CHEMISTRY Chemical Bonding and **Molecular Structure**

	Match List I with List II. List I List II			(a) DE has some part of $a = 1$	
	List I				(a) BF_3 has non-zero dipole moment.
	(Molecule)		(Number and types of bond/s between		(b) Dipole moment of NF_3 is greater that
					that of <i>NH</i> ₃
•		_	carbon atoms)		(c) Three canonical forms can be draw
Α.	ethane	I.	one σ –bond		for CO_3^{2-} ion.
			and two		(d) Three resonance structures can b
D	.1		π -bonds	_	drawn for ozone.
<u>B.</u>	ethene	II.	two π –bonds	-	
C.	carbon molecule, C_2		one σ –bond	5.	The correct order of dipole moments for molecules NH ₃ , H ₂ S, CH ₄ and HF is:
D.	ethyne	IV.	one σ –bond		(2023
			and one		(a) $CH_4 > H_2S > NH_3 > HF$
			π –bond		(b) $H_2S > NH_3 > HF > CH_4$
			nswer from the		(c) $H_{23} > HF > CH_4 > H_2S$
-	ons given belo		(2024)	1	
	A-IV, B-III, C-				(d) $HF > NH_3 > H_2S > CH_4$
	A-III, B-IV, C-			6.	Which one of the following represents a
• • •	A-III, B-IV, C-	-			isoelectronic species? (2023
• •	A-I, B-IV, C-II				(a) Na ⁺ , Cl ⁻ , O ⁻ , NO ⁺
	ch List – I wit	h List			(b) N_2O , N_2O_4 , NO^+ , NO
	List - I	(01.	List - II		(c) Na ⁺ , Mg ²⁺ , 0^- , F ⁻
•			pe/geometry)		(d) Ca^{2+} , Ar, K ⁺ , Cl ⁻
A.	-		gonal Pyramidal	7.	Which one of the following statements
	BrF ₅ II.		uare planar	1.	C
	XeF ₄ III		tahedral		incorrect related to Molecular Orbit
	SF_6 IV	-	uare Pyramidal		Theory? (2023
			nswer from the		(a) The π^* antibonding molecular orbit
-	ons given belo A-II, B-IV, C-I		(2024)		has a node between the nuclei.
	A-III, B-IV, C-I			A	(b) In the formation of bondir
• •	A-II, B-III, C-I				molecular orbital, the two electro
	A-I, B-IV, C-II			-	waves of the bonding atoms reinford
		nydrog	gen bonding is		each other.
	sent in	iyuroş	(2024)	12.	(c) Molecular orbitals obtained from 2
(a)					and $2P_y$ orbitals are symmetric
	NO ₂				around the bond axis.
	HO				(d) A π -bonding molecular orbital has
(b)					larger electron density above ar
r	NO ₂				below the internuclear axis.
Į				8.	Given below are two statements:
	↓ H0				Statement I: Hydrated chlorides an
(c)]					bromides of Ca, Sr and Ba on heating
(d)					undergo hydrolysis.
(u)	NO ₂				Statement II: Hydrate chlorides an
	1102				bromides of Be and Mg on heatin
	1 11				undergo dehydration.

In the light of the above statements, choose the correct answer from the options given below: (2023)

