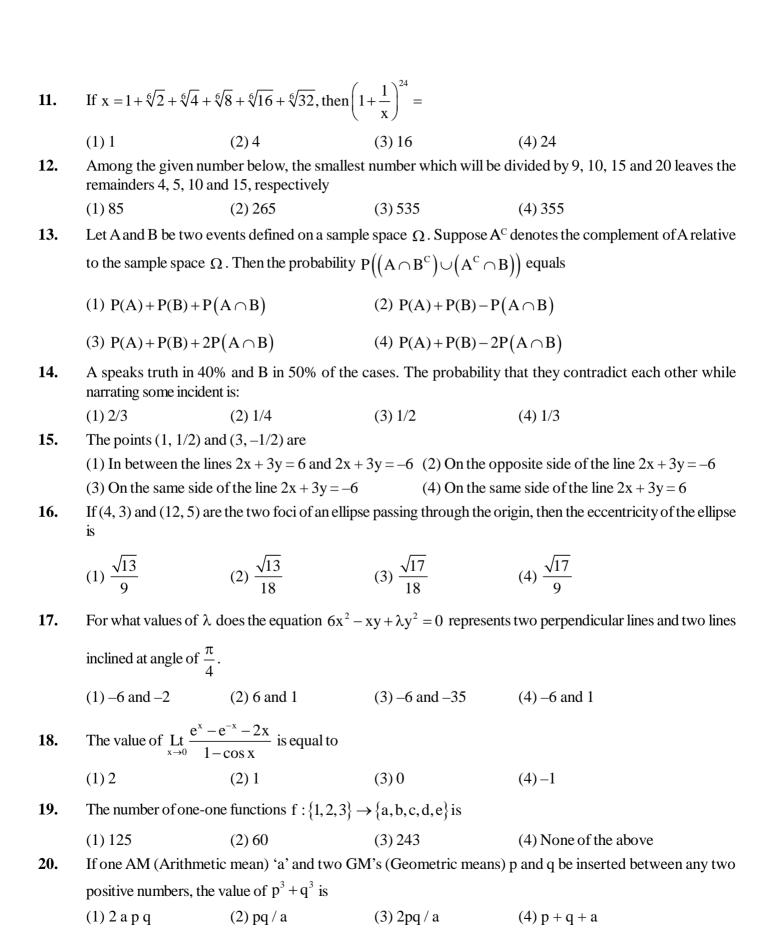
NIMCET 2024 Question Paper


01.	a 180 N force where the	he dock is at angle 45° fr	rom the horizontal?	ng a loading dock by pulling on it with
	$(1) 3.18198 \times 10^3 \mathrm{J}$	$(2) 3.18198 \times 10^2 \mathrm{J}$	(3) $3.4341 \times 10^3 \mathrm{J}$	$(4) 3.4341 \times 10^4 \mathrm{J}$
02.	Let $f: R \to R$ be a fu	nction such that $f(0) =$	$\frac{1}{\pi}$ and $f(x) = \frac{x}{e^{\pi x} - 1}$ for	or $x \neq 0$. Then
	(1) $f(x)$ is not continuo	ous at $x = 0$	(2) $f(x)$ is cont	inuous but not differentiable at $x = 0$
	(3) $f(x)$ is differentiable	e at $x = 0$ and $f'(0) = -$	$\frac{\pi}{2}$ (4) None of th	ese
03.	The value of the limit 1	$\lim_{x \to 0} \left(\frac{1^x + 2^x + 3^x + 4^x}{4} \right)^{\frac{1}{x}}$	is	
	(1) 1	$(2) \ 3!^{1/3!}$	$(3) \ 3!^{1/4}$	(4) 4! ^{1/4}
04.		=	lepiped is 4 cubic units v	whose three edges are represented by
	a = mi + j + k, b = i - j		(2) 0	(4)
05	(1)-1 Consider the function:	(2) 1 $f(y) = y^{2/3} (6 + y)^{1/3}$ Whi	` '	(4) -2
05.			ch of the following state	
	_	e interval $(0,4)$	_	,
	(3) f is a point of inflec	etion at $x = 0$	(4) f has a point of infl	ection at $x = 6$
06.	Lines $L_1, L_2,, L_{10}$ a	are distinct among which	h the lines L_2, L_4, L_6, L_8	, L_{10} are parallel to each other and the
	lines L_1, L_3, L_5, L_7, L_9	pass through a given po	oint C. The number of po	int of intersection of pairs of lines from
	the complete set L_1, L	L_2, L_3, \dots, L_{10} is		
	(1) 24	(2) 25	(3) 26	(4) 27
07.	For an invertible matrix	x A, which of the followi	ng is not always true:	
	$(1) \left \operatorname{adj}(A) \right \neq 0$	$(2) A \neq 0$	$(3) \left AA^{-1} \right = 1$	$(4) \left A \left(adj \left(A \right) \right) \right \neq 1$
08.	At how many points th	e following curves inters	sect $\frac{y^2}{9} - \frac{x^2}{16} = 1$ and $\frac{x^2}{4}$	$+\frac{(y-4)^2}{16} = 1$
	(1) 0	(2) 1	(3) 2	(4) 4
09.	The value of f(1) for f	$\left(\frac{1-x}{1+x}\right) = x + 2 \text{ is}$		
	(1) 1	(2) 2	(3) 3	(4) 4
10.	A committee of 5 is to either serve together o		of 9 people. The proba	bility that a certain maried couple will

