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(a) an integer
(b) a rational number of the form f—,

p and g integers in the lowest
form,q#0,g=+1

(c) an algebraic number

(d) a transcendental number

The infinum of the set {HH)H n eIN}
is:

(a) —1
(b) O
1

(c) 3

(d) not defined in the set of real
numbers

For any real number a,
equals :

(a) a

(b) —a

(c) infinity

(d) 0

The sequence <cos [%ED is:

(a) unbounded

(b) convergent and hence bounded
(c¢) divergent

(d) oscillatory
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(1)

The value of b for which

1+el 4?1 0% 4 0=9is:
(a) 3log2-2log3
(b) 2log3-3log?2
(c) 3log2-log3
(d) log3-3log2

The norm of the  partition
{-2,-16,-05,0,08,1} of the
interval [-2, 1] is:

(a) 0.8
(b) 0.5
(c) 0.2
(d) 1.1

T
The average value of cos x on ‘:0‘ -2—}
15%

(@) m/2
(b) =/4
() 2/=
(d) 4/n

Let (b,) be a sequence with nth term
asb, =n(1+(-1)")and A = lim sup b,,
B = lim inf b,,, then :

(@) A=c,B=0
b) A=0,B=w
() A=B=0
(d) A=B=w

P.T.O.



9.

10.

1.

12.

" 1
lim = +2Y2 433 4 .+nl/n
n—oxh

equals :
(a) 0 (b) 1/2
(c) 1 (d) 2

Let f, g be two R-integrable functions on
[a, b]. Then which of the following is
not necessarily R-integrable on [z, b] ?

(a) fg
(b) fog, when fog is defined
(c) max {f, g}

(d) min {f, g)

an
The series ¥

converges
n=2 n(log n)

(a) for all real values of P
(by iffP>1
(c) iffP<1

(d) iffP=1

Which of the following functions is
discontinuous ?
(a) f(x):x2 sinl, x#0
X
=0, x=0

(b) fix)=|x| VxelR
(© fix)=+x Vxel04]
1 .1 4
@ f(x):;sm[;—z-} x=0

=0, x=0
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13. The function f defined on [-8rn, 8x] as

14.

15.

f(x) = sin(e®)-e* cos2x is :
(a) uniformly continuous

(b) continuous but not uniformly
continuous

(c) discontinuous at finitely many
points

(d) discontinuous at
many points

uncountably

Let [ . ] denote the greatest integer
function. Then I = r[ledx equals :
0

() 0

(b) 9-v2-43
(© 7-v2-43
(d) 5-v2-43

Let f, g, h, k be four functions defined
as:

& =+x on[0,2]
g(x)=x2 on [0, )
h(x)=x> on [-1, 1]

k(x):% on 0, 1]

Which of the functions defined above
are not uniformly continuous in the
specified domains ?

(a) gandk
(b) gonly
(c) konly
(d) fand h
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| § &

18.

Let f be defined on IR, as

flx)y=xif0<x<1

=1lifx=1
Which one is true ?
(a) fis discontinuous atx =1
(b) fis differentiable at x =1

(¢) f is  continuous
differentiable atx =1

but not

(d) fis a continuous non-monotonic
function

The solution of the total differential
equation :

+2)dx +Z+x)dy +(x+y)dz=0is :

(a) xy+yz + xz = constt.

(b) x2 + yz +z% = constt.

(c) x? (y+2z)+ yz{x+ z) = constt.

(d) x+y+z =constt.

The general solution of the partial

differential equation f@ +y2@=x+y,
ox © dy
where v = v(x, y) is given by :

ev
@ ¢|y+x, =0
L X+Y

b) o 1_+§,(x+y)e"]=o

\.1

© ¢ly-x— }=0
\ =¥
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19.

20.

21.

The complete integral of the
differential equation pg = xz, (where
B tt z=z(x,y))is
P f:".'\" !_—6}" b o g |
11.2

(b) z=(x+a)(y+b)

() z=ax+a> +be¥

(d) z=(\[:?+a)2 +(J§+b)2

The differential equation of all

parabolas, whose axes are parallel to

the y-axis is :
3
y Yy _

(b) dx 2x
d’y  , dy

(C) Ei+4aa=o
d3y

(d) —3+4ax=0
dx

The solution of the iniHal value

problem y" =3y'+ 2y =0, y(0) = 0, y'(0)

=1is:
(@) —e* +e%*
(b) g.'t' _ GZI

(€ e*+e*

(d)

P T. 0.
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24.

25.

