\int	PHYSICS Work, Energy, Power and Collisions		
1.	At any instant of time t, the displacement of any particle is given by $2t - 1$ (SI unit) under the influence of force of 5N. The value of instantaneous power is (in SI unit):	6.	Water falls from a height of 60 m at the rate of 15 kg/s to operate a turbine. The losses due to frictional force are 10% of the input energy. How much power is generated by the turbine? ($a = 10 \text{ m} (a^2)$
2.	(a) 5 (b) 7 (c) 6 (d) 10 Two bodies A and B of same mass undergo completely inelastic one-dimensional collision. The body A moves with velocity v_1 while body B is at rest before collision. The	7.	(a) 8.1 kW (b) 12.3 kW (c) 7.0 kW (d) 10.2 kW A point mass 'm' is moved in a vertical circle of radius 'r' with the help of a string. The velocity of the mass is $\sqrt{7\text{gr}}$ at the lowest
3.	velocity of the system after collision is v_2 . The ratio $v_1: v_2$ is. (2024) (a) $2:1$ (b) $4:1$ (c) $1:4$ (d) $1:2$ The potential energy of a long spring when	8.	point. The tension in the string at the lowestpoint is(2020 Covid Re-NEET)(a) 7 mg(b) 8 mg(c) 1 mg(d) 6 mgBody A of mass 4m moving with speed vcollides with another body B of mass 2m, atrest. The collision is head on and elastic in
	stretched by 2 cm is U. If the spring is stretched by 8 cm, potential energy stored in it will be:(2023)(a) 16U(b) 2U		nature. After the collision the fraction of energy lost by the colliding body A is :(2019) (a) $\frac{1}{9}$
4.	(c) 4U (d) 8U A bullet from a gun is fired on a rectangular wooden block with velocity u. When bullet travels 24 cm through the block along its length horizontally, velocity of bullet become $\frac{u}{3}$. Then it further penetrates into the block in the same direction before	9.	(b) $\frac{5}{9}$ (c) $\frac{4}{9}$ (d) $\frac{5}{9}$ A mass m is attached to a thin wire and whirled in a vertical circle. The wire is most likely to break when: (2019)
	coming to rest exactly at the other end of	1	(a) The mass is at the highest point
	the block. The total length of the block is: (2023)		(b) The wire is horizontal(c) The mass is at the lowest point(d) Inclined at an angle of 60° from vertical
5.	(c) 24 cm (d) 28 cm An electric lift with a maximum load of 2000 kg (lift + passengers) is moving up with a constant speed of $1.5 ms^{-1}$. The frictional force opposing the motion is 3000 N. The minimum power delivered by the motor to the lift in watts is: ($g = 10 ms^{-2}$) (2022) (a) 20000 (b) 34500 (c) 23500 (d) 23000	10	A force F = 20 + 10y acts on a particle in y direction where F is in newton and y in metre. Work done by this force to move the particle from y = 0 to y = 1 m is (2019) (a) 30 J (b) 5 J (c) 25 J (d) 20 J

For More Study Material Visit: adda247.com 11. A body initially at rest and sliding along a frictionless track from a height h (as shown in the figure) just completes a vertical circle of diameter AB = D. The height h is equal to:

12. A spring of force constant k is cut into lengths of ratio 1 : 2 : 3. They are connected in series and the new force constant is K'. Then they are connected in parallel and force constant is K". Then K' : K" is:

(2017 - Delhi)

(a)

- (a) 1:9 (c) 1:14
- (b) 1:11 (d) 1:6
- 13. Consider a drop of rain water having mass 1 g falling from a height of 1 km. It hits the ground with a speed of 50 m/s. Take 'g' constant with a value 10 m/s². The work done by the (i) gravitational force and the (ii) resistive force of air is: (2017 Delhi) (a) (i) 1.25 J (ii) -8.25 J
 - (b) (i) 100 J (ii) 8.75 J
 - (c) (i) 10 J (ii) -8.75 J (iii) -8.75 J
 - (d) (i) -10 J (ii) -8.25 J
- 14. A body initially at rest, breaks up into two pieces of masses 2 M and 3 M respectively, together having a total kinetic energy E. The piece of mass 2 M, after breaking up, has a kinetic energy. (2017 - Gujrat) (a) $\frac{2E}{2}$
 - (a) 5
 - (b) $\frac{E}{2}$
 - (c) $\frac{E}{r}$
 - (C) 5
 - (d) $\frac{3E}{5}$
- 15. A body is moving unidirectionally under the influence of a source of constant power supplying energy. Which one of the graph correctly shows the variation of displacement (s) with time (t)? (2017 Gujrat)
- S 0 ⇒t (b)S Ο > t (c)S 0 (d) S 0 >t **16.** A particle moves from a point $(-2\hat{i} + 5\hat{j})$ to $(4\hat{i}+3\hat{k})$ when a force of $(4\hat{i}+3\hat{j})$ N is applied. How much work has been done by the force? (2016 - II)(b) 2 J (a) 5 J (c) 8 J (d) 11 J **17.** Two identical balls A and B having velocities of 0.5 m/s and -0.3 m/s respectively collide elastically in one dimension. The velocities of B and A after the collision respectively (2016 - II)will be:
 - (a) -0.3 m/s and 0.5 m/s
 - (b) 0.3 m/s and 0.5 m/s
 - (c) -0.5 m/s and 0.3 m/s
 - (d) 0.5 m/s and -0.3 m/s