(3) 2/3

(4) 4/9

(1) 5/9

(2) 1/2

21.	A coin is thrown 8 nu	mber of times. What is t	he probability of getting	a head in an odd number of throw?	
	(1) 3/4	(2) 1/4	(3) 1/2	(4) 1/8	
22.	The value of $\tan\left(\frac{\pi}{4}\right)$	$+\theta$ $\int \tan\left(\frac{3\pi}{4} + \theta\right)$ is			
	(1) –2	(2) 2	(3) 1	(4)-1	
23.	The value of $\sum_{r=1}^{n} \frac{1}{2^n}$	$\frac{nP_r}{r!}$ is:			
	$(1) 2^n$	$(2) 1-2^{-n}$	$(3) 2^n -1$	$(4) 2^{2n} - 1$	
24.	Let C donote the set of cardinality of C?	of all tuples (x, y) which	satisfy $x^2 - 2^y$ where x	and y are natural numbers. What is the	
	(1) 0	(2) 1	(3) 2	(4) 3	
25.	The value of series $\frac{2}{3}$	$\frac{4}{5!} + \frac{4}{5!} + \frac{6}{7!} + \dots$, is			
	$(1) 2e^{-2}$	$(2) e^{-2}$	$(3) e^{-1}$	$(4) 2e^{-1}$	
26.		ers are chosen randomly sible by both 2 and 3 is	from the first 100 natur	al numbers, then the probability that all	
	(1) 4/33	(2) 4/25	(3) 4/1155	(4) 4/35	
27.	If the line $a^2x + ay + 1$	1 = 0, for some real nun	nber a, is normal to the c	curve $xy = 1$ then	
	(1) a < 0	(2) 0 < a < 1	(3) a > 0	(4) -1 < a < 1	
28.	Let $f(x) = \begin{cases} x^2 \sin \frac{1}{x} \\ 0, \end{cases}$	$x \neq 0$. Then which o $x = 0$	f the following is true		
	(1) f(x) is not continue	ous at $x = 0$	(2) $f(x)$ is not differentiable at $x = 0$		
	(3) f'(x) is not conti	nuous at $x = 0$	(4) f'(x) is continuo	us at $x = 0$	
29.	If the perpendicular bi values of k are	sector of the line segmen	nt joining $p(1, 4)$ and $q(k)$, 3) has y-intercept –4, then the possible	
	(1) –2 and 2	(2) -1 and 1	(3) -3 and 3	(4) –4 and 4	
30.	The equation $3x^2 + 1$	$0xy + 11y^2 + 14x + 12y$	+5 = 0 represents		
	(1) a circle	(2) an ellipse	(3) a hyperbola	(4) a parabola	
31.	Mathematics, 24 pass both Mathematics and	sed Physics, and 43 pas d Physics, no more than	sed Chemistry. Addition 29 passed both Mathem	rsics, and Chemistry, 37 students passed nally, no more than 19 students passed natics and Chemistry, and no more than of students who could have passed all	

(3) 14

(4) 10

(1) 12

(2)9

32.	If $f(x) = \cos[\pi^2]x$	$+\cos\left[-\pi^2\right]x$, where [.]	stands for the greatest in	nteger function, then $f\left(\frac{\pi}{2}\right) =$
	(1) –1	(2) 0	(3) 1	(4) 2
33.	If for non–zero x,cf($f(x) + df\left(\frac{1}{x}\right) = \left \log x \right $	$+3$, where $c \neq d$, then \int	$\int_{1}^{e} f(x)dx =$
	(1) $\frac{(c-d)(2e-1)}{c^2-d^2}$	(2) $\frac{(c-d)(3e-2)}{c^2-d^2}$	(3) $\frac{(c-d)(3e+2)}{c^2-d^2}$	(4) $\frac{(c-d)(2e+1)}{c^2-d^2}$
34.	Find the cardinality of	the set C which is define	ed as $C = \begin{cases} x \mid \sin 4x = \frac{1}{2} \end{cases}$	$\frac{1}{2} \text{ for } x \in \left(-9\pi, 3\pi\right) $
	(1) 24	(2) 48	(3) 36	(4) 12
35.	The number of distinc is	t values of λ for which t	he vectors $\lambda^2 \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}, \hat{\mathbf{i}}$	$+\lambda^2\hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $\hat{\mathbf{i}} + \hat{\mathbf{j}} + \lambda^2\hat{\mathbf{k}}$ are coplanar
	(1) 1	(2) 2	(3) 3	(4) 6
36.	The number of solution	n of $5^{1+ \sin x + \sin x ^2+}=2$	5 for $x \in (-\pi, \pi)$ is	
	(1) 2	(2) 0	(3) 4	(4) infinite
37.	Let Z be the set of	of all integers, and o	consider the set $X =$	$\{(x,y): x^2 + 2y^2 = 3, x, y \in Z\}$ and
	$Y = \{(x, y) : x > y, x, y \in \{0, y\}\}$	$y \in Z$. Then the numb	er of elements in $X \cap Y$	is:
	(1) 2	(2) 1	(3) 3	(4) 4
38.	If $\sin x = \sin y$ and $\cos y$	s x = cos y, then the value	$e ext{ of } x - y ext{ is}$	
	$(1) \frac{\pi}{4}$	$(2) \frac{n\pi}{2}$	(3) $n\pi$	(4) 2nπ
39.	Which of the following	g is TRUE?		
	(1) If f is continuous of	on [a, b], then $\int_a^b xf(x)dx$	$x = x \int_a^b f(x) dx$	
	(2) $\int_0^3 e^{x^2} dx = \int_0^5 e^{x^2} dx$			
	(3) If f is continuous of	on [a, b], then $\frac{d}{dx} \left(\int_a^b f(x) dx \right)$	(x)dx = f(x)	
	(4) Both (1) and (2)			
40.	The vector $\vec{A} = (2x + $	$-1)\hat{i} + (x^2 - 6y)\hat{j} + (xy^2)$	$(z^2 + 3z)\hat{k}$ is a	
	(1) sink field	(2) solenoidal field	(3) source field	(4) None of these

