Directorate of Education, GNCT of Delhi

PRACTICE PAPER (MID TERM)

(2022-23)

Class – XI Mathematics (Code: 041)

Maximum Marks: 80

Time: 3 hours

<u>General Instructions :</u>

- **1.** This Question paper contains **five sections A**,**B**,**C**,**D**,**E**. Each section is compulsory. However, there are internal choices in some questions.
- 2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.(20 Marks)
- 3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.(10 Marks)
- 4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.(18 Marks)
- 5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.(20 Marks)
- 6. Section E has 3 Source based/Case based/passage based/integrated units of assessment (4 marks each) with sub parts.(12 Marks)

	Section Question Number 1-18 are of MCQ type	on – A e question one mark each.	
Q. No.			Marks
1.	Let two finite sets have m & n elements 112 more than that of second set. The valu	. The number of subsets of the first set is les of m and n are respectively :	1
	(a) 4,7	(b)7,4	
	(c) 4,4	(d) 7,7	
2	If $X = \{8^n - 7n - 1 n \in N\}$ and $Y = \{49n - 4$	$9 n \in N$ then	1
	(a) $X \subset Y$	(b) $Y \subset X$	
	(c) $X = Y$	(d) $X \cap Y = \phi$	

3			1
	Let $S = \{x \mid x \text{ is a positive multiple of } 3 \text{ less} \}$	than 100}	
	$P={x x \text{ is a prime number less than 20}}.$ Then n(S)+n(P) is :		
	(a) 34	(b) 41	
	(c) 33	(d) 30	
4	Let R be the set of points inside a rectangle of sides a and b (a,b>1)with two sides along the positive direction of x- axis and y-axis. Then		1
	(a) $R = [(x, y): 0 \le x \le a, 0 \le y \le b]$	(b $R = [(x, y): 0 \le x < a, 0 \le y \le b]$	
	(c) $R = \{(x, y): 0 \le x \le a, 0 < y < b\}$	(d) $R = [(x, y): 0 < x < a, 0 < y < b]$	
5	et $n(A)=m$ and $n(B)=n$ then number of non empty relations that can be defined om A to B is :		1
	(a) <i>m</i> "	(b) n'''-1	
	(c) mn-1	(d) $2^{mn} - 1$	
6	Let F_1 be a set of parallelograms F_2	the set of rectangles , F_2 set of	1
	rhombuses , F_4 set of squares and F_5 F_1 may be equal to :	the set of trapeziums in a plane . Then	
	(a) $F_2 \cap F_3$	(b) $F_3 \cap F_4$	
	(c) $F_2 \cup F_5$	(d) $F_2 \cup F_3 \cup F_4 \cup F_1$	
7	Domain of $\sqrt{a^2 - x^2}$ (a>0) is :	1	1
	(a) (-a,a)	(b) [-a,a]	
	(c) [0,a]	(d) (-a,0]	
		J	

8	If $f(x) = \frac{9}{5}x + 32$, the value	e of f(-10) is :	1
	(a) 15	(b) 14	
	(c) -15	(d) -14	
9			1
	If A and B are finite sets suc from A to B:	h that n(A)=5 and n(B)=7, then the number of functions	
	(a) 7 ⁵	(b) 5 ⁷	
	(c) 7^7	(d) _	
		5	
10	The value of $i+i^{10}+i^{20}+i^{30}$	is:	1
(a) 1 (b) -i	(b) -i		
	(c) 0	(d)	
11			1
	If z is a complex number , th	ien	
	If z is a complex number , then (a) $ z^{2} > z ^{2}$ (b) $ z^{2} = z ^{2}$ (c) (d)	(b) $ z^2 = z ^2$	
	(c) $ z^2 < z ^2$	$ z^2 \ge z ^2$	
12	If $f(z) = \frac{7-z}{1-z^2}$, where $z = \frac{1}{2}$	=1+2 i , then $ f(z) $ is :	1
	(a) $\frac{ z }{2}$	(b) z	
	(c) 2 z	(d) None of these	
13	The solution of equation x^2 +	6xi-9=0 is:	1
	(a) $x=\pm 3i$	(b) $x = -3i, -3i$	
	(c)	(d) None of these	
	x=-i,i		