Adda247 Publications

33

18. A bullet of mass 10 g moving horizontally with a velocity of 400 ms^{-1} strikes a wooden block of mass 2 kg which is suspended by a light inextensible string of length 5 m. As a result, the center of gravity of the block is found to rise a vertical distance of 10 cm. The speed of the bullet after it emerges out horizontally from the block will be:

(2016 – II)

- (a) 120 ms^{-1} (c) 100 ms^{-1}
- (b) 160 ms^{-1} (d) 80 ms^{-1}
- 19. A body of mass 1 kg begins to move under the action of a time dependent force F = $(2t\hat{i} + 3t^2\hat{j})$ N, where \hat{i} and \hat{j} are unit vectors along x and y axis. What power will be developed by the force at the time t?
 - (2016 I)
 - (b) $(2t^2 + 4t^4)W$ (a) $(2t^2 + 3t^2)W$ (c) $(2t^3 + 4t^4)W$ (d) $(2t^3 + 3t^5)W$
- **20.** A piece of ice falls from a height h so that it melts completely. Only one-quarter of the heat produced is absorbed by the ice and all energy of ice gets converted into heat during its fall. The value of h is [Latent heat of ice is 3.4×10^5 J/kg and g = 10 N/kg]:

(2016 - I)

(a) 34 km	(b) 544 km

(c) 136 km (d) 68 km 21. What is the minimum velocity with which a body of mass m must enter a vertical loop of radius R so that it can complete the loop?

(2016 - I)

- (a) \sqrt{gR} (b) $\sqrt{2gR}$ (c) $\sqrt{3gR}$ (d) $\sqrt{5gR}$
- **22.** A particle of mass 10 g moves along a circle of radius 6.4 cm with a constant tangential acceleration. What is the magnitude of this acceleration if the kinetic energy of the particle becomes equal to 8×10^{-4} J by the end of the second revolution after the beginning of the motion? (2016 - I)
 - (a) 0.1 m/s^2
 - (b) 0.15 m/s^2
 - (c) 0.18 m/s^2
 - (d) 0.2 m/s^2

23. A particle of mass m is driven by a machine that delivers a constant power k watts. If the particle starts from rest, the force on the particle at time t is: (2015)

(a) $\sqrt{mk} t^{-\frac{1}{2}}$ (c) $\frac{1}{2}\sqrt{\mathrm{mk}}t^{-\frac{1}{2}}$ (d) $\sqrt{\frac{\mathrm{mk}}{2}}t^{-\frac{1}{2}}$

(b) $\sqrt{2mk} t^{-\frac{1}{2}}$

- 24. . Two similar springs P and Q have spring constants K_P and K_Q such that $K_P > K_Q$. They stretched first by the same amount (case a), then by the same force (case b). The work done by the springs W_P and W_Q are related as in case (a) and case (b), respectively: (2015)
 - (a) $W_P = W_O; W_P = W_O$
 - (b) $W_P > W_O; W_O > W_P$
 - (c) $W_P < W_Q; W_Q < W_P$
 - (d) $W_P = W_O; W_P > W_O$
- **25.** A block of mass 10 kg moving in x direction with a constant speed of 10 ms^{-1} , is subjected to a retarding force F = -0.1 x J/mduring its travel from x = 20 m to 30 m. Its final K.E. will be: (2015)
 - (a) 450 J (b) 275 J (c) 250 J (d) 475 J
- **26.** Two particles of masses m_1, m_2 move with initial velocities u_1 and u_2 . On collision, one of the particles get excited to higher level, after absorbing energy *\varepsilon*. If final velocities of particles be v_1 and v_2 , then we must have:

(a)
$$\frac{1}{2}m_1u_1^2 + \frac{1}{2}m_2u_2^2 = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_1v_2^2 - \varepsilon$$

(b) $\frac{1}{2}m_1u_1^2 + \frac{1}{2}m_2u_2^2 - \varepsilon = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_1v_2^2$
(c) $\frac{1}{2}m_1^2u_1^2 + \frac{1}{2}m_2^2u_2^2 + \varepsilon = \frac{1}{2}m_1^2v_1^2 + \frac{1}{2}m_2^2v_2^2$
(d) $m_1^2u_1 + m_2^2u_2 - \varepsilon = \frac{1}{2}m_1^2v_1^2 + \frac{1}{2}m_2^2v_2^2$

- **27.** The heart of a man pumps 5 litres of blood through the arteries per minute at a pressure of 150 mm of mercury. If the density of mercury be 13.6×10^3 kg/m³ and $g = 10m/s^2$, then the power of heart in watt is: (2015 Re)
 - (a) 1.50
 - (b) 1.70
 - (c) 2.35 (d) 3.0

28. On a frictionless surface, a block of mass M **32.** A body of mass (4m) is lying in x-y plane at moving at speed v collides elastically with rest. It suddenly explodes into three pieces. another block of same mass M which is Two pieces, each of mass (m) move initially at rest. After collision the first block perpendicular to each other with equal moves at an angle θ to its initial direction speeds (v). The total kinetic energy and has a speed v/3. The second block's generated due to explosion is (2014)speed after the collision is: (2015 Re) (a) mv^2 (b) $\frac{3}{2}$ mv² (b) $\frac{2\sqrt{2}}{3}v$ (d) $\frac{3}{\sqrt{2}}v$ (a) $\frac{\sqrt{3}}{2}v$ (d) 4 mv^2 (c) 2 mv^2 (c) $\frac{3}{4}v$ **33.** A uniform force of $(3\hat{i} + \hat{j})$ newton acts on a particle of mass 2 kg. Hence the particle is **29.** A ball is thrown vertically downwards from displaced from position $(2\hat{i} + \hat{k})$ metre to a height of 20 m with an initial velocity u₀. position $(4\hat{i} + 3\hat{j} - \hat{k})$ metre. The work done It collides with the ground, loses 50 percent by the force on the particle is: (2013)of its energy in collision and rebounds to the (a) 15 J (b) 9 J same height. The initial velocity u_0 is: (Take (c) 6 J (d) 13 J $g = 10 \text{ ms}^{-2}$) (2015 Re) 34. The upper half of an inclined plane of (a) 10 m/s (b) 14 m/s inclination θ is perfectly smooth while lower (c) 20 m/s(d) 28 m/s half is rough. A block starting from rest at **30.** Two particles A and B, move with constant the top of the plane will again come to rest motion in one dimension with velocities \vec{v}_1 at the bottom, if the coefficient of friction and \vec{v}_2 . At the initial moment their position between the block and lower half of the vectors are \vec{r}_1 and \vec{r}_2 respectively. The plane is given by: (2013)condition for particle A and B for their (b) $\mu = \frac{1}{\tan \theta}$ (a) $\mu = \tan \theta$ collision is: (2015 Re) (c) $\mu = \frac{2}{\tan \theta}$ (a) $\vec{r}_1 - \vec{r}_2 = \vec{v}_1 - \vec{v}_2$ (d) $\mu = 2 \tan \theta$ (b) $\frac{\vec{r}_1 - \vec{r}_2}{|\vec{r}_1 - \vec{r}_2|} = \frac{\vec{v}_2 - \vec{v}_1}{|\vec{v}_2 - \vec{v}_1|}$ (c) $\vec{r}_1 \cdot \vec{v}_1 = \vec{r}_2 \cdot \vec{v}_2$ (d) $\vec{r}_1 \cdot \vec{v}_1 = \vec{r}_2 \cdot \vec{v}_2$ **31.** If vectors $\vec{A} = \cos\omega t\hat{i} + \sin\omega t\hat{j}$ and $\vec{B} =$ $\cos \frac{\omega t}{2}\hat{i} + \sin \frac{\omega t}{2}\hat{j}$ are functions of time, then the value of t at which they are orthogonal (2015 Re) to each other are: (b) $t = \frac{\pi}{4\omega}$ (a) t = 0(c) $t = \frac{\pi}{2\omega}$ (d) $t = \frac{\pi}{\omega}$

For More Study Material Visit: adda247.com