Which of the following statement about $f(x)$ is true: (1) $f(x)$ has a local maximum at $x=1$, which is also the global maximum. (2) $f(x)$ has a local maximum at $x=2$, which is not the global maximum. (3) $f(x)$ has a global maximum at $x=0$, but it is not the global maximum. (4) $f(x)$ has a global maximum at $x=0$. 43. The two parabolas $y^2 = 4a(x+c)$ and $y^2 = 4bx$, $a > b > 0$ cannot has a common normal unless (1) $c > 2(a+b)$ (2) $c > 2(a-b)$ (3) $c < 2(a-b)$ (4) $c < \frac{2}{a-b}$ 44. The system of equations $x + 2y + 2z = 5$, $x + 2y + 3z = 6$, $x + 2y + \lambda z = \mu$ has infinitely many solutions if (1) $\lambda \neq 2$ (2) $\lambda \neq 2, \mu \neq 5$ (3) $\lambda = 2, \mu = 5$ (4) $\mu \neq 5$ 45. It is given that the mean, median and mode of a data set is 1, 3° and 9° respectively. The possible values of the mode is (1) 1, 4 (2) 1, 9 (3) 3, 9 (4) 9, 8 46. If $ F = 40$ N (Newtons), $ D = 3m$, and $\theta = 60^\circ$, then the work done by F acting from P to Q is (1) $60\sqrt{3}$ J (2) 120 J (3) $60\sqrt{2}$ J (4) 60 J 47. A man starts at the origin O and walks a distance of 3 units in the north-east direction and then walks a distance of 4 units in the north-west direction to reach the point P. Then \overline{OP} is equal to (1) $\frac{1}{\sqrt{2}}(-\hat{i}+\hat{j})$ (2) $\frac{1}{2}(\hat{i}+\hat{j})$ (3) $\frac{1}{\sqrt{2}}(\hat{i}-7\hat{j})$ (4) $\frac{1}{\sqrt{2}}(-\hat{i}+7\hat{j})$ 48. There are 9 bottle labelled 1, 2, 3,, 9 and 9 boxes labelled 1, 2, 3,, 9. The number of ways one can put these bottles in the boxes so that each box gets one bottle and exactly 5 bottles go in their corresponding numbered boxes is (1) $9 \times^9 C_5$ (2) $5 \times^9 C_5$ (3) $25 \times^9 C_5$ (4) $4 \times^9 C_5$ (4) $4 \times^9 C_5$ (2) $5 \times^9 C_5$ (3) 0.432 (4) 0.123	42.	Consider the function	$f(x) = \begin{cases} -x^3 + 3x^2 + 1, \\ \cos(x), \\ e^{-x}, \end{cases}$	$\begin{array}{ll} \text{if} & x \leq 2 \\ \text{if} & 2 < x \leq 4 . \\ \text{if} & x > 4 \end{array}$			
 (2) f(x) has a local maximum at x = 2, which is not the global maximum. (3) f(x) has a local maximum at x = π, but it is not the global maximum. (4) f(x) has a global maximum at x = 0. 43. The two parabolas y² = 4a (x+c) and y² = 4bx, a > b > 0 cannot has a common normal unless (1) c > 2(a + b) (2) c > 2(a - b) (3) c < 2(a - b) (4) c < 2/(a - b) 44. The system of equations x + 2y + 2z = 5, x + 2y + 3z = 6, x + 2y + λz = μ has infinitely many solutions if (1) λ≠2 (2) λ≠2, μ≠5 (3) λ=2, μ=5 (4) μ≠5 45. It is given that the mean, median and mode of a data set is 1, 3* and 9* respectively. The possible values of the mode is (1) 1, 4 (2) 1, 9 (3) 3, 9 (4) 9, 8 46. If F = 40 N (Newtons), D = 3m, and θ = 60°, then the work done by F acting from P to Q is (1) 60√3J (2) 120 J (3) 60√2J (4) 60 J 47. A man starts at the origin O and walks a distance of 3 units in the north-east direction and then walks a distance of 4 units in the north-west direction to reach the point P. Then OP is equal to (1) 1/√2(-î+ĵ) (2) 1/√2(î+ĵ) (3) 1/√2(î-7ĵ) (4) 1/√2(-î+7ĵ) 48. There are 9 bottle labelled 1, 2, 3,, 9 and 9 boxes labelled 1, 2, 3,, 9. The number of ways one can put these bottles in the boxes so that each box gets one bottle and exactly 5 bottles go in their corresponding numbered boxes is (1) 9×° C₅ (2) 5×° C₅ (3) 25×° C₅ (4) 4×° C₅ 49. A critical orthopedic surgery is performed on 3 patients. The probability of recovering a patient is 0.6. Then the probability that after surgery, exactly two of them will recover is 		Which of the following	g statement about $f(x)$ is	true:			
 (3) f(x) has a local maximum at x = π, but it is not the global maximum. (4) f(x) has a global maximum at x = 0. 43. The two parabolas y² = 4a (x+c) and y² = 4bx, a > b > 0 cannot has a common normal unless (1) c > 2(a+b) (2) c > 2(a-b) (3) c < 2(a-b) (4) c < 2/(a-b) (4) c < 2/(a-b) (5) 2(a+b) (6) 2 (2)		(1) f(x) has a local max	ximum at $x = 1$, which is	s also the global maximu	ım.		
 (4) f(x) has a global maximum at x = 0. 43. The two parabolas y² = 4a(x+c) and y² = 4bx, a > b > 0 cannot has a common normal unless (1) c > 2(a+b) (2) c > 2(a-b) (3) c < 2(a-b) (4) c < 2/(a-b) 44. The system of equations x + 2y + 2z = 5, x + 2y + 3z = 6, x + 2y + λz = μ has infinitely many solutions if (1) λ ≠ 2 (2) λ ≠ 2, μ ≠ 5 (3) λ = 2, μ = 5 (4) μ ≠ 5 45. It is given that the mean, median and mode of a data set is 1, 3° and 9° respectively. The possible values of the mode is (1) 1, 4 (2) 1, 9 (3) 3, 9 (4) 9, 8 46. If F = 40 N (Newtons), D = 3m, and θ = 60°, then the work done by F acting from P to Q is (1) 60√3J (2) 120 J (3) 60√2J (4) 60 J 47. A man starts at the origin O and walks a distance of 3 units in the north-east direction and then walks a distance of 4 units in the north-west direction to reach the point P. Then OP is equal to (1) 1/√2(-î+j) (2) 1/2(î+j) (3) 1/√2(î-7j) (4) 1/√2(-î+7j) 48. There are 9 bottle labelled 1, 2, 3,, 9 and 9 boxes labelled 1, 2, 3,, 9. The number of ways one can put these bottles in the boxes so that each box gets one bottle and exactly 5 bottles go in their corresponding numbered boxes is (1) 9×° C₅ (2) 5×° C₅ (3) 25×° C₅ (4) 4×° C₅ 49. A critical orthopedic surgery is performed on 3 patients. The probability of recovering a patient is 0.6. Then the probability that after surgery, exactly two of them will recover is 		(2) f(x) has a local max	ximum at x = 2, which is	not the global maximu	m.		
