



## **Taxonomies of Learning Objectives**

Learning objectives play a crucial role in the design of instructional units or courses. These objectives typically span across **three domains** of learning: **Cognitive**, **Affective**, and **Psychomotor**. Each domain outlines specific types of learning outcomes related to **knowledge (thinking)**, **attitudes (feeling)**, and **skills (doing)**.

Instructional designers and subject matter experts (SMEs) utilize **learning taxonomies** as frameworks to structure and articulate these objectives. These frameworks bring clarity and help in aligning teaching strategies with desired learning outcomes.

#### **Purpose of Learning Taxonomies**

Taxonomies provide a systematic way to:

- Classify learning behaviours from simple to complex.
- Define clear instructional goals.
- Design measurable and observable learning outcomes.
- Align teaching methods with learner expectations.

#### **Three Domains of Learning**

| Domain      | Developed By             | Focus Area                        |
|-------------|--------------------------|-----------------------------------|
| Cognitive   | B.S. Bloom et al. (1956) | Intellectual skills and knowledge |
| Affective   | Krathwohl et al. (1964)  | Attitudes, values, and emotions   |
| Psychomotor | Anita Harrow (1972)      | Physical and motor skills         |

#### Each domain contains:

- **General Objectives**: Broad goals for a course or program.
- **Specific Objectives**: Measurable and observable behaviours that students should exhibit after instruction.

#### **Example:**

In a Food and Nutrition course:

- **General Objective**: Understand components of a balanced diet.
- **Specific Objective**: Identify at least five principal components of a balanced diet or define "balanced diet".

Each specific objective begins with **action verbs** such as *identify*, *define*, *describe*, etc., that describe clear and observable outcomes.

#### Cognitive Domain (Bloom's Taxonomy)

The **Cognitive Domain** involves the development of intellectual abilities and is concerned with the recall or recognition of knowledge and application of thinking skills.





## **Six Levels of Cognitive Learning Outcomes**

| Level            | Description                                           | Example Action Verbs        |
|------------------|-------------------------------------------------------|-----------------------------|
| 1. Kowledge      | Recall of previously learned material, from facts     | names, defines, labels,     |
|                  | to theories.                                          | states, selects             |
| 2. Understanding | Grasping the meaning of material; interpreting        | interprets, translates,     |
| 2. Onderstanding | and summarizing content.                              | summarises, compares        |
| 3. Application   | Using learned material in new and concrete            | solves, uses, relates,      |
|                  | situations; applying concepts or rules.               | produces, predicts          |
| 4. Analysis      | Breaking down complex material into parts and         | identifies, differentiates, |
| 4. Allalysis     | understanding their relationship or structure.        | illustrates, subdivides     |
| 5. Synthesis     | Combining elements to form a new structure or         | categorises, designs,       |
|                  | plan; producing new output.                           | rearranges, reconstructs    |
| 6. Evaluation    | Making value judgments based on criteria and          | appraises, justifies,       |
|                  | standards; highest level of c <mark>ogniti</mark> on. | supports, compares          |

**Note**: Higher levels (e.g., Evaluation) include cognitive tasks from lower levels and incorporate decision-making based on criteria.

#### **Application in Instructional Design**

- These taxonomies guide teachers in formulating instructional objectives for both face-to-face and distance learning contexts.
- **Specific Learning Objectives** (also known as **Instructional Objectives**) help in evaluating whether the learner has achieved the intended outcome.
- Objectives should always be **behaviourally stated**, meaning they describe observable and measurable actions by the learner.

#### **Affective and Psychomotor Domains**

#### 1. Affective Domain (Krathwohl et al., 1964)

The **Affective Domain** focuses on **attitudes**, **emotions**, **values**, and **interests** that influence learning. Developed by **Krathwohl and colleagues**, it emphasizes **attitudinal change** and emotional development.

#### **Key Features:**

- Involves interest, appreciation, values, and emotional responses.
- Closely related to both **cognitive** and **behavioral** changes.
- Essential for effective learning and often integrated with face-to-face instruction or audio-visual media, especially in **distance education**.





