[23/A] उचित विकल्प चुनिए। by selecting the most appropriate option. 91. The value of $$9^{\frac{1}{3}} \times 9^{\frac{1}{9}} \times 9^{\frac{1}{27}} \times \dots \infty$$ is: - (1) 1 - (2) 9 - (4) 6 92. If $$f(x) = x^{100} + x^{99} + \dots + x + 1$$, then f'(1) is equal to: - (1) 5000 - (2) 5051 5049 Adda 247 Test Prime **ALL EXAMS, ONE SUBSCRIPTION** 80,000+ Mock Tests 600+ Exam Covered Personalised Report Card 20,000 + Previous Year Papers Unlimited Re-Attempt 500% Refund ATTEMPT FREE MOCK NOW - If the angle between the vectors 93. $5\hat{i} + 3\hat{j} + 4\hat{k}$ and $6\hat{i} - 8\hat{j} - \hat{k}$ is θ , then $\cos \theta$ is equal to : - (1) -1 - If $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = 3\hat{i} + 2\hat{j} \hat{k}$, 94. then $(\vec{a} + 3\vec{b}) \cdot (2\vec{a} - \vec{b}) = ?$ - (1) 10 - (1) 10 (2) -15 (3) 3 - (4) 12 - Evaluate: $\int_{1}^{1} \frac{1}{x^2 + 2x + 5} dx = ?$ - - $(4) \frac{\pi}{2}$ + ('sindel'3. y = sin(1)3. [25/A] 96. What is the modulus of complex number $\frac{i-1}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}$? - $(1) \frac{1}{\sqrt{2}}$ - $\sqrt{2}$ - $(3) \ \frac{\sqrt{3}}{2}$ - (4) $\frac{1}{\sqrt{3}}$ tro 60 97. If the points (-1, -1, 2), (2, m, 5) and (3, 11, 6) are collinear, then what is the value of m? - (1) 2 - (2) 5 - (3) 8 - (4) -1 (4) 712) + 42) =1(31) 98. The solution set of the inequation $|x+2| \le 5$ is: - (1) (-7, 5) - (2) [-5, 5] - (3) [-7, 3] - (4) (-7, 6) 10 लये **99.** Function $$f(x) = \frac{3}{x} + 7$$ for $x \in R - \{0\}$ is: (1) Decreasing (3) Neither increasing nor decreasing (4) None of the above 100. What is the equation of the hyperbola, whose length of latus rectum is 8 and eccentricity is $$3/\sqrt{5}$$? $$(1) \ \frac{x^2}{4} - \frac{y^2}{9} = -1$$ $$\frac{x^2}{25} - \frac{y^2}{20} = 1$$ $$(4) \ \frac{x^2}{\sqrt{3}} - \frac{y^2}{\sqrt{2}} = 1$$ ice For Rough Work In what ratio, the line joining (-1, 1) and (5, 7) is divided by the line x + y = 4? - (1) 1:1 - (2) 1:2 - (3) 3:2 - (4) 4:1 - (1) 0 - (2) $10! \times 11! \times 12!$ - (3) 2(10! × 11! × 12!) - (4) 10! × 11! a+17d 4+85 4+17x5 4+85 103. If 7th and 13th terms of an Arithmetic progression be 34 and 64 respectively, then its 18th term is: st (1) 87 (2) 88 (4) 90 8 m (3) 89 on For Dough W. 104. What is the coefficient of x^6y^3 in the expansion of $(x+2y)^9$? - (1) 1365 - (2) 672 (3) - (4) 185 16 X 56 - 105. What is the area of the region bounded by the curve $y = x^3$ and the lines y = x + 6 and x = 0? - (1) 20 sq. units - (2) 10 sq. units - $\sqrt{3}$ $\frac{1}{3}$ sq. units $f(x) = \begin{cases} 1, & \text{if } x \leq 3 \\ ax + b, & \text{if } 3 < x < 5 \end{cases}$ 106. If determine the values of a and b, so that f(x) is continuous: (1) $$a = 2, b = 8$$ $$= 7$$ (2) $a = 1, b = 1$ (3) $$a = 0, b = -2$$ $$(4) a = 3, b = -8$$ If the origin is the centroid of the triangle with vertices P(2a, 2, 6), Q(-4, 3b, -10) and R(8, 14, 2c), what will be the values of a, b and c? (1) $$a = -2$$, $b = \frac{-16}{3}$, $c = 2$ (2) $$a = 4$$, $b = -2$, $c = 6$ (3) $$a = 3, b = -2, c = -1$$ (4) $$a = 4, b = -5, c = 1$$ 108. Evaluate: $\lim_{x \to 