 43. The two parabolas y² = 4a(x+c) and y² = 4bx, a > b > 0 cannot has a common normal unless (1) c > 2(a+b) (2) c > 2(a-b) (3) c < 2(a-b) (4) c < 2/(a-b) 44. The system of equations x + 2y + 2z = 5, x + 2y + 3z = 6, x + 2y + λz = μ has infinitely many solutions if (1) λ ≠ 2 (2) λ ≠ 2, μ ≠ 5 (3) λ = 2, μ = 5 (4) μ ≠ 5 45. It is given that the mean, median and mode of a data set is 1, 3° and 9° respectively. The possible values of the mode is (1) 1, 4 (2) 1, 9 (3) 3, 9 (4) 9, 8 46. If F = 40 N (Newtons), D = 3m, and θ = 60°, then the work done by F acting from P to Q is (1) 60√3J (2) 120 J (3) 60√2J (4) 60 J 47. A man starts at the origin O and walks a distance of 3 units in the north-east direction and then walks a distance of 4 units in the north-west direction to reach the point P. Then OP is equal to (1) 1/√2(-î+ĵ) (2) 1/2(î+ĵ) (3) 1/√2(î-7ĵ) (4) 1/√2(-î+7ĵ) 48. There are 9 bottle labelled 1, 2, 3,, 9 and 9 boxes labelled 1, 2, 3,, 9. The number of ways one can put these bottles in the boxes so that each box gets one bottle and exactly 5 bottles go in their corresponding numbered boxes is (1) 9×° C₅ (2) 5×° C₅ (3) 25×° C₅ (4) 4×° C₅ 49. A critical orthopedic surgery is performed on 3 patients. The probability of recovering a patient is 0.6. Then the probability that after surgery, exactly two of them will recover is 		(3) f(x) has a local max	ximum at $x = \pi$, but it is	s not the global maximu	m.		
 (1) c > 2(a + b) (2) c > 2(a - b) (3) c < 2(a - b) (4) c < 2/(a - b) 44. The system of equations x + 2y + 2z = 5, x + 2y + 3z = 6, x + 2y + λz = μ has infinitely many solutions if (1) λ ≠ 2 (2) λ ≠ 2, μ ≠ 5 (3) λ = 2, μ = 5 (4) μ ≠ 5 45. It is given that the mean, median and mode of a data set is 1, 3^x and 9^x respectively. The possible values of the mode is (1) 1, 4 (2) 1, 9 (3) 3, 9 (4) 9, 8 46. If F = 40 N (Newtons), D = 3m, and θ = 60°, then the work done by F acting from P to Q is (1) 60√3J (2) 120 J (3) 60√2J (4) 60 J 47. A man starts at the origin O and walks a distance of 3 units in the north-east direction and then walks a distance of 4 units in the north-west direction to reach the point P. Then OP is equal to (1) 1/√2(-î+ĵ) (2) 1/2(î+ĵ) (3) 1/√2(î-7ĵ) (4) 1/√2(-î+7ĵ) 48. There are 9 bottle labelled 1, 2, 3,, 9 and 9 boxes labelled 1, 2, 3,, 9. The number of ways one can put these bottles in the boxes so that each box gets one bottle and exactly 5 bottles go in their corresponding numbered boxes is (1) 9×°C₅ (2) 5×°C₅ (3) 25×°C₅ (4) 4×°C₅ 49. A critical orthopedic surgery is performed on 3 patients. The probability of recovering a patient is 0.6. Then the probability that after surgery, exactly two of them will recover is 		(4) f(x) has a global m	aximum at $x = 0$.				
 44. The system of equations x + 2y + 2z = 5, x + 2y + 3z = 6, x + 2y + λz = μ has infinitely many solutions if	43.	The two parabolas y^2	$=4a(x+c) \text{ and } y^2 =$	4bx, a > b > 0 cannot l	has a common normal unless		
 (1) λ≠2 (2) λ≠2,μ≠5 (3) λ=2,μ=5 (4) μ≠5 45. It is given that the mean, median and mode of a data set is 1, 3° and 9° respectively. The possible values of the mode is		(1) $c > 2(a + b)$	(2) $c > 2(a - b)$	(3) $c < 2(a - b)$	$(4) c < \frac{2}{a-b}$		
 45. It is given that the mean, median and mode of a data set is 1, 3^x and 9^x respectively. The possible values of the mode is (1) 1, 4 (2) 1, 9 (3) 3, 9 (4) 9, 8 46. If F = 40 N (Newtons), D = 3m, and θ = 60°, then the work done by F acting from P to Q is (1) 60√3J (2) 120 J (3) 60√2J (4) 60 J 47. A man starts at the origin O and walks a distance of 3 units in the north-east direction and then walks a distance of 4 units in the north-west direction to reach the point P. Then OP is equal to (1) 1/√2 (-î+ĵ) (2) 1/2 (î+ĵ) (3) 1/√2 (î-7ĵ) (4) 1/√2 (-î+7ĵ) (4) 1/√2 (-î+7ĵ) (5) 1/√2 (10 + 7)√2 (10	44.	The system of equation	ons $x + 2y + 2z = 5$, $x + 2$	$2y + 3z = 6, x + 2y + \lambda z$	$z = \mu$ has infinitely many solutions if		
 mode is (1) 1, 4 (2) 1, 9 (3) 3, 9 (4) 9, 8 46. If F = 40 N (Newtons), D = 3m, and θ = 60°, then the work done by F acting from P to Q is (1) 60√3J (2) 120 J (3) 60√2J (4) 60 J 47. A man starts at the origin O and walks a distance of 3 units in the north-east direction and then walks a distance of 4 units in the north-west direction to reach the point P. Then OP is equal to (1) 1/√2 (-î+ĵ) (2) 1/2 (î+ĵ) (3) 1/√2 (î-7ĵ) (4) 1/√2 (-î+7ĵ) 48. There are 9 bottle labelled 1, 2, 3,, 9 and 9 boxes labelled 1, 2, 3,, 9. The number of ways one can put these bottles in the boxes so that each box gets one bottle and exactly 5 bottles go in their corresponding numbered boxes is (1) 9×9 C₅ (2) 5×9 C₅ (3) 25×9 C₅ (4) 4×9 C₅ 49. A critical orthopedic surgery is performed on 3 patients. The probability of recovering a patient is 0.6. Then the probability that after surgery, exactly two of them will recover is 		(1) $\lambda \neq 2$	(2) $\lambda \neq 2, \mu \neq 5$	(3) $\lambda = 2, \mu = 5$	$(4) \mu \neq 5$		
 46. If F = 40 N (Newtons), D = 3m, and θ = 60°, then the work done by F acting from P to Q is (1) 60√3J (2) 120 J (3) 60√2J (4) 60 J 47. A man starts at the origin O and walks a distance of 3 units in the north-east direction and then walks a distance of 4 units in the north-west direction to reach the point P. Then OP is equal to (1) 1/√2 (-î+ĵ) (2) 1/2 (î+ĵ) (3) 1/√2 (î-7ĵ) (4) 1/√2 (-î+7ĵ) 48. There are 9 bottle labelled 1, 2, 3,, 9 and 9 boxes labelled 1, 2, 3,, 9. The number of ways one can put these bottles in the boxes so that each box gets one bottle and exactly 5 bottles go in their corresponding numbered boxes is (1) 9×9 C₅ (2) 5×9 C₅ (3) 25×9 C₅ (4) 4×9 C₅ 49. A critical orthopedic surgery is performed on 3 patients. The probability of recovering a patient is 0.6. Then the probability that after surgery, exactly two of them will recover is 	45.		nn, median and mode of	a data set is 1, 3 ^x and 9 ^x	respectively. The possible values of the		