14	If $\tan \theta = \frac{1}{2}$ and $\tan \phi = \frac{1}{3}$ then $\theta + \phi$	ϕ equals to :	1
	(a) $\frac{\pi}{6}$	(b) <i>π</i>	
	(c) 0	(d) $\frac{\pi}{4}$	
15	The maximum value of sinx.cosx is	s :	1
	(a) 1	(b) 2	
	(c) √2	(d) $\frac{1}{2}$	
16	If for all values of x , $\cos\theta = x + \frac{1}{x}$	then	1
	(a) θ is an acute angle	(b) θ is right angle	
	(c) θ is obtuse angle	(d) No value of θ is possible	
17	The value of $\cos^2 48^0 - \sin^2 12^0$ i	s :	1
	(a) $\sqrt{5} + \frac{1}{8}$	(b) $\sqrt{5} - \frac{1}{8}$	
	(c) $\sqrt{5} + \frac{1}{5}$	(d) $\sqrt{5} + \frac{\frac{1}{2}}{\sqrt{2}}$	
18	If f(x) = p(x)+q, where p and q are i	integers ,	1
	f(-1) = 5, and f(3) = 3 then p and q	are equal to :	
	(a) p=-3, q=-1	(b) p=2, q=-3	
	(c) p=0, q=-2	(d) p=2, q=3	

(ASSERTION-REASONING BASED QUESTIONS)	
In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.	
(a) Both A and R are true and R is the correct explanation of A.	
(b) Both A and R are true but R is not the correct explanation of A.	
(c) A is true but R is false.	
(d) A is false but R is true.	
Given A= {a,b,c}, B={a,e,i,o,u} and C={x, y, z} Assertion (A): $(A \cup B) \cap C = \phi$	1
Reason (R): $(A \cup B) = \{a, b, c\} \cup \{a, e, i, ou\} = \{a, b, c, e, i, o, u\}$ $(A \cup B) \cap C = \{a, b, c, e, i, o, u\} \cap \{x, yz\} = \phi$	
Assertion (A) : Domain of $f(x) = x x $ is R	1
Reason (R): Domain of $f(x) = x x $ is N	
Section B	
This Section contains 5 $\overline{\text{Very Short}}$ Answer (VSA)-type questions	
of 2 marks each.	
If $A = \{1, 2, 3, 4, 5\}$ $B = \{1, 3, 5, 8\}$ $C = \{2, 5, 7, 8\}$ verify that $A - (B \cup C) = (A - B) \cap (A - C)$	2
OR	
If $A = \{x: x \in N\}$ $B = \{x: x = 2n, n \in N\}$ $C = \{x: x = 2n-1, n \in N\}$ $D = \{x: is a prime natural number\}$ Find (a) $(A \cap B)$ (b) $(B \cap C)$	
Determine the domain and range of relation R , Where	2
$R=(x, x^3)$: x is prime number less than 10	
OR	
Function $f: R \rightarrow R$ is defined by $f(x) = x^2$ Determine	
(a) Range of f	
(b) $\{x:f(x)=4\}$	
Prove that $\tan(60^{\circ}+\theta)$. $\tan(60^{\circ}-\theta) = \frac{2\cos(2\theta+1)}{2\cos(2\theta-1)}$	2
Prove that $sin(n+1) x$. $sin(n+2) x + cos(n+1) x$. $cos(n+2)x = cos x$	2
Find n if $(n+2)!=2550 \times n!$	2
OR	
OR How many 2 digit own numbers can be made using the digits 1.2.2.4.5.6. If we digit is	
	(ASSERTION-REASONING BASED QUESTIONS)In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.(a) Both A and R are true and R is the correct explanation of A.(b) Both A and R are true but R is not the correct explanation of A.(b) Both A and R are true but R is not the correct explanation of A.(c) A is fully but R is false.(d) A is false but R is false.(d) A is false but R is true.Given A= {a,b,c}, B= {a, i, 0, u} and C={x, y, z} Assertion (A): $(A \cup B) \cap C = \phi$ Reason (R): $(A \cup B) = \{a, b, c\} \cup [a, e, i, ou] = \{a, b, c, e, i, o, u\}$ $(A \cup B) \cap C = \{a, b, c, e, i, 0, u\} \cap [x, yz] = \phi$ Assertion (A): Domain of $f(x) = x x $ is RReason (R): Domain of $f(x) = x x $ is NSection BThis Section contains 5 Very Short Answer (VSA)-type questions of 2 marks each.If $A = [1, 2, 3, 4, 5]$ $B = [1, 3, 5, 8]$ $C = [2, 5, 7, 8]$ verify that $A - (B \cup C) = (A - B) \cap (A - C)$ ORInterview of the domain and range of relation R, Where $R = (x, x^3): xis prime number struanB = [x: x = 2n, n \in N]OFORFunction f: R \to R is defined by f(x) = x^2Determine the domain and range of relation R, WhereR = (x, x^3): xis prime number less than 10ORFunction f: R \to R is defined by f(x) = x^2Determine$