2} \frac{x-2}{\sqrt[3]{x}-\sqrt[3]{2}}$ 110. (1) (2)/3 & 支(2)-2/3 $$(3)$$ $3^{\frac{2}{3}}$ $3^{\frac{2}{3}}$ 11 109. If $$y = \sqrt{\sin x + \sqrt{\sin x + \dots \infty}}$$, then $$\frac{dy}{dx} = 3$$ $$(1) \frac{\sin x}{1-2y} =$$ 2/3 $$(2) \ \frac{\cos x}{1-2x}$$ $$(4) \frac{\sin x}{2x-1}$$ The value of $\frac{i^5 + i^6 + i^7 + i^8 + i^9}{(1+i)}$ is: 110. - (3) 1 - $(4) \frac{1}{2}$ How many permutations of the letter of the word 'APPLE' are there? (2) 50 = $$(+)$$ (4) 100 $=$ 112. Evaluate: lim - (3) $\frac{3}{2}$ - (4) 113. What is the sum of series $$\frac{1}{2} + \frac{1}{3^2} + \frac{1}{2^3} + \frac{1}{3^4} + \frac{1}{2^5} + \frac{1}{3^6} + \dots \infty$$ $$\frac{1}{9} \quad (2) \frac{1}{8}$$ $$(4) \frac{19}{24}$$ 114. What is the centre of circle 116 $$x^2 + y^2 + 6x - 4y + 4 = 0$$? $$(1)$$ $(0, -2)$ $$(3)$$ $(1, -2)$ [33/A] The foci of an ellipse are $(\pm 2, 0)$ and its eccentricity is $\frac{1}{2}$. What is the equation of ellipse, if it is given that its centre is at origin and axes are along the coordinate axes? (1) $$\frac{x^2}{36} + \frac{y^2}{11} = 1$$ $qe = 2$ (2) $\frac{x^2}{9} + \frac{y^2}{25} = 1$ $$(2) \quad \frac{x^2}{9} + \frac{y^2}{25} = 1$$ $$(3) \frac{x^2}{16} + \frac{y^2}{12} = 1$$ $$(4) \frac{x^2}{36} + \frac{y^2}{20} = 1$$ (3) $\frac{x^2}{16} + \frac{y^2}{12} = 1$ QX $\frac{1}{2} = 2$ - 116. If $A = [a_{ij}]$ is a scalar matrix of order $n \times n$ such that $a_{ii} = k$ for all i, then trace of A is equal to: - (1) n + k - (2) n/k - $(3) n^2$ e For Rough Work 117. The focal distance of a point on the parabola y=12x is 4. What is 4=1 the abscissa of this point? - (2) 0 119. 120 If the straight line 2x + 3y + 4 + k (6x - y + 12) = 0 is perpendicular to the line 7x + 5y - 4 = 0, then what is the value of k? $$(3) -3$$ (4) $$\frac{1}{\sqrt{3}}$$ [x] = greatest integer function. - (1) x - (2) x 1 - (3) 0 120. What is the rate of change of volume of a sphere with respect to its surface area, when the radius is 2 cm? 121. Let $A = \{x : x \in R, x > 4\}$ and $B = \{x \in R : x < 5\}, \text{ then } A \cap B = ?$ (4) [4, 5] - 122. A solid is in the form of a cone mounted on a hemisphere. The radius and height of the cone are 3 m and 4 m. Find the volume of the given solid: - (1) 93.2 m³ - (2) 94.2 m³ - (3) 84.2 m³ - (4) 82.2 m³ - 123. If a, b are the roots of equation $x^2 + x + 1 = 0$, then $\alpha^2 + \beta^2 = ?$ - (1) 1 - (2) -1 - (3) 2 - (4) 3 Space For Rough Work - (1) f is one-one - (2) f is onto (4) f is neither one-one nor onto ## 125. Solve: $$(a-b)^3 + (b-c)^3 + (c-a)^3 = ?$$ - (1) $(a+b+c)(a^2+b^2+c^2-ab-c^2)$ bc-ca) - (2) (a-b)(b-c)(c-a) - (3) 3(a-b)(b-c)(c-a) - (4) abc ## The numerical value of a standard deviation can never be: - (3) Larger than variance - (4) None of the above ## ce For Rough Work 127. If the length of the shadow of a vertical tower is $\frac{1}{\sqrt{3}}$ times of its Marie and 00 130 height, then the angle of elevation of the sun is: - (1) 459 - $(2) 30^{\circ}$ (3) 90° (4) 60° 128. Find: cos 510° cos 330° + sin 390° cos 13 - $120^{\circ} = ?