#### **Five Stages of Affective Learning**

| Level                                  | Description                                                                                                                                                 | Example Action Verbs                                   |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| 1. Receiving (Reception)               | Willingness to attend to particular stimuli (e.g., text, activity). Learner becomes aware and sensitive to the existence of stimuli.                        | chooses, describes, identifies, selects, replies       |
| 2. Responding                          | Active participation and involvement in learning activities. Learner shows motivation and interest (e.g., attending classes, participating in discussions). | discusses, performs, answers, presents, writes         |
| 3. Valuing                             | Learner attaches value or worth to an object, behaviour, or phenomenon (e.g., respecting civic duties).                                                     | reports, completes,<br>explains, justifies,<br>studies |
| 4. Organization                        | Integrating different values, resolving conflicts, and forming a consistent value system (e.g., creating a career plan with social and economic balance).   | arranges,<br>combines,<br>modifies, prepares           |
| 5. Characterization by a Value Complex | Internalization of values into consistent behaviour patterns. These values shape the learner's personality and way of life.                                 | displays, listens, revises, solves, uses, verifies     |

#### 2. Psychomotor Domain (Anita Harrow, 1972)

The **Psychomotor Domain** addresses the development of **physical** and **motor skills**, involving **movement**, **coordination**, and **use of motor-skill areas**.

#### **Key Features:**

- Concerned with **skill-based learning** (e.g., driving, painting, swimming).
- Often requires **face-to-face instruction** for mastery, especially in distance education.
- Learning progresses from simple motor actions to complex, coordinated behaviours.

#### **Three Characteristics of Psychomotor Learning**

- Response Chains: Sequential motor movements (e.g., swimming strokes).
- **Movement Coordination**: Integration of sensory input and motor output (e.g., riding a bicycle).
- **Response Patterns**: Mastered behaviours performed smoothly and without error (e.g., typing without looking).





## **Seven Stages of Psychomotor Learning**

| Stage            | Description                                                                                         | Example Action Verbs                        |
|------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------|
| 1. Perception    | Using sense organs to guide physical activity. Becoming aware of sensory cues that direct movement. | chooses, identifies, selects, relates       |
| 2. Set           | Readiness to take action. A mental, emotional, or physical disposition to act.                      | begins, moves, reacts, volunteers           |
| 3. Guided        | Early skill development under instruction.                                                          | assembles, builds, sketches,                |
| Response         | Includes imitation and trial-error learning.                                                        | manipulates, constructs                     |
| 4. Mechanism     | Learned response becomes habitual with increased confidence and efficiency.                         | displays, measures, organizes, builds       |
| 5. Complex Overt | Skilled performance of complex motor tasks                                                          | assembles, constructs, fixes,               |
| Response         | with accuracy and efficiency.                                                                       | manipulates, organizes                      |
| 6. Adaptation    | Ability to modify motor skills to fit special situations or solve problems.                         | adapts, rearranges,<br>reorganizes, revises |
| 7. Origination   | Creating new movement patterns to address unique tasks or challenges.                               | arranges, combines,<br>designs, originates  |

## Structure of Observed Learning Outcomes (SOLO) Taxonomy

**Developed by:** *John Biggs and Kevin Collis* (1982)

Purpose: To systematically describe how student understanding grows in complexity during the learning process.

#### **Key Features:**

- SOLO taxonomy categorizes learning outcomes based on their **structural complexity**.
- It applies to both **quantitative** and **qualitative** aspects of learning.
- Describes learning as a hierarchy, moving from simple to complex levels of understanding.