Let A be the set of all sequences with
terms 0 or 1. Then the set A is:

(a)
(b)
(c)
(d)

finite

countably infinite

uncountable

none of the above

Which of the following is true about

the set Z of integers as a subset of real
numbers :

(a)
(b) # is perfect

# is closed

(c) # isbounded

(d) # is compact

The radius of convergence of the
2

power series E £ is :
n=0 H

(a) O

(b) 1/2

() 1

(d) infinity

The region represented by the set

{ z:Re (zz)él in the complex plane is

()

a horizontal infinite strip of width

2n
(b) aclosed disc without its centre
(c)

region between the branches of
the hyperbola %2 — yz =1

(d) region enclosed by the ellipse
2
X 2
T e =1
5 Y
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26.

27.

28.

29.

The value of |

c;{z:|z|=%}is:

(@)
(b)
(c)
(d)

The complex function f(z) = |z is:
(a)
(b)

27
2mi
4mi

—4mi

differentiable only atz =0

differentiable everywhere in the
complex plane '

differentiable nowhere in the

complex plane

(c)

(d) differentiable everywhere in the

complex plane except at z =0

The most general harmonic conjugate
of the function u=x? - y% -y is given

by
(a)
(b)
(c)
(d)

v(x,y) = x?

+y2—x+c
o(x,y) = 2xy+y+c
v(x,y) = 2x2y +y+c

o(x,y) = 2xy+x+¢

Let I = éc 7 d=, where C denotes the

unit circle traced anticlockwise. Then I
equals :

(a) 0
(b) 2mi
() mi

(d) =/2



30.

31.

32.

33.

Let g(z-)=(z2 —‘1)_1 tanz and C : |z|

= 3/2 (counterclockwise). Then
I= §C 8(z)dz equals:

(@) 0

(b) 2nitan 1

(c) mitanl

(d) m/2tan 1

The solution set of e* =—3 is:

(a) {n3+(2K+1)mi:Kez}

(b) {m3+Kni:Kez}

(c) {In3+2Kni : Kez}

(d) {In3+mi)

Let f be analytic in a disc D centred at
a and having radius R such that |f(z)|
< |Ha)| for all z in D with f(a) # 0.
Then :

(a) fis a constant function

(b) £z e D such that f(z) = f(a)

(c) fisidentically zero

(d) fisnot a rational function

The function f(z)=(1-cos 2)2'2 has :
(a) asimplepoleatz=0

(b) adouble poleatz=10

(c) aremovable singularity atz=10

(d) a non-isolated essential

singularity atz =0
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34.

35.

36.

37.

Let (X,t) be a topological space of all
irrational numbers with discrete
topology. Then which of the following
is true ? !

(a) The space is complete

(b) The space is connected

(c¢) The space is totally bounded

(d) The space is separable

Let f and g be holomorphic inside and
on a contour r and |f(z)| > [g(z)| on
the boundary of the contour. Then :

(a) g and f - g have the same number
of zeros inside r

(b) g and fg have the same number of
zeros inside r

(¢) fand f+ g have the same number
of zeros inside r

(d) gand f+ g have the same number
of zeros inside r

The residue of f(z)=

is Z

(a) 1/2

(b) 1/4

(c) 1/8

(d) 1/16

meot nz

3 atz=2

Which one is incorrect :

(a) If H and K are two subgroups of a
group G then HK is a subgroup of
G iff HK = KH

(b) If H and K are two subgroups of a
group G such that either H or K is
normal in G then HK is a
subgroup of G

(¢) If H and K are finite subgroups of
a group G, then O(HK) = O(H) .
0(K)

(d) If H and K are two subgroups of
an abelian group G then HK is a
subgroup of G

Pt 0.



38. Let Gy =<a>,Gy =<b> be two cyclic

groups of orders m and n such that (m,
n) > 1. Then which one is not true for
the product group G = G; xGy ?

(a) Gis cyclic

(b) G is abelian but not cyclic
(c) O(G) =mn

(d) None of the above

39. Ifinagroup G, a® =¢ and aba ' =b?
fora, b € G, then for b # e, 0(b) equals

(a) 29

(b) 31

(c) 33

(d) 35

40. Which one is not true ?

(a) Intersection of two normal
subgroups need not be a normal
subgroup

(b) Every subgroup of a cyclic group
is normal

(c) The centre of a group is a normal
subgroup

(d) If x*cH forall xeG, then His a
normal subgroup of G

41. Which one is correct ?

(@) The quaternion group can be
written as internal direct product
of its non- trivial subgroups

(b) The group Q of all rationals under
addition is the direct sum of two
non-trivial subgroups

(c) A group of order 4 is cyclic or
internal direct product of two
cyclie groups of order 2 each

(d) S3, the symmetric group of degree
3, is the internal direct product of
two non-trivial subgroups

ST-09/MATH/A
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42,

43.