$ - (1) 0 - (4) 1 The pair of equations 3x - 5y = 7and -6x + 10y = 7 have: - (1) A unique solution - (2) Infinitely many solutions - (3) No solution (4) Two solutions 90 [39/A] 130. If the mean op10 numbers is 96 and one of the number is 150, then what is the mean of the remaining nine numbers? - (1) 60 - (3) 81 (1) A unique real number - (2) A natural number - (3) A rational number - (4) An irrational number What is the mean deviation from 132. the mean of the numbers 10, 9, 21, 16, 24? (1) 5.0 - (3) 3.5 - (1) $4\pi rh + 2\pi r^2$ - (2) $4\pi rh 2\pi r^2$ - (3) $2\pi rh + 4\pi r^2$ - (4) $2\pi rh + 4\pi r$ There is a triangle ABC in which a median AD is drawn from A to side BC. Find out the area of the triangle ABC, if the length of sides AB, BC and AD are respectively 10 cm, 18 cm and √41 cm: (1) $40\sqrt{2}$ cm² (20√2 cm² (3) 60 cm² (4) 30 cm² 135. A man is known to speak truth 3 out of 4 times. He throws a die and reports that it is a six. What is the probability that the number on the die is actually 6? $(3) \cdot \frac{2}{7}$ (4) 1/8 If a set contains n-elements, then what are the number of elements in its power set? (1) n 137. If the perimeter of the circle and square are equal, then the ratio of their areas will be equal to: (use $\pi = \frac{22}{7}$) £ 14:11 - (2) 22:7 - (3) 7:22 - (4) 11:14 138. If the arcs of same length in two circles subtended angles of 60° and 75° at their centres, then what is the ratio of their radii? - (1) 1:2 - (2) 2:3 - (3) 3:1 (4) 5:4 139. If the mean and mode of some data are 4 and 10 respectively, its median will be: - (1) 1.5 - (2) 5.3 - (3) 6 - (4) 16 ce For Rough Work 291 = 4x side. If x-2 is a factor of $x^2 + 3ax - 2a$, 140. then a = ? - (1) 2 - (3) 1 141. What will be the domain of the function $f(x) = \sin^{-1}(2x-3)$? - (1) $[0, \infty)$ - (2) (1, 2) - (3) [1, 2] - (4) [-1, 1] In a group of 50 persons, 14 drink tea but not coffee and 30 drink tea. How many drink tea and coffee both? - (1) 15 - (3) 20 For Rough Work 143. If $\cos A + \cos^2 A = 1$, then the value of $\sin^2 A + \sin^4 A$ is: (2) $\frac{1}{2}$ $$(4) -1$$ 144. The range of the function $f(x) = \frac{x+2}{|x+2|}, x \neq -2 \text{ is :}$ $$(1)$$ $\{-1, 0, 1\}$ - 145. If the mean of a distribution is 25 and the standard deviation is 8. What is the value of the coefficient variation? - (1) 35% - (2) 60% - (3)/32% e For Rough Work 146. If the mode of 8, 15, 7, 7, 9, 2, 9 and x is 9, then 'x' is: - (1) 7 - (2) 8 (3) 9 (4) 15 147. Let R be the relation on N defined by x + 2y = 8, the domain of R is: (1) {2, 4, 8} (2) {2, 4, 6, 8} (3) {2, 4, 6} (4) {1, 2, 3, 4} 148. If $f: [0, \infty) \to R$ and $g: R \to R$ be defined as $f(x) = \sqrt{x}$ and $g(x) = -x^2 - 1$, then find $g(x) = -x^2 - 1$ - (1) $\sqrt{x-1}$ - (2) x 1 - (3) x + 1 (4) gof does not exist pace For Rough Work -x100 got = g (f(r) - 149. The sides of a triangle are 122 m,22 m and 120 m respectively, thenarea of the triangle is: - (1) 1300 sq. m. ((2) 1320 sq. m. - (3) 1400 sq. m. - (4) 1420 sq. m. - 150. If A and B are two mutually exclusive events with $P(A) = \frac{1}{3}$ and $$P(B) = \frac{1}{4}$$, then $P(\overline{A} \cap \overline{B})$ is: (1) $$\frac{4}{12}$$ $(4) \frac{7}{12}$