#### **SOLO Taxonomy Levels**

| Level                   | Description                                                                                   | Typical Learning Outcomes                           |
|-------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 1. Prestructural        | Learner gathers disconnected pieces of information with no organization or meaning.           | Identifies missing points, gathers unrelated facts. |
| 2. Unistructural        | Makes basic, obvious connections; focuses on one concept but lacks deeper understanding.      | Naming, defining, using simple terms.               |
| 3. Multistructural      | Recognizes multiple concepts but fails to connect or integrate them meaningfully.             | Lists, describes, combines, enumerates.             |
| 4. Relational           | Integrates various parts into a meaningful whole; understands relationships between elements. | Analyzes, relates, compares, applies.               |
| 5. Extended<br>Abstract | Generalizes and transfers knowledge across domains; applies concepts in new contexts.         | Theorizes, generalizes, reflects, hypothesizes.     |





#### Application Example (Louise Starkey, 2012)

**Concept:** Sustainability

This example illustrates how students progress through SOLO levels:

| SOLO Level      | Activity Description                                                            |
|-----------------|---------------------------------------------------------------------------------|
| Prestructural   | Students learn basic facts about mining and oil extraction via interactive      |
| Frestructurar   | videos.                                                                         |
| Unistructural   | Learn about the limitations of natural resources using an interactive timeline. |
| Multistructural | Track weekly household consumption using scanning tools and energy              |
|                 | databases; identify patterns.                                                   |
| Relational      | Analyze input origins (mined, grown, manufactured) and relate them to           |
|                 | environmental impact and broader sustainability concerns.                       |
| Extended        | Track school's input-output systems; make cross-contextual generalizations      |
| Abstract        | and propose sustainable solutions at broader levels.                            |

#### Steps for Designing Learning Outcomes Using SOLO (Biggs, 1999)

- 1. **Identify the type of knowledge involved** (factual, conceptual, procedural, metacognitive).
- 2. Select the learning topic.
- 3. **Determine the desired level of understanding st**udents should reach.
- 4. **Link learning outcomes to assessment tasks** for effective evaluation.

# Revised Bloom's Taxonomy (Anderson & Krathwohl, 2000) Original Bloom's Taxonomy:

Unidimensional structure combining verb (action) and noun (content) into one level. Example: *Identify* (verb) *three components of instructional objectives* (noun).

#### **Revised Version:**

5

Proposed by Anderson and Krathwohl, the **revised taxonomy splits the structure into two dimensions**:

- Knowledge Dimension (noun)
- Cognitive Process Dimension (verb)

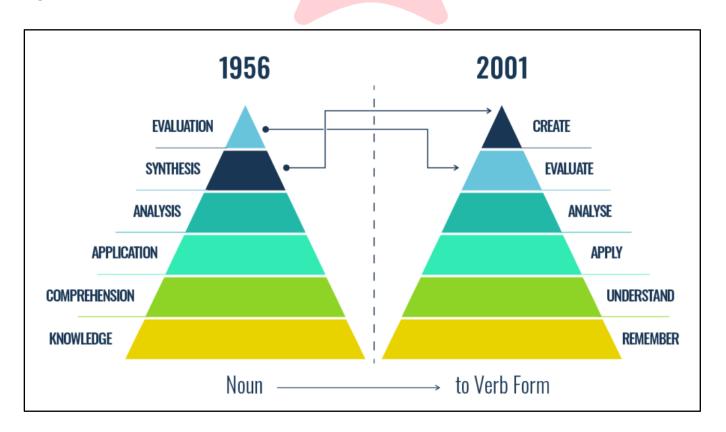
#### **Hierarchy in Revised Bloom's Taxonomy**

| Level         | Description                                                                       | Learning Outcomes (Action Verbs)                 |
|---------------|-----------------------------------------------------------------------------------|--------------------------------------------------|
| 1. Remember   | Recall or retrieve knowledge from memory.                                         | Recognize, recall                                |
| 2. Understand | Comprehend meaning of material using explanations, interpretations, or summaries. | Classify, summarize, interpret, explain, compare |
| 3. Apply      | Use knowledge or procedures in new situations.                                    | Execute, implement                               |
| 4. Analyze    | Break material into parts to understand its structure and relationships.          | Organize, differentiate                          |
| 5. Evaluate   | Make judgments based on criteria and standards.                                   | Examine, check, assess                           |
| 6. Create     | Combine elements into a new whole or propose original solutions.                  | Generate, plan, produce                          |