44,

45.

The number of non-isomorphic abelian
groups of order 20 is

(@) 1
(b) 2
(c) 4
(d) 5

Which of the following is not true for a
boolean ring R ?

(a) R is non-commutative

(b) X' = x forevery x € R

(¢) 2x=0foreveryx € R

(d) x+y=0=>x=yforx,yeR

Let R be the ring of real-valued
continuous functions on [0, 1] which

one of the following is true for the ring
R?

(a) Risan integral domain

(b) R has zero divisors

(¢) R is a commutative ring without
unity

(d) R is a non-commutative ring with
unity

If S and T are two subrings of a ring. R,
then which of the following is always a
subring of R ?

(@) S+T
(b) SUT
(¢ SNT

“(d) §-=T



46.

47.

48.

49,

The smallest non-commutative ring is
of order :

(a) 2
(b) 3
(c) 4
(d) 5

How many idempotents does an
integral domain with unity have ?

(@ 0
(b) 1
(© 2
(d) 4

The degrees of JE+J§ and ﬁ+%f§

over Q are respectively :
(@) 4,6
(b) 2,6
() 6,2
(d) 6,4

Which one is incorrect ?

(a) A finite normal extension is a
minimal splitting field of some
polynomial

(b) A normal extension of a normal
extension is a normal extension

(c) A quadratic extension is a normal
extension

(d) A minimal splitting field of a non-
constant polynomial over K is a

normal extension of K
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50.

51.

52.

54.

Which of the following statements is
not equivalent to the other three ?

(a) Kis algebraically closed

(b) Every algebraic extension of K is
K itself

(c) Every polynomial f over K splits
in K '

(d) Every irreducible polynomial over
K has degree at least 2

A finite extension E/F is a Galois
extension if and only if :

(a) itis normal

(b) itis separable

(c) itis both normal and separable

(d) it is neither normal nor separable
Let f(x)= x* + x% +1 . Then degree of

the splitting field of f(x) over the field
of rationals is :

(@) 1
() 3

(b) 2
(d) 4

According to Fermat's theorem, for
any integer a and prime P,
(a) aP=a(mod P)
(b) a?=a(mod P)
(c) aP=P(mod a)
(d) aP=P?(mod a)
Letf(x)=0,-t<x <0
=x,0<x<m

Then the sum of the Fourier series of f
atx =0and x = +n respectively are:

(@) 0,m/2
(b) 0,0
(c) n/2,m/2
(d) =/2,0
P.T.O.



55. The

56.

57.

Fourier-cosine series of a

bounded, piecewise monotonic and

integrable function on [0, 7] is given by
w

a

L Z a, cosnx where :

n=1

(@) a, =% f(x) cos nx dx
(b) a,,*% f(x) cos nx dx

(©)

=
I

f(x) cos nx dx

AN A=

J‘L-_‘: :ptl__.ﬂoc_._.ﬁol_..“

(d)

=
Il

f(x) cos nx dx

The number of non-zero nilpotent
elements in Z3, the ring of integers

modulo 30, is :
@ 0
(b) 4
© 10
@) 15

If A and B are two ideals of a
commutative ring R with unity such
that A + B =R then :

(@) AUB=A
(b) AUB=B
() AB=ANB
(d A+B=AUB

ST-09/MATH/A
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58.

59.

60.

61.

For disjoint events A, B if P(A) = 0.5
and P(A U B) = 0.6 then P(B) equals :

(a) 02

(b) 0.1
(c) 03
(d) 04

One bag contains five white and four
black balls. Another bag contains
seven white and nine black balls. A
ball is transferred from first bag to the
second bag and then a ball is drawn
from the second bag. The probability
that the transferred ball was white is :

(@) 1/5

(b) 14/153

(c) 68/153

(d) 2/3

For flx)=ex2 (1 -x),0 < x < 1, to be a

probability ~density function, the
constant ¢ equals :

(a) 10

(b) 12

(c) 15

(d) 1

If X has distribution given by P[x = 0]
=P[x=2]=qandP[x=l]=1~2qfor

0 < q < 1/2, then the value of q for
which the variance of X is maximum is

(@ 0

(b) 1/2
(c) 1/4
(d) 1/8



62.