- (a) Statement I is correct but Statement II is false.
- (b) Statement II is incorrect but Statement II is true.
- (c) Both Statement I and Statement II are true.
- (d) Both Statement I and Statement II are false.
- 9. The correct order of energies of molecular orbitals of N_2 molecule, is (2023)
 - (a) $\sigma 1s < \sigma^* 1s < \sigma 2s < \sigma^* 2s < \sigma 2p_z < (\pi 2p_x = \pi 2p_y) < (\pi^* 2p_x = \pi^* 2p_y) < \sigma^* 2p_z$
 - (b) $\sigma 1s < \sigma^* 1s < \sigma 2s < \sigma^* 2s < \sigma 2p_z < \sigma^* 2p_z < (\pi 2p_x = \pi 2p_y) < (\pi^* 2p_x = \pi^* 2p_y)$
 - (c) $\sigma 1s < \sigma^* 1s < \sigma 2s < \sigma^* 2s < (\pi 2p_x = \pi 2p_y) < (\pi^* 2p_x = \pi^* 2p_y) < \sigma 2p_z < \sigma^* 2p_z$
 - (d) $\sigma 1s < \sigma^* 1s < \sigma 2s < \sigma^* 2s < (\pi 2p_x) = \pi^2 p_y < \sigma^2 p_z < (\pi^* 2p_x) = \pi^* 2p_y < \sigma^* 2p_z$
- 10. Talking stability as the factor, which one of the following represents correct relationship? (2023)
 (a) Inl₃ > Inl
 (b) AlCl > AlCl
 - (b) AlCl > AlCl₃
 - (c) $T11 > T11_3$
 - (d) $T1C1_3 > T1C1$
- **11.** Intermolecular forces are forces of attraction and repulsion between interacting particles that will include:
 - A. dipole-dipole forcesB. dipole-induced dipole forces
 - C. hydrogen bonding
 - D. covalent bonding
 - E. dispersion forces
 - Choose the most appropriate answer from the options given below: (2023)
 - from the options given below: (a) A, B, C, D are correct
 - (b) A, B, C, E are correct
 - (c) A, C, D, E are correct
 - (d) B, C, D, E are correct

12. Match List I with List II:

List I (Molecules)		List II (Shape)		
А.	NH ₃	i.	Square pyramidal	
В.	ClF ₃	ii.	Trigonal bipyramidal	
C.	PC1 ₅	iii.	Trigonal pyramidal	
D.	BrF_5	iv.	T-shape	

Choose the correct answer from the options given below: (2022)

- (a) A-iii, B-iv, C-i, D-ii
- (b) A-ii, B-iii, C-iv, D-i
- (c) A-iii, B-iv, C-ii, D-i
- (d) A-iv, B-iii, C-i, D-ii
- **13.** The correct order of bond angles in the following compounds/species is: **(2022)**
 - (a) $CO_2 < NH_3 < H_2O < NH_4$
 - (b) $H_2O < NH_3 < NH_4 < CO_2$
 - (c) $H_2O < NH_4 < NH_3 < CO_2$
 - (d) $H_2O < NH_4 = NH_3 < CO_2$
- **14.** Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): ICl is more reactive than I_2 .

Reason (R): I-Cl bond is weaker than l-l bond.

In the light of the above statements, choose the most appropriate answer from the options given below: (2022)

- (a) Both (A) and (R) are correct and (R) is the correct explanation of (A).
- (b) Both (A) and (R) are correct but (R) is not the correct explanation of (A).
- (c) (A) is correct but (R) is not correct.
- (d) (A) is not correct but (R) is correct.
- 15. Amongst the following which one will have maximum 'lone pair lone pair' electron repulsions? (2022)
 - (a) $C1F_3$
 - (b) IF_5
 - (c) SF_4
 - (d) XeF_2