#### **Comparison: Original vs Revised Bloom's Taxonomy**


| Original (1956) | Revised (2000)                  |
|-----------------|---------------------------------|
| Knowledge       | Remember                        |
| Comprehension   | Understand                      |
| Application     | Apply                           |
| Analysis        | Analyze                         |
| Synthesis       | Create (moved above Evaluation) |
| Evaluation      | Evaluate                        |

#### **Integrating Taxonomies for Effective Learning Design**

Educators can enhance curriculum design by combining multiple taxonomies:

- **Cognitive Learning** → Bloom's / Revised Bloom's Taxonomy
- **Attitudinal Learning** → Krathwohl's Affective Domain
- **Skill-Based Learning** → Harrow's Psychomotor Domain
- **Holistic Understanding** → SOLO Taxonomy

According to Starkey (2012), educators should create learning activities that build both **knowledge and skill**. This includes tasks like essays, podcasts, presentations, or skits that promote **conceptual understanding**, application, and generalization, corresponding to the higher levels of the SOLO and Bloom's frameworks.







## **Practice Questions**

## 1. Match the Following (Cognitive Domain Levels and Their Descriptions)

Match the levels of Bloom's original taxonomy (Column A) with their correct descriptions (Column B):

| Column A      | Column B                                       |
|---------------|------------------------------------------------|
| A. Knowledge  | 1. Making value judgments based on criteria    |
| B. Analysis   | 2. Breaking down material into component parts |
| C. Evaluation | 3. Recall of facts, terms, and basic concepts  |
| D. Synthesis  | 4. Combining parts to form a new whole         |

#### **Options:**

(a) A-3, B-2, C-1, D-4

(b) A-1, B-2, C-3, D-4

(c) A-3, B-4, C-1, D-2

(d) A-2, B-1, C-4, D-3

Correct Answer: A. A-3, B-2, C-1, D-4

## **Q2. Multiple Correct Options**

## Which of the following are features of the Revised Bloom's Taxonomy?

- A. It introduces a two-dimensional structure separating knowledge from cognitive processes.
- B. The highest level is "Evaluation" in the revised version.
- C. It uses verbs like "generate", "plan", and "produce" under "Create".
- D. The knowledge dimension includes factual, conceptual, procedural, and metacognitive knowledge.

## **Options:**

- (a) A and B only
- (b) A, C, and D only
- (c) A, B, and D only
- (d) All of the above

Correct Answer: B. A, C, and D only

#### 3. Multi-Statement Based

**Statement I:** Revised Bloom's Taxonomy includes both the knowledge type and the cognitive process. **Statement II:** This was done to create a unidimensional framework integrating both action and content. **Options:** 

- (a) Both statements I and II are true.
- (b) Both statements I and II are false.
- (c) Statement I is true, but statement II is false.
- (d) Statement I is false, but statement II is true.

Correct Answer: C. Statement I is true, but statement II is false.





## 4. Chronological/Sequencing Based

Arrange the following levels of the Affective Domain (Krathwohl et al.) in the correct sequence from lowest to highest level of internalization:

- 1. Organization
- 2. Receiving
- 3. Characterization by a Value Complex
- 4. Valuing
- 5. Responding

## **Options:**

- (a) 2 5 4 1 3
- (b) 5 2 4 1 3
- (c) 2 4 5 1 3
- (d) 1 2 5 4 3

Correct Answer: A. 2 - 5 - 4 - 1 - 3

## 5. Application-Based Scenario Question

A teacher asks students to analyze their school's energy use and propose eco-friendly improvements. Which level of Revised Bloom's Taxonomy is this activity MOST aligned with?

- (a) Understand
- (b) Apply
- (c) Analyze
- (d) Create

**Correct Answer: D. Create** 