63.

65.

Which one is not true ?

(a) In a Boolean ring R, every prime
ideal P # R is maximal

(b) In a commutative ring with unity,
every maximal ideal is prime

() In a finite commutative ring,
every maximal ideal is prime

(d) A commutative ring with unity in
which every ideal is prime is a
field

The polynomial f(x) = x2 - 2x — 15 is :

(a) reducible but not primitive over
Z

(b) primitive but not reducible over
=

(c) both primitive as well as reducible
over #

(d) neither primitive nor reducible
over #

Let X be a random variable with mean
p and variance ¢”. Then E[(X - b)?], as
a function of b, is minimized when b
equals :

(@) p/2

®) o

(c) o*/2

(d) u

A box contains a white and b black
balls; ¢ white balls are drawn. The

expectation of the number of white
balls drawn is :

(@) ca/a+b
(b) ab/a+b
(c) cb/a+b
(d) abc/a+b+c

ST-09/MATH/A
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66.

67.

68.

69.

70.

The mode of a binomial distribution
withn=8andp=1/2is:

(a) 4
(b) 4,5
(© 5
(d) 9

If X is a gamma variate with

parameters A >0and r > 0 then
Mean — Mode Satas

RD; 7 PAua

1 A
(@ - (b) —

r r

1 A
) — d) —
(©) % (d) g

If p(X, Y) denotes the correlation
coefficient of two random variables X
and Y then :

(@ pX,Y)22
(b) p(X,Y)>0
() -1<pX,Y)<1

(d) 0<p(X,Y)<1

The remainder when the sum
1° +2% +3% +...+100° is divided by
4is:

(@) 1
() 2

(b) 3

(d o

In the plane R, the set {(x,y) :x20
and y >0} is :

(a) both open as well as closed

(b) neither open nor closed

(c) open

(d) closed

P.T.O.
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72.

73.

74.

Which one is not true ?
(a)
(b)

Every order topology is Hausdorff

The product of two Hausdorff
spaces is Hausdorff

(c) Every subspace of a Hausdorff
space is Hausdorff

X is Hausdorff iff A= {x xx:x €
X} is open in X x X

(d)

For the normal distribution, the
quartile deviation, the mean deviation
and standard deviation are
approximately :
() 10:12:15
(b) 12:10:15
(¢) 15:10:12
(d) 12:15:10
If (X, Y) has a bivariate normal
distribution, then X and Y are

independent iff the correlation

coefficient p(X, Y) equals :
@ -1

(b) 0

(© 1

(d) 1/2

If X is a random variable such that E(x)
= 3 and E(x?) = 13, then (using
Chebyshev's inequality), the lower
bound for P(-2 < x < 8) is:

(@) 21/25
(b) 19/25
(c) 4/5

(d) 17/5

ST-09/MATH/A
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75.

76.

78.

Let {Xx} be a sequence of independent
variates such that P[Xx = +2k"] = 1/2.
The value of a for which weak law of

large numbers holds is :

(@ a>1/2

(b) a=1/2

(c) a=1

(d) a<1/2

Let Sz{{x, sin%]:o-:xsl} be a

subset of the plane which one is
incorrect ?
(a) Sisconnected

(b) The closure of S, ie.
connected

S is

(c) The closure of S is path connected

(d) S is a continuous image of a
connected set

The subspace [-1,0) U (0, 1] of TR is :

(a) connected and hence locally
connected

(b) locally connected but not
connected

() neither connected nor locally
connected

(d) connected but not locally
connected

Let C denote the Cantor set, as a
subspace of [0, 1] which of the
following is not true about C, :

(a) Cis totally disconnected
(b) Cis compact
(c) C isuncountable

(d) C has isolated points



79.

80.

81.

The one-point compactification of Z,
is homeomorphic with :

(a) the subspace {é} v {%/n € E+}of
R

(b) the circle S'
(¢) thesphereS’
(d)

According to Urysohn metrization
theorem :

(a)

the interval (0, 1)

Every regular space X with a
countable basis is metrizable

(b) Every Hausdorff space X with a

countable basis is metrizable

(c) Every locally compact Hausdorff
space X is locally metrizable

(d) Every regular Lindeldf space X is

metrizable

Which of the following spaces is a
complete metric space ?

(a) The space Q of rationals with the
usual metric

(b) The open interval (-1, 1) in MR

with the usual metric
(c) The set of all sequences (x1, X2, ....)
[+ o}
such that Z xl.2 converges, in the
=1
I*-metric
The set Q of all rational numbers

(x-y)

with metric ——————
1+|x—y]|

ST-09/MATH/A
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82.