 (1) 60√3J (2) 120 J (3) 60√2J (4) 60 J 47. A man starts at the origin O and walks a distance of 3 units in the north-east direction and then walks a distance of 4 units in the north-west direction to reach the point P. Then OP is equal to (1) 1/√2 (-î+ĵ) (2) 1/2 (î+ĵ) (3) 1/√2 (î-7ĵ) (4) 1/√2 (-î+7ĵ) 48. There are 9 bottle labelled 1, 2, 3,, 9 and 9 boxes labelled 1, 2, 3,, 9. The number of ways one can put these bottles in the boxes so that each box gets one bottle and exactly 5 bottles go in their corresponding numbered boxes is (1) 9×9 C₅ (2) 5×9 C₅ (3) 25×9 C₅ (4) 4×9 C₅ 49. A critical orthopedic surgery is performed on 3 patients. The probability of recovering a patient is 0.6. Then the probability that after surgery, exactly two of them will recover is 		(1) 1, 4	(2) 1, 9	(3) 3, 9	(4) 9, 8		
 47. A man starts at the origin O and walks a distance of 3 units in the north-east direction and then walks a distance of 4 units in the north-west direction to reach the point P. Then OP is equal to (1) 1/√2 (-î+ĵ) (2) 1/2 (î+ĵ) (3) 1/√2 (î-7ĵ) (4) 1/√2 (-î+7ĵ) 48. There are 9 bottle labelled 1, 2, 3,, 9 and 9 boxes labelled 1, 2, 3,, 9. The number of ways one can put these bottles in the boxes so that each box gets one bottle and exactly 5 bottles go in their corresponding numbered boxes is (1) 9×9 C₅ (2) 5×9 C₅ (3) 25×9 C₅ (4) 4×9 C₅ 49. A critical orthopedic surgery is performed on 3 patients. The probability of recovering a patient is 0.6. Then the probability that after surgery, exactly two of them will recover is 	46.	If $ F = 40 \text{ N}$ (Newto	ns), $ D = 3m$, and $\theta =$	$=60^{\circ}$, then the work do	one by F acting from P to Q is		
of 4 units in the north-west direction to reach the point P. Then \overline{OP} is equal to (1) $\frac{1}{\sqrt{2}} \left(-\hat{i} + \hat{j} \right)$ (2) $\frac{1}{2} \left(\hat{i} + \hat{j} \right)$ (3) $\frac{1}{\sqrt{2}} \left(\hat{i} - 7\hat{j} \right)$ (4) $\frac{1}{\sqrt{2}} \left(-\hat{i} + 7\hat{j} \right)$ 48. There are 9 bottle labelled 1, 2, 3,, 9 and 9 boxes labelled 1, 2, 3,, 9. The number of ways one can put these bottles in the boxes so that each box gets one bottle and exactly 5 bottles go in their corresponding numbered boxes is (1) $9 \times {}^9C_5$ (2) $5 \times {}^9C_5$ (3) $25 \times {}^9C_5$ (4) $4 \times {}^9C_5$ 49. A critical orthopedic surgery is performed on 3 patients. The probability of recovering a patient is 0.6. Then the probability that after surgery, exactly two of them will recover is		(1) $60\sqrt{3}J$	(2) 120 J	(3) $60\sqrt{2}J$	(4) 60 J		
 (1) \$\frac{1}{\sqrt{2}}\left(-\hat{i}+\hat{j}\right)\$ (2) \$\frac{1}{2}\left(\hat{i}+\hat{j}\right)\$ (3) \$\frac{1}{\sqrt{2}}\left(\hat{i}-7\hat{j}\right)\$ (4) \$\frac{1}{\sqrt{2}}\left(-\hat{i}+7\hat{j}\right)\$ 48. There are 9 bottle labelled 1, 2, 3,, 9 and 9 boxes labelled 1, 2, 3,, 9. The number of ways one can put these bottles in the boxes so that each box gets one bottle and exactly 5 bottles go in their corresponding numbered boxes is (1) 9×9 C₅ (2) 5×9 C₅ (3) 25×9 C₅ (4) 4×9 C₅ 49. A critical orthopedic surgery is performed on 3 patients. The probability of recovering a patient is 0.6. Then the probability that after surgery, exactly two of them will recover is 	47.	A man starts at the orig	gin O and walks a distan	ce of 3 units in the north-	-east direction and then walks a distance		
 There are 9 bottle labelled 1, 2, 3,, 9 and 9 boxes labelled 1, 2, 3,, 9. The number of ways one can put these bottles in the boxes so that each box gets one bottle and exactly 5 bottles go in their corresponding numbered boxes is (1) 9×9 C₅ (2) 5×9 C₅ (3) 25×9 C₅ (4) 4×9 C₅ A critical orthopedic surgery is performed on 3 patients. The probability of recovering a patient is 0.6. Then the probability that after surgery, exactly two of them will recover is 		of 4 units in the north-	west direction to reach	the point P. Then \overline{OP} is	s equal to		
put these bottles in the boxes so that each box gets one bottle and exactly 5 bottles go in their corresponding numbered boxes is (1) $9 \times^9 C_5$ (2) $5 \times^9 C_5$ (3) $25 \times^9 C_5$ (4) $4 \times^9 C_5$ 49. A critical orthopedic surgery is performed on 3 patients. The probability of recovering a patient is 0.6. Then the probability that after surgery, exactly two of them will recover is		$(1) \ \frac{1}{\sqrt{2}} \left(-\hat{\mathbf{i}} + \hat{\mathbf{j}} \right)$	$(2) \; \frac{1}{2} \Big(\hat{\mathbf{i}} + \hat{\mathbf{j}} \Big)$	$(3) \frac{1}{\sqrt{2}} \left(\hat{\mathbf{i}} - 7 \hat{\mathbf{j}} \right)$	$(4) \ \frac{1}{\sqrt{2}} \left(-\hat{\mathbf{i}} + 7\hat{\mathbf{j}} \right)$		
49. A critical orthopedic surgery is performed on 3 patients. The probability of recovering a patient is 0.6. Then the probability that after surgery, exactly two of them will recover is	48.	put these bottles in the boxes so that each box gets one bottle and exactly 5 bottles go in their corresponding					
probability that after surgery, exactly two of them will recover is		(1) $9 \times {}^{9} C_{5}$	(2) $5 \times {}^{9} C_{5}$	(3) $25 \times {}^{9} C_{5}$	$(4) 4 \times^9 C_5$		
(1) 0.321 (2) 0.234 (3) 0.432 (4) 0.123	49.	-			y of recovering a patient is 0.6. Then the		
		(1) 0.321	(2) 0.234	(3) 0.432	(4) 0.123		

