	CHEM Some Basic Con	IISTR cept of	RY f Chemistry Adda 247
1.	The highest number of helium atoms is in (2024) (a) 4 u of helium (b) 4 g of helium (c) 2.271098 L of helium at STP (d) 4 mol of helium	8.	In one molal solution that contains 0.5 mole of a solution, there is (2022) (a) 500 mL of solvent (b) 500 g of solvent (c) 100 mL of solvent (d) 1000 g of solvent
2.	with 25 mL of 0.75 M HCl solution, the mass of sodium hydroxide left unreacted is equal to (2024) (a) 250 mg (b) Zero mg (c) 200 mg (d) 750 mg	9.	what mass of 95% pure CaCO ₃ will be required to neutralise 50 mL of 0.5 M HCl solution according to the following reaction? CaCO ₃ (s) + 2HCl(aq) \rightarrow CaCl ₂ (aq) + CO ₂ (g) + 2H ₂ O(l)
3.	A compound X contains 32% of A. 20% of B and remaining percentage of C. Then, the empirical formula of X is: (Given atomic masses of A = 64; B = 40; C = 32 u) (2024) (a) ABC ₃ (b) AB_2C_2 (c) ABC ₄ (d) A_2BC_3	10.	[Calculate upto second place of decimal point] (2022) (a) 1.25 g (b) 1.32 g (c) 3.65 g (d) 9.50 g An organic compound contains 78% (by wt.) carbon and remaining percentage of budragen. The right option for the
4.	The density of 1 M solution of a compound 'X' is 1.25 g mL^{-1} . The correct option for the molality of solution is (Molar mass of compound X = 85 g): (2023) (a) 0.705 m (b) 1.208	11.	invertigent. The right option for the empirical formula of this compound is: [Atomic wt. of C is 12, H is 1] (2021) (a) CH_2 (b) CH_3 (c) CH_4 (d) CH Which one of the followings has maximum number of atoms? (2020)
5.	(c) 1.165 m (d) 0.858 m The right option for the mass of CO ₂ produced by heating 20 g of 20% pure limestone is (Atomic mass of Ca = 40) $\begin{bmatrix} CaCO_3 \xrightarrow{1200K} CaO + CO_2 \end{bmatrix}$ (2023) (a) 1.76 g (b) 2.64 g (c) 1.32 g (d) 1.12 g	12.	(a) 1 g of Mg(s) [Atomic mass of Mg = 24] (b) 1 g of O ₂ (g) [Atomic mass of O = 16] (c) 1 g of Li(s) [Atomic mass of Li = 7] (d) 1 g of Ag(s) [Atomic mass of Ag = 108] One mole of carbon atom weighs 12g, the number of atoms in it is equal to. (Mass of carbon-12 is 1.9926×10^{-23} g)
6.	The density of the solution is 2.15 g mL ⁻¹ , then mass of 2.5 mL solution in correct significant figures is: (2022) (a) 53.75 g (b) 5375×10^{-3} g (c) 5.4 g (d) 5.38 g	13.	(2020 Covid Re-NEET) (a) 6.022 × 10 ²² (b) 12 × 10 ²² (c) 6.022 × 10 ²³ (d) 12 × 10 ²³ The number of moles of hydrogen molecules required to produce 20 moles
7.	What fraction of Fe exists as Fe(III) in Fe _{0.96} O? (Consider Fe _{0.96} O to be made up of Fe(II) and Fe(III) only) (2022) (a) $1/20$ (b) $1/12$ (c) 0.08 (d) $1/16$		ot ammonia through Haber's process is : (2019) (a) 10 (b) 20 (c) 30 (d) 40

Adda247 Publications

For More Study Material Visit: adda247.com

14.	A mixture of 2.3 g formic acid and 4.5 g oxalic acid is treated with conc. H ₂ SO ₄ . The evolved gaseous mixture is passed through KOH pellets. Weight (in g) of the remaining product at STP will be : (2018) (a) 1.4 (b) 3.0 (c) 4.4 (d) 2.8	20.	What is the mass of the precipitate formed when 50 mL of 16.9% solution of AgNO ₃ is mixed with 50 mL of 5.8% NaCl solution? (Ag = 107.8, N = 14, O = 16, a = 23, Cl = 35.5) (2015 Re) (a) 3.5 g (b) 7 g (c) 14 g (d) 28 g
15.	In which case is number of molecules of water maximum? (2018) (a) 18 mL of water (b) 0.18 g of water (c) 10 ⁻³ mole of water (d) 0.00224 L of water vapours at 1 atm and 273 K	21.	20.0 g of a magnesium carbonate sample decomposes on heating to give carbon dioxide and 8.0 g magnesium oxide. What will be the percentage purity of magnesium carbonate in the sample? (Atomic weight of Mg = 24) (2015 Re) (a) 96 (b) 60
16.	A hydrocarbon contains 85.7% of Carbon and 14.3% of Hydrogen. If 42 mg of the compound contains 3.01×10^{20} molecules, the molecular formula of the compound will be : (2017-Gujarat) (a) C ₂ H ₄ (b) C ₃ H ₆ (c) C ₆ H ₁₂ (d) C ₁₂ H ₂₄	22.	 (c) 84 (d) 75 When 22.4 litres of H₂(g) is mixed with 11.2 litres of Cl₂(g), each at STP, the moles of HCl(g) formed is equal to : (a) 2 mole of HCl(g) (b) 0.5 mol of HCl(g)
17.	Suppose the elements X and Y combine to form two compounds XY_2 and X_3Y_2 . When 0.1 mole of XY_2 weighs 10 g and 0.05 mole of X_3Y_2 weighs 9 g, the atomic weights of X and Y are : (2016-II) (a) 20, 30 (b) 30, 20 (c) 40, 30 (d) 60, 40	23.	 (c) 1.2 mole of HCl(g) (d) 1 mol of HCl(g) 1.0 g of magnesium is burnt with 0.56 g O₂ in a closed vessel. Which reactant is left in excess and how much? (2014) (a) O₂, 0.16 g (b) Mg, 0.44 g (a) O₂ 0.28 g (d) Mg 0.16 g
18.	(c) 40, 30(d) 60, 40The number of water molecules is maximum in:(2015 Re)(a) 18 moles of water(b) 18 molecules of water(c) 1.8 gram of water(d) 18 gram of water	24.	(c) O_2 , $O.28$ g (d) Mg, $O.16$ g Equal masses of H_2 , O_2 and methane have been taken in a container of volume V at temperature 27°C in identical conditions. The ratio of the volumes of gases H_2 : O_2 : methane would be : (2014)
19.	If Avogadro number N _A , is changed from 6.022 × 10 ²³ mol ⁻¹ , this would change : (2015 Re)	25.	(a) $8:16:1$ (b) $16:8:1$ (c) $16:1:2$ (d) $8:1:2$ 6.02×10^{20} molecules of urea are present
	 (a) The ratio of elements to each other in a compound (b) The definition of mass in units of grams (c) The mass of one mole of carbon (d) The ratio of chemical species to each other in a balanced equation 	26.	in 100 mL of its solution. The concentration of solution is : (2013) (a) 0.02 M (b) 0.01 M (c) 0.001 M (d) 0.1 M An excess of AgNO ₃ is added to 100 mL of a 0.01 M solution of dichlorotetraaqua-chromium (III) chloride. The number of moles of AgCl precipitated would be : (2013) (a) 0.001 (b) 0.002 (c) 0.003 (d) 0.01
211	Adda247 I	Publicat	tions For More Study Material

Visit: adda247.com