas	(Q)	$\sqrt{\frac{3RT}{M}}$
(c)	Average kinetic energy of a molecules	(R)	$\frac{5}{2}$ RT
(d)	Total internal energy of 1 mole of a diatomic gas	(S)	$\frac{3}{2}k_{B}T$
(a)	(A) - (Q), (B) - (R), (C) - (S),	(D) -	(P)
(b)	(A) - (Q), (B) - (P), (C) - (S),	(D) -	(R)
(c)	(A) - (R), (B) - (Q), (C) - (P),	(D) -	(S)
(d)	(A) - (R), (B) - (P), (C) - (S),	(D) -	(Q)

V	5.	The average thermal energy for a mono- atomic gas is: $(k_B$ is Boltzmann constant			
e h		and T absolute temperature) (2020) (a) $\frac{3}{2}k_BT$ (b) $\frac{5}{2}k_BT$			
.)		(c) $\frac{7}{2}k_BT$ (d) $\frac{1}{2}k_BT$			
1	6.	The mean free path for a gas, with molecular diameter d and number density n can be expressed as : (2020)			
		(a) $\frac{1}{\sqrt{2}n\pi d^2}$ (b) $\frac{1}{\sqrt{2}n^2\pi d^2}$			
1	V	(c) $\frac{1}{\sqrt{2}n^2\pi^2d^2}$ (d) $\frac{1}{\sqrt{2}n\pi d}$			
	7.	A cylinder contains hydrogen gas at pressure of 249 kPa and temperature 27° C.			
es le		(a) $0.2kg/m^3$ (b) $0.1kg/m^3$			
2)	8.	(c) $0.02kg/m^3$ (d) $0.5kg/m^3$ The mean free path <i>l</i> for a gas molecule			
		depends upon diameter d of the molecule as (2020 Covid Re-NEET)			
at		(a) $l \propto d$ (b) $l \propto d^2$			
50 5?		(c) $l \propto \frac{1}{d}$ (d) $l \propto \frac{1}{d^2}$			
3)	9.	An ideal gas equation can be written as $P =$			
		$\frac{\rho_{RT}}{M_0}$ where ρ and M_0 are respectively,			
e		(2020 Covid Re-NEET)			
		(a) Number density, molar mass			
1)	1	(b) Mass density, molar mass			
		(c) Number density, mass of the gas			
	 (d) Mass density, mass of the gas 10. Increase in temperature of a gas filled in a container would lead to: (2019) (a) Increase in its mass 				
		(b) Increase in its kinetic energy			
		(c) Decrease in its pressure			
		(u) Decrease in intermolecular distance			

For More Study Material Visit: adda247.com

- **11.** At what temperature will the rms speed of oxygen molecules become just sufficient for escaping from the Earth's atmosphere? (Given: Mass of oxygen molecule (m) = $2.76 \times 10^{-26} kg$, Boltzmann's constant $k_B =$ $1.38 \times 10^{-23} J K^{-1}$ (2018) (a) $5.016 \times 10^4 K$ (b) $8.360 \times 10^4 K$ (c) $2.508 \times 10^4 K$ (d) $1.254 \times 10^4 K$
- **12.** A gas mixture consists of 2 moles of 0_2 and 4 moles of Ar at temperature T. Neglecting all vibrational modes, the total internal energy of the system is: (2017)
 - (a) 15 RT (b) 9 RT
 - (c) 11 RT (d) 4 RT
- 13. When the temperature of a gas is raised from 30°C to 90°C, the percentage increase in the r.m.s. velocity of the molecules will be: (2017-Gujrat) (a) 60% (b) 10%
 - (d) 30% (c) 15%
- 14. A given sample of an ideal gas occupies a volume V at a pressure P and absolute temperature T. The mass of each molecule of the gas is m. Which of the following gives the density of the gas? (2016-II) (a) P/(kTV)(b) mkT (c) P/(kT)(d) Pm/(kT)
- 15. One mole of an ideal monoatomic gas undergoes a process described by the equation PV^3 = constant. The heat capacity of the gas during this process is: (2016-II) (a) 2R (b) R
 - (d) $\frac{5}{2}$ R (c) $\frac{3}{2}$ R
- 16. On observing light from three different stars P, Q and R, it was found that intensity of violet color is maximum in the spectrum of P, the intensity of green color is maximum in the spectrum of R and the intensity of red color is maximum in the spectrum of Q. If T_P, T_0 and T_R are the respective absolute temperatures of P, Q and R then it can be concluded from the above observations that: (2015)(a) $T_P > T_R > T_O$ (b) $T_P < T_R < T_O$
 - (c) $T_P < T_Q < T_R$ (d) $T_P > T_Q > T_R$

- **17.** The ratio of the specific heats $\frac{C_p}{C_v} = \gamma$ in terms of degrees of freedom (n) is given by: (2015)
 - (a) $\left(1+\frac{n}{3}\right)$ (b) $\left(1+\frac{2}{n}\right)$ (c) $\left(1+\frac{n}{2}\right)$ (d) $\left(1+\frac{1}{n}\right)$
- 18. 4.0 g of a gas occupies 22.4 litres at NTP. The specific heat capacity of the gas at constant volume is $5.0/K^{-1}mol^{-1}$. If the speed of sound in this gas at NTP is 952 ms^{-1} , then the heat capacity at constant pressure is (2015 Re)
 - (Take gas constant R = 8.3 J/mol K):
 - (a) 8.5 J/K mol (b) 8.0 J/K mol
 - (c) 7.5 J/K mol(d) 7.0 J/K mol
- **19.** Two vessels separately contain two ideal gases A and B at the same temperature, the pressure of A being twice that of B. Under such conditions, the density of A is found to be 1.5 times the density of B. The ratio of molecular weight of A and B is:
 - (2015 Re)
 - (b) 2/3(a) $\frac{1}{2}$ (C) ³/₄
 - (d) 2

20. The mean free path of molecules of a gas, (radius r) is inversely proportional to:

(2014)

- (a) r^{3} (c) r
- (d) √r

(b) r^2

21. The amount of heat energy required to raise the temperature of 1 g of Helium at NTP, from T_1 K to T_2 K is: (2013)

(a)
$$\frac{3}{4}N_Ak_B(\frac{T_2}{T_1})$$
 (b) $\frac{3}{8}N_Ak_B(T_2 - T_1)$
(c) $\frac{3}{2}N_Ak_B(T_2 - T_1)$ (d) $\frac{3}{4}N_Ak_B(T_2 - T_1)$