	Section C	
	This section contains Six Short Answer (SA)-type questions of 3 marks	
26	If A= {3,6 ,12 ,15, 18,21}, B={4,8,12,16,20} C={2,4,6,8,10,12,14,16} and D={5,10,15,20} Find (a)A-B (b)B-C (c) B-D	3
27	Let $A = \{1,2,3,4,5,,20\}$. Define a relation R from A to A by $R = \{(a,b): a-2b=0, a, b \in A\}$ Depict the relation using roaster form. Write domain and range of the relation.	3
28	If $\cot x = \frac{5}{12}$, x lies in the second quadrant. Find the values of other five trigonometric functions OR	3
	Show that $\left(\frac{1+\sin\theta}{1-\sin\theta}\right) = \tan\left(\frac{\pi}{4}+\frac{\theta}{2}\right)$	
29	If $a+ib = \frac{x^2+1}{2x^2+1}$ prove that $a^2+b^2 = \frac{(x^2+1)^2}{(2x^2+1)^2}$	3
	OR If $z_1=3+i$ and $z_2=1+4i$ verify that $ z_1-z_2 \ge z_2 - z_1 $	
30	Solve the following system of inequality graphically: $2x+y \ge 6$, $3x+4y \le 12$ OR	3
	IQ of a person is given by the formula , $IQ = \frac{MA}{CA} \times 100$ where MA is the mental age and	
	CA is Chronological age . If $80 \le IQ \le 140$ for a group of 12 year old children, find the range of their mental age.	
31	In how many ways 7 positive and 5 negative signs can be arranged in a row so that no two negative signs occur together?	3
	SECTION D	
	This section contains four Long Answer (LA)-type questions of 5 marks each.	
32	Find domain and range of real function $f(x) = \sqrt{x^2 - 16}$ OR	5
	Let $f = \{[x, \frac{x^2}{1+x^2}]: x \in R\}$ be function from R to R. Determine range of f.	
33	Prove that $\sin^4 \frac{\pi}{8} + \sin^4 \frac{3\pi}{8} + \sin^4 \frac{5\pi}{8} + \sin^4 \frac{7\pi}{8} = 32$	5
	If $\frac{\cos(A-B)}{\cos(A+B)}$ + $\frac{\cos(C+D)}{\cos(C-D)}$ =0, then prove that tan A. tan B. tan C. tan D =-1	
34	Three balls are drawn from a bag containing 5 red , 4 white , and 3 black balls .Find the number of ways in which this can be done if atleast 2 balls are red .	5
35	Solve the inequality $3x+2y \ge -6$ graphically.	5

	<u>SECTI</u>	<u>ON E</u>	
Source	based/Case based/passage based/int	egrated units of assessment Questio	ns
36	Myiesha is a class XI th student of a reputed having a get together with her classmates as year due to Covid 19 and Board Exam of cla Koyal ,Ayushi ,Prisha ,and Sanchi to her birth her elder sister Khushali wants to take grou single row.	I school . She had been anxiously waiting for s she could not be with them for a stretch of ass X th. She invited four of her best friends aday party on 26 th March. After cutting cake , up photograph of all of them standing in a	4
		A A A A A A A A A A A A A A A A A A A	
	Based on the information given above answ	er any four questions	
	(i) How many distinct photographs can be cl	icked?	
	(a) 120	(b) 240	
	(c) 60	(d) 30	
	(ii) In how many photographs Myiesha will b	e standing in the middle?	
	(a) 12	(b) 24	
	(c) 36	(d) 60	
	(iii) In how many of these photographs Myie other?	esha and Sanchi will be standing next to each	
	(a) 120	(b) 24	
	(c) 48	(d) 60	
	(iv) In how many photographs Myiesha and Ayus	shi will not be standing together?	
	(a) 48	(b) 96	
	(c) 120	(d) 72	
	(v) In how many photograph Prisha would not be	in the middle?	
	(a) 24	(b) 48	
	(c) 96	(d) 120	

Rahul .If A={x:x is a set of letters n spell 'TRACT'. Based on information	need to spell 'CATARACT' and B={x:x is a set of letters need to one guestion from one guestion from one guestion from one guestion and be a set of letters need to one given above answer any four questions asked by Nihal
(I) Which of the following is true?	
(a) A=B	(b) $A \subset B$
(c) B⊂A	(d)None of these
(ii) $A \cup B$ equals to:	
(a) None of these	(b) B
(c) $A \cap B$	(d) ϕ
(iii) $A \cap B$ equals to:	
(a) A	(b) None of these
(c) $A \cup B$	(d) <i>φ</i>
(Iv) B-A equals to :	
(a) A	(b) B
(c) φ	(d) None of these
(v) No of proper subset of B are	I
(a) 13	(b 14
(c) 15	(d 16