84.

The topological dimension of any
compact subspace X of the real line R
is :

(a) exactly 1

(b) atmost1
(¢) atleastl
(d) infinite

The the
F=rF(u)=(u, u®,u) is given by :

torsion of curve

3

(8) e
9u4 +9u% +1

1
9u4 +9u2 +1
142
1 3y
© |—F—=—
9u* +9u +1)

\1/2
@ [__2_

9ut +9u? +1

Suppose that a space curve drawn on
the surface of a cylinder has the
property that at each point on it the

ratio of curvature to torsion is

constant, then the curve must be :
(a) a straight line

(b) aplane curve

(c) ahelix

(d) a Bertrand curve

P.T.O.
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86.

87.

88.

According to Meunier's theorem, at a
point common to the curve and the
surface,

(a) K_ /K = cosp where ¢ is the angle
between 7 and N

(b) K. K, =cosp where ¢ is the angle
between 7 and N

() K+K_ =cosp where ¢ is the angle
between 7 and b

(d) K-K =cosd where ¢ is the angle

between f and 7

In R with usual metric,
N {(0, 1 +1J} is :
nelN "

(a) an open set

(b) aclosed set

(c) both open and closed
(d) notan open set |

The convex hull of a subset A of IR" is :

(a) the intersection of all convex sets
containing A

(b) the union of all convex sets
containing A

(c) the largest convex subset of A

(d) the largest convex superset of A

The family of curves u(x, y) = x2 —y2 =
constant is orthogonal to the family of
curves v(x, y) = constant where :

(@) o(x, y)=xy
(b) v(x,y)=x+y
(c) v(x,y)=xky
(d) v(x,y)=x ~y

ST-09/MATH/A
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89.

90.

91.

92,

Let f and g be two bounded
monotonically increasing functions
defined on [0, 4]. Then f - g is :

(a) continuous on [0, 4]

(b) continuous except for (finitely
many removable discontinuties

(c) a function of bounded variations
on [0, 4]

(d) astep function

Which of the following is not a convex
set ?

@) {(x,y):2<x2+y2<8}
(b) {(x,y):x2+y2<4]

(€ {(x,y):2x +4y <8}
(d) {(x, y):x>0}

3

| xd(x1-x) equals:
0

(@) 5/2

(b) 3/2

(€ 1/2

(d) 9/2

I —1—dx equals :
§ox

(a) 0
(b) 1
() 1/2

(d) infinity



93.

94.

95.

Let f be defined on [0,3] as
=1 if x is rational
fo L }

= 2 if x is irrational
Then :

(a) fis Riemann integrable on [0, 3]

(b) f is Lebesgue integrable but not
Riemann integrable on [0, 3]

(c) f is not Lebesgue integrable on
[0, 3]

(d) f is both Riemann integrable as
well as Lebesgue integrable on
[0, 3]

The solution set of the linear

congruence 12x = 8 (mod. 15) is :
(a) {3+15K:K e #}

(b) {4+15K:K e £}

(¢) {7+15K:K € #}

(d) Empty

Which one is correct ?

(a) The set {1, 2, 3, 6, 10, 12, 24, 60,
120} ordered by divisibility is a
modular lattice

(b)

The class of all normal subgroups
of a group is a modular lattice
under set inclusion

(¢) A modular lattice contains a
pentagonal sublattice

The class of all subgroups of a
cyclic group of order 8 is a non-
modular  lattice  under  set
inclusion
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96.

97.

98.

99,

Let L and M be two chains each
containing at least two elements. Then
their cardinal product L x M :

(@) isachain

(b) is a lattice but not a chain

(c) isnota lattice and hence not a chain
(d) is achain but not a lattice

A chain of three or more elements is :
(a) complemented

(b)

(c) neither complemented
relatively complemented

relatively complemented

nor

(d)

both complemented as well as
relatively complemented

Which of the following linear spaces is
non-separable ?

(a) Cla, b], the space of all continuous
real-valued functions on |a, b]

b 1
© 1*
(d) 1”°

Let X be a normed space and a

mapping d* : X x X — IR be defined as

d*(x, y)=min {1, | |[x-y| |Lx, y € X;

where | |.|| denotes the norm of X.

Then :

(a) d*is notametricon X

(b) d* is a metric on X and there is no
norm on X which generates d*

() d* is a metric on X generated by
some norm on X

(d) none of the above

P.T.0."