16. 17.	 Which amongst the following is incorrect statement? (2022) (a) The bond orders of 0⁺₂, O₂, O⁻₂ and 0²₂ are 2.5, 2, 1.5 and 1, respectively (b) C₂ molecule has four electrons in it two degenerate π molecular orbitals (c) H⁺₂ ion has one electron (d) 0⁺₂ ion is diamagnetic BF₃ is planar and electron compound Hybridization and number of electron around the central atom, respectivel are : (2021) (a) sp³ and 6 (b) sp² and 8 	a fo (4 (1) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	How many (i) sp^2 hybridised carbon atoms and (ii) π bonds are present in the following compound? (2020 Covid Re-NEET) (2020 Covid Re-NET) (2020 Covid
18.	(d) sp ³ and 4 Match List-I with List-II. (2021		elow. ↓ a
	List-IList-IIA. PCl_5 (i)Square pyramidalB. SF_6 (ii)Trigonal planarC. BrF_5 (iii)OctahedralD. BF_3 (iv)Trigonal bipyramidal	Т	y b c $\rightarrow x$ The bond energy of H ₂ is (2020 Covid Re-NEET) a) $\frac{(c-a)}{2}$ (b) $\frac{(b-a)}{2}$
	Choose the correct answer from th options given below. (a) A-ii, B-iii, C-iv, D-i (b) A-iii, B-I, C-iv, D-ii	24. Id	c) $(c-a)$ (d) $(b-a)$ dentify the wrongly matched pair. (2020 Covid Re-NEET) Molecule Shape or geometry
	(c) A-iv, B-iii, C-ii, D-i	(a) SF ₆ Octahedral
19. 20.	(d) A-iv, B-iii, C-i, D-iiWhich of the following molecules is non- polar in nature?(2021)(a) CH2O(b) SbCl5(c) NO2(d) POCl3Which of the following set of molecule	25. W	b) $BeCl_2$ Linear c) NH_3 Trigonal pyramidal d) PCl_5 Trigonal planar Which of the following diatomic nolecular species has only π bonds
	 will have zero dipole moment? (2020) (a) Boron trifluoride, hydrogen fluoride carbon dioxide, 1,3-dichlorobenzene (b) Nitrogen trifluoride, berylliur difluoride, water 1, 3 	, (a 1 (0	according to Molecular Orbital Theory? (2019) a) O_2 (b) N_2 c) C_2 (d) Be_2 dentify the incorrect statement related
	dichlorobenzzene (c) Boron trifluoride, berylliur difluoride, carbon dioxide, 1,4 dichlorobenzene (d) Ammonia, beryllium difluoride	1 to - (á - (1	 a) Three equational P-Cl bonds make an angle of 120° with each other b) Two axial P-Cl bonds make an angle of 180° with each other
21.	water, 1,4-dichlorobenzene Identify a molecule which does not exis (2020)		 c) Axial P-Cl bonds are longer than equatorial P-Cl bonds d) PCl₅ molecule is non-reactive
	(a) Li_2 (b) C_2 (c) O_2 (d) He_2		
77	Adda24	Publication	ns For More Study Material

For More Study Material Visit: adda247.com 27. Consider the following species: (2018)CN⁺, CN⁻, NO and CN (b) Which one of these will have the highest bond order? (b) CN-(a) NO (c) CN (d) CN+ 28. Which of the following statements is (c) incorrect? (2017-Gujarat) $0-C \equiv 0, 0=C=0,$ (a) Of the structures, $0 - C \equiv 0$, is most stable structure (d) (b) The bond angle follows the order $CH_4 > NH_3 > H_2O > H_2S$ (c) The bond order follows the order 36. Among the following which one is a $O_2^+ > O_2^- > O_2^- > O_2^{2-}$ wrong statement? (d) Strength of 'H' bond follows the order (a) SeF_4 and CH_4 have same shape (b) I_3^+ has bent geometry $HF > H_2O > NH_3 > HCl$ (c) PH_5 and $BiCl_5$ do not exist 29. Which one of the following pair of species (d) $p\pi - d\pi$ bonds are present in SO₂ have the same bond order? (2017-37. The hybridisations of atomic orbitals of Delhi) nitrogen in (a) N_2, O_2^- (b) CO.NO respectively are : (c) O_2, NO^+ (d) CN^{-}, CO (a) sp, sp³ and sp² 30. The species, having bond angles of 120° (b) sp^2 , sp^3 and sp(2017-Delhi) is (c) sp, sp^2 and sp^3 (b) PH_3 (a) BCl_3 (d) sp^2 , sp and sp^3 (c) ClF_3 (d) NCl_3 Which of the following pairs of ions is 38. 31. Which one of the following ions is not isoelectronic and isostructural? tetrahedral in shape? (2017-Gujarat) (a) $[NiCl_4]^{2-}$ (a) CO_3^{2-}, NO_3^{-} (b) NH_{4}^{+} (d) $[Cu(NH_3)_4]^{2+}$ (b) ClO_3^-, CO_3^{2-} (c) BF_{4}^{-} (c) SO_3^{2-}, NO_3^{--} 32. Which of the following pair of species is (d) ClO_3^-, SO_3^2 (2017-Gujarat) not iso-structural? 39. Consider the molecules CH_4 , NH_3 and (a) BrO_3^-, XeO_3 (b) ICl_4^-, XeF_4 H_2O . Which of the given statement is (c) ClO_3^-, CO_3^{2-} (d) IBr_2^-, XeF_2 false? 33. Which of the following hydrides has the (a) The H–C–H bond angle in CH_4 is largest bond angle? (2017-Gujarat) larger than the H–N–H bond angle in (a) H_2Se (b) H_2S NH_3 (c) H_2Te (d) H_2O (b) The H-C-H bond angle in CH₄, the H-34. Which one of the following compounds N-H bond angle in NH₃, and the Hshows the presence of intramolecular O–H bond angle in H₂O are all greater hydrogen bond? (2016-II) than 90° (a) Cellulose (c) Then H–O–H bond angle in H_2O is larger than the H–C–H bond angle in (b) Concentrated acid CH_4 (c) H_2O_2 (d) The H–O–H bond angle in H_2O is (d) HCN smaller than the H-N-H bond angle 35. In which of the following molecules, all in NH₃ atoms are coplanar? (2016-II) (a) ^{CH₃}>c=c< Adda247 Publications

