SYLLABUS FOR THE POST OF ASSISTANT PROFESSOR (COLLEGE CADRE) Advt. No. 43 2024 # SUBJECT- CHEMISTRY ### Inorganic Chemistry - Chemical periodicity - Structure and bonding in homo- and heteronuclear molecules, including shapes of 2. molecules (VSEPR Theory). - Concepts of acids and bases, Hard-Soft acid base concept, Non-aqueous solvents. - 3. Main group elements and their compounds: Allotropy, synthesis, structure and 4. bonding, industrial importance of the compounds. - Transition elements and coordination compounds: structure, bonding theories, 5. spectral and magnetic properties, reaction mechanisms. - Inner transition elements: spectral and magnetic properties, redox chemistry, 6. analytical applications. - Organometallic compounds: synthesis, bonding and structure, and reactivity. 7. Organometallics in homogeneous catalysis. - Cages and metal clusters. 8. - Analytical chemistry- separation, spectroscopic, electro- and thermoanalytical methods. - Bioinorganic chemistry: photosystems, porphyrins, metalloenzymes, oxygen 10. transport, electron- transfer reactions; nitrogen fixation, metal complexes in medicine. - Characterisation of inorganic compounds by IR, Raman, NMR, EPR, Mössbauer, UV-vis, NQR, MS, electron spectroscopy and microscopic techniques. - Nuclear chemistry: nuclear reactions, fission and fusion, radio-analytical techniques and activation analysis. # Physical Chemistry: - 1. Basic principles of quantum mechanics: Postulates; operator algebra; exactlysolvable systems: particle-in-a-box, harmonic oscillator and the hydrogen atom, including shapes of atomic orbitals; orbital and spin angular momenta; tunneling. - 2. Approximate methods of quantum mechanics: Variational principle; perturbation theory up to second order in energy; applications. - 3. Atomic structure and spectroscopy; term symbols; many-electron systems and antisymmetry principle. - 4. Chemical bonding in diatomics; elementary concepts of MO and VB theories; Huckel theory for conjugated π -electron systems. - 5. Chemical applications of group theory; symmetry elements; point groups; character tables; selection rules. Dy. Secretary - Molecular spectroscopy: Rotational and vibrational spectra of diatomic molecules; electronic spectra; IR and Raman activities – selection rules; basic principles of magnetic resonance. - 7. Chemical thermodynamics: Laws, state and path functions and their applications; thermodynamic description of various types of processes; Maxwell's relations; spontaneity and equilibria; temperature and pressure dependence of thermodynamic quantities; Le Chatelier principle; elementary description of phase transitions; phase equilibria and phase rule; thermodynamics of ideal and non-ideal gases, and solutions. - 8. Statistical thermodynamics: Boltzmann distribution; kinetic theory of gases; partition functions and their relation to thermodynamic quantities calculations for model systems. - 9. Electrochemistry: Nernst equation, redox systems, electrochemical cells; Debye-Huckel theory; electrolytic conductance Kohlrausch's law and its applications; ionic equilibria; conductometric and potentiometric titrations. - 10. Chemical kinetics: Empirical rate laws and temperature dependence; complex reactions; steady state approximation; determination of reaction mechanisms; collision and transition state theories of rate constants; unimolecular reactions; enzyme kinetics; salt effects; homogeneous catalysis; photochemical reactions. - 11. Colloids and surfaces: Stability and properties of colloids; isotherms and surface area; heterogeneous catalysis. - Solid state: Crystal structures; Bragg's law and applications; band structure of solids. - 13. Polymer chemistry: Molar masses; kinetics of polymerization. - 14. Data analysis: Mean and standard deviation; absolute and relative errors; linear regression; covariance and correlation coefficient. ## Organic Chemistry - 1. IUPAC nomenclature of organic molecules including regio- and stereoisomers. - Principles of stereochemistry: Configurational and conformational isomerism in acyclic and cyclic compounds; stereogenicity, stereoselectivity, enantioselectivity, diastereoselectivity and asymmetric induction. - Aromaticity: Benzenoid and non-benzenoid compounds generation and reactions. - Organic reactive intermediates: Generation, stability and reactivity of carbocations, carbanions, free radicals, carbenes, benzynes and nitrenes. Dy. Secretary - Organic reaction mechanisms involving addition, elimination and substitution reactions with electrophilic, nucleophilic or radical species. Determination of reaction pathways. - 6. Common named reactions and rearrangements applications in organic synthesis. - Organic transformations and reagents: Functional group interconversion including oxidations and reductions; common catalysts and reagents (organic, inorganic, organometallic and enzymatic). Chemo, regio and stereoselective transformations. - Concepts in organic synthesis: Retrosynthesis, disconnection, synthons, linear and convergent synthesis, umpolung of reactivity and protecting groups. - Asymmetric synthesis: Chiral auxiliaries, methods of asymmetric induction substrate, reagent and catalyst controlled reactions; determination of enantiomeric and diastereomeric excess; enantio-discrimination. Resolution – optical and kinetic. - Pericyclic reactions electrocyclisation, cycloaddition, sigmatropic rearrangements and other related concerted reactions. Principles and applications of photochemical reactions in organic chemistry. - Synthesis and reactivity of common heterocyclic compounds containing one or two heteroatoms (O, N, S). - Chemistry of natural products: Carbohydrates, proteins and peptides, fatty acids, nucleic acids, terpenes, steroids and alkaloids. Biogenesis of terpenoids and alkaloids. - Structure determination of organic compounds by IR, UV-Vis, ¹H & ¹³C NMR and Mass spectroscopic techniques. #### Interdisciplinary topics - 1. Chemistry in nanoscience and technology. - Catalysis and green chemistry. - 3. Medicinal chemistry. - 4. Supramolecular chemistry. - 5. Environmental chemistry. Dy. Secretary HPSC Comment of the Bridge of the