Given a set A with median $m_1 = 2$ and set B with median $m_2 = 4$. What can we say about the median of the

(3) at least 1

(2) at most 2

(4) at least 2

41.

combined set?

(1) at most 1

50.	Region R is defined as region in first quadrant satisfying the condition $x^2 + y^2 < 4$. Given that a point $p = (r, lies in R, what is the probability that r > s?$				
	(1) 1	(2) 0	(3) 1/2	(4) 1/3	
		Analytical Abi	lity & Logical l	Reasoning	
01.	Later, he sold a		•	aid a brokerage fee of 2% on the purchase. age fee of 2% on the sale. What is Aryan's	
	(1) 6%	(2) 5.5%	(3) 6.1%	(4) 5.69%	
02.	different dish fre cola, lemonade dish and drink:	om the menu: pizza, pasta, l , orange juice and water. E	burger and salad. Additio	aurant for dinner. Each of them ordered a onally, each friend ordered a different drink: lues, determine the combination of friend,	
		dn't order pizza or cola.			
		ordered salad but not lemo an ordered pasta.	onade.		
		a didn't order burger or or	gange juice		
	1	rdered orange juice.	gange janee.		
		he burger and what drink d	id they order?		
		e juice (2) Bharat, water	•	onade (4) Deepika, cola	
03.	• •	mileage as Compass is to	,	, , ,	
	(1) Needle	(2) Speed	(3) Direction	(4) Hiking	
04.	The mean of co	nsecutive positive integers	from 2 to n is		
	$(1) \frac{n+2}{2}$	$(2) \frac{n(n+1)}{2}$	$(3) \frac{n+1}{2}$	$(4) \frac{n-1}{2}$	
05.	If 30th Septem	nber, 1991 was a Wednesd	ay, then what was the d	ay on 14th March 1992?	
	(1) Sunday	(2) Saturday	(3) Wednesday	(4) Monday	
06.		g question, three statement	s and three conclusions a	are given.	
	Statements: 1. All stud	lanta ana intallicant			
		lents are intelligent. lligent person is lazy.			
		azy people are poor			
	Conclusions:	1 1			
		dent is lazy. ooor people are not intellige	ent.		
		or people are lazy.			
	Find out the mo	est appropriate conclusion(s	s) from the following opt	tions.	
	(1) Only conclu	usions 1 and 2 follow	(2) Only conclusion	on 1 follows	
	(3) Only conclu	sion 2 follows	(4) Only conclusion	ons 2 and 3 follow	

07.	three in	ndividua		he island	d: A, B a	ınd C. Ea	-			nd the other trib one of the tribe	-	
		-	response									
			B is a tru		,,							
	•		am not a									
	•		a liear."									
	•			lual is eit	her a tri	uth-tellei	or a liar	: who is	telling t	he truth?		
		th B an		(2) A c			(3) C ((4) B only		
08.	Incer	tain lanş		HEART	is writt		1801050	08, and	LUNGS	is written as 1	907142112.	If BRAIN
	(1) 5			(2) 9			(3) 4			(4) 2		
09.	Study	the fol	lowing i	nforma	tion ca	refully a	nd ansv	werthe	given q	uestion:		
	of D, v	vho sits		he left o	f E. C si	ts third t	_			ing the centre. ot an immediat		
	Who s	its oppo	osite to A	Λ?								
	(1)E			(2)G			(3) D			(4) F		
10.	Select	the pair	of word	s, which	are rela	ated in th	ne same v	way as t	he capit	alized words a	re related to	each other.
	DATA	: GRA	PН									
	(1) Mo	other : F	ather	(2) Mi	lk : Butt	er	(3) Wa	ter : Gl	ass	(4) Plant : Le	eaf	
11.		_	g 20% ca nis goods		unt, a tr	ader still	l earns a	profit o	f 11.11%	6. How much a	above the cos	st price, the
	(1) 40	%		(2) 30.	.33%		(3) 28	%		(4) 38.88%		
12.	Select	the one	which is	differen	t from t	he other	three.					
	(1) HE	EM		(2) NI	KS		(3) JG	P		(4) OLT		
13.			Delhi on 6 ny days,	•	•		_		•	days. They me	et at Delhi 5	days back.
	(1) 35			(2) 60			(3) 55			(4) 65		
14.	Which	pairs o	f bits car	be joine	ed toget	her to fo	rmtwo	words t	hat have	e opposite mea	nings?	
	ERT	UCE	DES	END	EXP	EAR	AND	SIP	RED	GOS		
	1	2	3	4	5	6	7	8	9	10		
	(1) (9,									(4) (4, 2), (7	, 8)	
15.		at time b pposite		pm and	3 pm, w	ill the ho	ur and n	ninute ha	ands of a	clock in oppos	site directions	s (diametri-
	(1) 2:4	15 pm		(2) 2:4	4 pm		(3) 2:	$43\frac{9}{11}$ p	m	(4) $2:43\frac{7}{11}$	pm	

16.	In which year was Ar	jun born?								
	Arjun at present is 25 years younger to his mother.									
	Arjun's brother, who	Arjun's brother, who was born in 1964, is 35 years younger to his mother.								
	(1) 1964	(2) 1944	(3) 1954	(4) 1974						
17.	Rajesh will not go to t	he concert if Rakesh	goes. Rakesh will go to t	the concert if his dog bar	ks three times.					
	(1) Rakesh will not go (2) If Rajesh doesn't g (3) If Rakesh's dog ba	to the concert unless go to the concert, then arks three times, then		concert.						
18.	In a tournament, many than 10 players, then t	• •	all teams in the tournament shirts.	nt have 5 to 15 players. It	f a team has more					
	Based only on the info	ormation above, which	n of the following must b	e true?						
	(1) Teams that have 1	3 players have revers	ible t-shirts.							
	(2) Teams that have 1	2 players do not have	reversible t-shirts.							
	(3) Teams with 8 players do not have reversible t-shirts.									
	(4) Only people on tea	ams can have reversib	ole t-shirts.							
19.	A cat climbs a 21-meter. In how minutes	_	ninute it climbs 3 meter at the top of the pole?	and in the second minute	e it descends one					
	(1) 21 minutes	(2) 18 minutes	(3) 19 minutes	(4) 20 minutes						
20.	Which out of the follo	wing words will appe	ar last in the dictionary							
	(1) Compliment	(2) Compline	(3) Complete	(4) Complicit						
21.	Arrange the words give	ven below in a meanin	gful sequence.							
	(1) Software	(2) Code	(3) Data	(4) Analysis	(5) Report					
	(1) 3, 1, 2, 4, 5	(2) 5, 4, 3, 1, 2	(3) 2, 1, 5, 3, 4	(4) 3, 1, 2, 5, 4						
22.	From the given option	ns, find the pair which	is like the given pair 8:	4						
	(1)45:5	(2) 216:32	(3)72:24	(4) 27 : 9						
23.	Which one of the follo	wing is the odd one fi	om the given alternative	?						
	(1) Highest education	(2) Salary	(3) Years of experie	ence (4) Age						
24.	What is the value of x	$x^2 + y^2 = ?$								
	Statement I: $xy = 5$ Statement II: $x + y = (1)$ Choose this optionanswered using the off	= 10 n if the question can l her statement.	be answered by using or be answered by using bot							

(3) Choose this option if the question can be answered by using either statement alone.

(4) Choose this option if the question cannot be answered even by using both the statements together.

answered using the other statement.