For More Study Material Visit: adda247.com

(2016-II)

and

(2016-II)

(2016-II)

(2016-I)

 NH_{4}^{+}

 $NO_{2}^{+},$

 NO_3^-

40.	Predict the correct order among the	45.	Which of the following pairs of ions are
	following: (2016-I)		isoelectronic and isostructural? (2015)
	(a) Lone pair – bond pair > bond pair –		(a) SO_3^{2-}, NO_3^{-} (b) ClO_3^{-}, SO_3^{2-}
	bond pair > lone pair – lone pair		(c) CO_3^{2-}, SO_3^{2-} (d) ClO_3^-, CO_3^{2-}
	(b) Lone pair – lone pair > lone pair –	46.	Maximum bond angle at nitrogen is
	bond pair > bond pair – bond pair		present in which of the following?
	(c) Lone pair – lone pair > bond pair –		(2015)
	bond pair > lone pair – bond pair		(a) NO_2^+ (b) $2NO_3^-$
	(d) Bond pair – bond pair > lone pair –		(c) NO_2 (d) NO_2^-
	bond pair > lone pair – lone pair	47.	Which of the following molecules has the
41.	Decreasing order of stability of $0_2, 0_2^-, 0_2^+$		maximum dipole moment? (2014)
	and $O_2^{2^-}$ is : (2015 RE)		(a) CH_4 (b) NH_3
	(a) $0_2^- > 0_2^{2-} > 0_2^+ > 0_2$		(c) NF_3 (d) CO_2
	(b) $O_2^+ > O_2^- > O_2^- > O_2^{2^-}$	48.	Which one of the following species has
	(c) $0_2^{2-} > 0_2^- > 0_2 > 0_2^+$		planar triangular shape? (2014)
	(d) $O_2 > O_2^+ > O_2^{2-} > O_2^-$		(a) NO_3^- (b) NO_2^-
42.	The total number of π -bond electrons in		(c) CO_2 (d) N_3
	the following structure is: (2015)	49.	Which of the following organic
			compounds has same hybridization as
	H ₃ C H _H CH ₃		its combustion product (CO ₂)? (2014)
	H ₃ C		(a) Ethyne (b) Ethene
	H_2C H $\dot{C}H_3$		(c) Ethanol (d) Ethane
	(a) 8 (b) 12	50.	Which of the following is a polar
	(c) 16 (d) 4		molecule? (2013)
43.	Which of the following options represents		(a) BF_3 (b) SF_4
	the correct bond order? (2015)		(c) SiF_4 (d) XeF_4
	(a) $0_2^- < 0_2 < 0_2^+$	51.	Which of the following is electron-
	(b) $0_2^- > 0_2 < 0_2^+$		deficient? (2013)
	(c) $0_2^- < 0_2 > 0_2^+$		(a) $(CH_3)_2$ (b) $(SiH_3)_2$
	(d) $O_2^- > O_2 > O_2^+$		(c) $(NH_3)_2$ (d) PH_3
44.	The correct bond order in the following	52.	Which of the following is paramagnetic?
	species is: (2015)		(2013)
	(a) $O_2^{2+} < O_2^- < O_2^+$	A	(a) CO (b) 0_2^-
	(b) $O_2^{2+} < O_2^- < O_2^+$		(c) CN (d) NO^+
	(c) $0_2^- < 0_2^+ < 0_2^{2+}$		
	(d) $O_2^{2+} < O_2^+ < O_2^-$		
		22.	

For More Study Material Visit: adda247.com