100. Which one is true ?

101,

102.

103.

(a) An infinite dimensional subspace
of a normed space is always
closed

(b) In a finite dimensional normed
space, every non-empty set is

compact

(¢) If||.|| and | |.]||"are equivalent
norms on X then (X, |].|]|) is a
Banach space iff (X, | |.| |") is so

(d) An unbounded metric on X can
never be equivalent to a bounded
metric on X

Which of the following is not a self-
dual space ?

(a) MR", with usual norm
) I

(© F

(d) La,b]

Let T be a real, skew symmetric n x n
matrix where n is odd. Then det T, the
determinant of T equals :

(@) 0

(b) 1

(c) -1

(d) 1/2

Which of the following is not true for
F-distribution ?

(a) F-distribution has two parameters
viand vz

(b) For large values of vi and Vv;, the
distribution approaches normal
distribution

(c) The random variate F can take any
real value

(d) The curve is positively skewed
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104.

105.

106.

The number of elements in S; the
symmetric group of degree 3,
satisfying x2=eis:

(a) 1
(b) 2
() 3
(d) 4

. Let d; and d» be two metrics on a non-

empty set X and
d(x, y) = da(x, y) + da(x, y)
d*(x, y) = max. {di(x, ¥), dz2(x, y)}

for all x, y € X. Then which of the
following is true ?

(a) d is a metric on X but d* is not a
metric on X

(b) d* is a metric on X but d is not a
metric on X

() dand d* are equivalent metrics on
X

(d) d and d*
metrics on X

are non-equivalent

Which of the following is not true ?

(a) The completeness of a metric
space depends on ils metric
structure

(b) A subspace of a complete metric
space may not be complete

(c) Completeness is preserved under
an isometry

(d) Completeness is preserved under
a homeomorphism



107. Which of the following is not a

108.

109.

110.

Noetherian ring ?
(a) The ring <Z, +, .> of integers
(b) The ring <Q, +, .> of rationals

(c) The ring Q[x] of polynomials over
the rational field Q

(d) The real valued

functions on the real field R

ring of all

How many limit points does the
sequence <1,2,1,4,1,6, ..> have ?

(a) 1
(b) 2
(c)

(d) none

infinite

Let f: [0, 1] — IR be a rational valued
continuous function such that f(1/2) =

1/2. Then f(0) and f(1) are respectively:

(@) -1/2,1
(b)
(c)

(d)

1/2,1/2
0,1

A bounded linear operator on a

Hilbert space commuting with its
adjoint is called a :

(a) normal operator
(b) normaloid operator
(c) hyponormal operator

(d) quasinormal operator
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111.

112

113.

114.

Let T: 12— 1?be defined as: T (x0,%1,

o Xy vonna ) = (0, Xg, M /2, Xo /3, )
Then the spectral radius r(T), of T,
equals :

(a) 0
(b) 1/2

© 1
@ V&

If r(T) and | |T| | denote the spectral
radius and the norm (respectively) of a
normal operator T, then :

(@ o(T)=||T[|
(b) (T)<||T]]
(© o(T)>][T[]+1
(d r(T)=1+[|T]]|

Let f and g be measurable real-valued
functions on X, F be a real continuous

function on IR% If h is defined on X as "

h(x) = F(f(x); g(x)) for every x in X,
then :

(a) his measurable

(b) h is measurable if F is uniformly
continuous

(c) his non-measurable

(d) h is measurable iff F is a constant
function

(¢ ]
If p> 0 and a is real, then lim

n—r= (14 p)”
equals :
() 1
- (b) «
© 0
(d) infinity
P.T.O.



115. Any non-empty perfect set in lR* (K =

1) 1is:
(a) at most finite, containing at least
two elements
(b) asingleton
(c) countable
(d) uncountable
116. The set of limits of subsequences of
any sequence in a metric space X form
(a) an open subset of X
(b) a closed subset of X
(¢) an unbounded subset of X
(d) a compact subset of X
117. Which of the following entire
functions is of order zero ?
(a) a polynomial
(b) e, a=0
(¢) cosz
(d) sinz
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119.

120.

118. If f(z) is an entire function of order p

and convergence exponent o, then :
(@) o>p

(b) o=p

() o<p

(d) o and p not order-related

If g is a polynomial of degree d, then
the order of es® is :

(a) 1 ‘

(b) d

() d’

(d) 0

For the function f(z) =e?, z=wis:
(a) an isolated essential singularity
(b) aremovable singularity

() a non-isolated
singularity

essential

(d) apole

T