25.	•	portrait was Lucky lool	*	he only child of my paternal grandmother's					
	(1) His cousin	(2) His uncle	(3) His brother	(4) Himself					
26.	-	ains six statements follore most logically related	•	pinations of three. Choose the set in which					
	A: Some buildings	are not skyscrapers.							
	B: Some skyscrape	ers are not buildings.							
	C: No structure is	a skyscraper.							
	D: All skyscrapers	are structures.							
	E: Some skyscrape	ers are buildings.							
	F: Some structures	are not buildings.							
	(1) ACF	(2) BDF	(3) ACE	(4) FDA					
27.	the marks provided	l by the second judge ar nce of the marks prov	te given by $Y = 10.5 + 2X$,	on the performance of the participants. If where X is the marks provided by the first e is 100, then the variance of the marks					
	(1) 50	(2) 25	(3) 99	(4) 49.5					
28.		If by rearranging the letters of the word NABMODINT, a name of a game is formed. What would be the first and last letter of the mirror image of the name of the game?							
	(1) B, T	(2) N, B	(3) T, B	(4) B, N					
29.	-	This question contains six statements followed by four sets of combinations of three. Choose the set in which the combinations are most logically related:							
	A: All falcons fly hi	A: All falcons fly high.							
	B: All falcons are b	lind.							
	C: All falcons are b	C: All falcons are birds.							
	D: All birds are yel	D: All birds are yellow.							
	E: All birds are thir	E: All birds are thirsty.							
	F: All falcons are y	ellow.							
	(1) CDF	(2) BCA	(3) ABC	(4) DEF					
30.	tea, 25% prefer te	a over coffee, and the r	± •	t 60% of the employees prefer coffee over preference. If 20% of the employees who ly tea?					
	(1) 75	(2) 65	(3) 50	(4) 55					
31.		_		ts from point X and travels at a constant els at a constant speed of 80 km/h. If both					

cars travel for 1.5 hours, what is the difference in distance covered by Car B compared to Car A?

(3) 20 KM

(2) 30 KM

(1) 35 KM

(4) 25 KM

32.	Study the following of	liagram and answer the fo	llowing question	
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\longrightarrow Married people	
			\longrightarrow People who live	e in joint family
	(3		$_{\Delta}$ $ ightarrow$ School teacher	s
	By which letter, the r	narried teachers who do r	not live in joint family ar	e represented?
	(1) P	(2) S	(3) Q	(4) R
33.	students are passed i	_	maining students (who	f these (passed in half yearly) only 70% fail in half-yearly exam) 80% passed in
	(1) 72%	(2) 76%	(3) 65%	(4) 74%
34.	COMPREHENSIO	ON:		
		ift, Creta, Nexon and onl	•	icles. There are at least two passengers There are two engineers, two doctors
	(i) C is a lady doctor	and she does not travel v	with the pair of sisters A	and F.
	(ii) B a male engineer	travels with only G, a te	acher in a Swift.	
	(iii) D is a male docto	or.		
	(iv) Two persons bel	onging to the same profes	ssion do not travel in the	same vehicle.
	(v) A is not an engine	er and travels in a Creta.		
	(vi) The pair of sister	rs A and F travels in the sa	me vehicle.	
	What is F's profess	sion?		
	(1) Doctor	(2) Data inadequate	(3) Engineer	(4) Teacher
35.	COMPREHENSIO	ON:		
		ift, Creta, Nexon and onl	_	icles. There are at least two passengers There are two engineers, two doctors
	(i) C is a lady doctor	and she does not travel v	with the pair of sisters A	and F.
	(ii) B a male engineer	, travels with only G, a te	acher in a Swift.	
	(iii) D is a male docto	or.		
	(iv) Two persons bel	onging to the same profes	ssion do not travel in the	same vehicle.
	(v) A is not an engine	eer and travels in a Creta.		
	(vi) The pair of sister	rs A and F travels in the sa	me vehicle.	
	In which vehicle do	oes C travel?		
	(1) Swift	(2) Data inadequate	(3) Nexon	(4) Creta

36. COMPREHENSION:

<u>Directions:</u> A, B, C, D, E, F and G are travelling in three different vehicles. There are at least two passengers in each vehicle – Swift, Creta, Nexon and only one of them is a male. There are two engineers, two doctors and three teachers among them.

- (i) C is a lady doctor and she does not travel with the pair of sisters A and F.
- (ii) B a male engineer, travels with only G, a teacher in a Swift.
- (iii) D is a male doctor.
- (iv) Two persons belonging to the same profession do not travel in the same vehicle.
- (v) A is not an engineer and travels in a Creta.
- (vi) The pair of sisters A and F travels in the same vehicle.

Which of the following represents the three teachers?

(1) Data inadequate (2) GBF (3) GEA (4) GEF

37. COMPREHENSION:

<u>Direction:</u> A, B, C, D and E are five different integer. When written in the ascending order of values, the difference between any two adjacent integers is 8. D is the greatest and A the least. B is greater than E but less than C. The sum of the integers is equal to E.

The value of A is:

(1)-18 (2)-17 (3) None of these (4)-15

38. COMPREHENSION:

<u>Direction:</u> A, B, C, D and E are five different integer. When written in the ascending order of values, the difference between any two adjacent integers is 8. D is the greatest and A the least. B is greater than E but less than C. The sum of the integers is equal to E.

The sum of A and B is:

(1)-15 (2)-30 (3)-20 (4) None of these

39. COMPREHENSION:

<u>Direction:</u> A, B, C, D and E are five different integer. When written in the ascending order of values, the difference between any two adjacent integers is 8. D is the greatest and A the least. B is greater than E but less than C. The sum of the integers is equal to E.

The greatest number has the value:

(1) 14 (2) 15 (3) 12 (4) 17

40. COMPREHENSION:

<u>Direction:</u> A, B, C, D and E are five different integer. When written in the ascending order of values, the difference between any two adjacent integers is 8. D is the greatest and A the least. B is greater than E but less than C. The sum of the integers is equal to E.

The sum of the integers is:

(1)-6 (2)-10 (3) None of these (4)-8

Computer Awareness

01.	Given that numbers A ar sum A + B is				's Complement number	with $A = 1111111111111111111111111111111111$				
	(1) (0000001	10	(2) 11111100	(3) 11111110	(4) 00000000				
02.	sequ	Consider an arbitrary number system with independent digits as 0, 1 and A. If we generate first few numbers in sequence as 00, 01, 0A, 10, 11, 1A and if this process is continued to generate the numbers, then the position of 10A is								
	(1) 1	15		(2) 12	(3) 9	(4) 10				
03.	The	Boolear	n express	sion for the following tr	ruth table is					
	X	\mathbf{y}	Z	f						
	0	0	0	0						
	0	0	1	0						
	0	1	0	1						
	0	1	1	0						
	1	0	0	0						
	1	0	1	1						
	1	1	0	0						
	1	1	1	1						
	(1)	(1) $F = x'yz' + xy'z + x'y'z'$			(2) $F = x'y'z' + xy'z + xyz'$					
	(3)	(3) $F = x'yz' + xy'z + xyz$ (4) None of these								
04.	Con	Consider the following 4-bit binary numbers represented in the 2's complement form: 1101 and 0100.								
	Wha	What would be the result when we add them?								
	(1) ((1) 0001 and an overflow (2) 1001 and no overflow (3) 1001 and an overflow (4) 0001 and no overflow								
05.		Which of the following interfaces perform the transfer of data between the memory and the I/O peripheral without involving the CPU?								
	(1) H	Branch I	nterface	(2) Serial Interface	(3) DMA	(4) DDA				
06.	Whi	ch of the	followi	ng is the smallest unit o	f data in a computer?					
	(1) E	Byte		(2) Bit	(3) Nibble	(4) KB				
07.	Con	sider the	e progra	m below which uses six	x temporary variables a	a, b, c, d, e and f.				
	a = 1	10								
	b = 2	20								
	c = 3	30								
	d = a									
		b + d								
	f = c									
		c + e								
	e = 1									
		5 + e								
	retui	$\operatorname{rn} d + f$								

(1) 5	(2) 6	(3) 3	(4) 4
The quotient, if the b	oinary number 110101	11 is divided by 101, is	
(1) 101011	(2) 101010	(3) 101101	(4) 111001
Which of the following eral devices to transfer		to establish a communi	cation link between a CPU and the
(1) Memory address	register (2) Instructi	on register (3) Memo	ry data register (4) Index reg
• •			M chips of 4K×8-bit capacity. The paytes memory is
(1) 32	(2) 16	(3) 64	(4) 8
The primary purpose	of cache memory in a	computer system is	
(1) to manage input a	and output operations b	between the CPU and p	peripherals
(2) to temporarily sto	ore frequently accessed	l data and instructions	for faster access by the CPU
(3) to permanently ste	ore data and programs		
(4) to provide additio	nal storage space when	n the main memory is f	ıll
Which of the following	ng do not affects CPU p	performance?	
(1) Cache size	(2) Number of core	es (3) Amount of RA	M (4) Clock speed
•		1 0	The processor has a translation loos 4 way set associate. The minimum
(1) 11 bits	(2) 15 bits	(3) 13 bits	(4) 20 bits
illiterate, and the rect		al. Study the figure with	or a social worker, the triangle standing its regions and find the number of
	10	5 11 9 4 8	
(1) 4	(2) 8		(A) 11
(1) 4	(2) 8	(3) 1	(4) 11
	(2) 8 ions as an intermediary (2) CPU and RAM	(3) 1 between	

16.	Let the given numbers 11001, 1001 and 111001 be correspond to the 2's complement representation. The with which one of the following decimal numbers, the given numbers match?					
		respectively	_			
	(3) -6, -6, and -6, re		(4) 25, 9 and 57, resp	•		
17.	The range of the expo	onent E in the IEEE754	double precision (Binary	y 64) format is		
	$(1) -1023 \le E \le 1023$		$(2) -1022 \le E \le 10$)22		
	$(3) -1023 \le E \le 10$)22	$(4) -1022 \le E \le 10$	023		
18.	Which of the following components is not a part of an instruction format in CPU processing?					
	(1) Source operand	-	(3) Destination opera	•		
19.	· ·	can be represented by	. ,	•		
	(1) a product of sum	Boolean expression	(2) All of the options			
	(3) a sum of product	Boolean expression	(4) a Karnaugh map			
20.		R is the reduced form	of			
	(1) (P+Q)R	(2) (P+R)Q	(3) (P+Q) (P+R)	(4) PQ + QR		
		Gene	eral English			
21.			ons to complete the sente	ence:		
			(3) into, beside	(4) onto, towards		
22.	The company's	growth in rever	nue surprised analysts.			
	(1) erratic	(2) gradual	(3) stagnant	(4) exponential		
23.	Identify the word tha	t means the same as "osi	tentatious":			
	(1) Lavish	(2) Simple	(3) Modest	(4) Unassuming		
24.	Write the antonym for	r 'Inscrutable':				
	(1) Comprehensible	(2) Mysterious	(3) Opaque	(4) Obscure		
25.	Choose the best option	on that indicates the char	nge of voice for the sente	ence given below:		
	Did Alice invite you	?				
	(1) Were you invited	by Alice?	(2) Was Alice invited	you?		
	(3) Had you invited A	Alice?	(4) Did you invited by Alice?			
26.	Which of the following	ng is an essential elemen	t of a technical report?			
	(1) Anecdotes and personal opinions		(2) Statistical data and analysis			
	(3) Creative storytelli	ng	(4) Emotional appeal	s		
27.	Select the correct me	aning of 'Peruse':				
	(1) Continue	(2) Pursue	(3) Examine	(4) Rescue		
28.	(1) I prefer coffee ov		· ·	rested on learning new languages.		

- **29.** Select the appropriate synonym for 'coercive':
 - (1) Gentle
- (2) Forceful
- (3) Corrective
- (4) Merciful
- **30.** What does the idiom "jump on the bandwagon" mean?
 - (1) To join a popular trend or activity
- (2) To criticize something unfairly

(3) To repair a vehicle

(4) To start a business

Answer Key

Mathematics

01. (1)	02. (4)	03. (4)	04. (1)	05. (3)	06. (3)	07. (4)	08. (3)	09. (2)	10. (4)
11. (3)	12. (4)	13. (4)	14. (3)	15. (1)	16. (4)	17. (3)	18. (3)	19. (2)	20. (1)
21. (3)	22. (4)	23. (2)	24. (3)	25. (3)	26. (3)	27. (1)	28. (3)	29. (4)	30. (2)
31. (3)	32. (1)	33. (2)	34. (2)	35. (2)	36. (3)	37. (2)	38. (4)	39. (2)	40. (1)
41. (4)	42. (2)	43. (2)	44. (3)	45. (1)	46. (4)	47. (4)	48. (1)	49. (3)	50. (3)
		A	Analytica	al Ability	& Logi	cal Reas	oning		
01. (4)	02. (1)	03. (3)	04. (1)	05. (4)	06. (1)	07. (3)	08. (4)	09. (4)	10. (2)
11. (4)	12. (3)	13. (3)	14. (1)	15. (4)	16. (3)	17. (3)	18. (1)	19. (3)	20. (2)
21. (1)	22. (4)	23. (1)	24. (2)	25. (1)	26. (2)	27. (2)	28. (2)	29. (1)	30. (2)
31. (2)	32. (4)	33. (4)	34. (3)	35. (3)	36. (3)	37. (1)	38. (3)	39. (1)	40. (2)
			(Comput	er Aware	eness			
01. (3)	02. (2)	03. (4)	04. (4)	05. (3)	06. (2)	07. (3)	08. (1)	09. (3)	10. (2)
11. (2)	12. (3)	13. (2)	14. (2)	15. (2)	16. (2)	17. (4)	18. (2)	19. (2)	20. (3)
				Gener	ral Engli	sh			
21. (4)	22. (4)	23. (1)	24. (1)	25. (1)	26. (2)	27. (3)	28. (1)	29. (2)	30. (1)