

Module Name: PHYSICAL SCIENCES
Exam Date: 08-Jun-2023 Batch: 09:00-12:00

Sr. No.	lient Question Question Body and Alternatives	Marks		egat Mar
Objecti	Question			
70	When a student in Section A who scored 100 marks in a subject is exchanged for a student in Section B who scored 0 marks, the average marks of the Section A falls by 4, while that of Section B increases by 5. Which of the following statements is true?	2.	.0	0.:
	1. ${f A}$ has the same strength as ${f B}$			
	2. A has 5 more students than B			
	3. B has 5 more students than A			
	4. The relative strengths of the classes cannot be assessed from the data			
	जब सेक्शन A के एक विद्यार्थी जिसने एक विषय में 10 <mark>0 अं</mark> क प्राप्त किये थे उसकी सेक्शन B के शून्य अंक प्राप्त करने वाले विद्यार्थी से अदला-बदली की जाती है, सेक्शन A के औसत अंक 4 कम हो जाते हैं, जबकि सेक्शन B के औसत अंक 5 बढ़ जाते हैं। निम्नलिखि <mark>त कथनों में</mark> से कौनसा कथन सत्य है?			
	1. A में विद्यार्थियों की संख्या B के समान है।			
	2. A में विद्यार्थियों की संख्या B से 5 अधिक <mark>है।</mark>			
	3. ${f B}$ में विद्यार्थियों की संख्या ${f A}$ से 5 अधिक है।			
	4. इन आंकड़ों से कक्षाओं में विद्यार्थियों की सापेक्षिक संख्या ज्ञात नहीं की जा सकती है। Al 1 :			
	1 A2 2 :			
	2 A3 3			
	: 3 3			
	A4 4			
	4			
	e Question		0	
	Which of the numbers $\mathbf{A} = 162^3 + 327^3$ and $\mathbf{B} = 612^3 - 123^3$ is divisible by 489?	2.	.0	0.
	1. Both A and B			
	2. A but not B			
	3. B but not A			
	4. Neither A nor B			

संख्याओं A = $162^3 + 327^3$ और B = $612^3 - 123^3$ में से कौनसी संख्या 489 से विभाज्य है? 1. दोनों **A** और **B** 2. **A** किन्तु **B** नहीं 3. **B** किन्तु **A** नहीं 4. न तो **A** ना ही **B** A1 ₁ A2 2 2 A3 ₃ 3 A4 4 Objective Question 705003 0.50 2.0 At a spot S en-route, the speed of a bus was reduced by 20% resulting in a delay of 45 minutes. Instead, if the speed were reduced at 60 km after S, it would have been delayed by 30 minutes. The original speed, in km/h, was 1.90 2.80 3.70 4.60 मार्ग में किसी स्थान s पर, एक बस की गति 20% कम कर दी गयी थी जिसके फलस्वरूप 45 मिनट की देरी हुई थी। इसकी अपेक्षा यदि गति को s के 60 किमी पश्चात कम किया जाता तो इससे 30 मिनट की देरी हुई होती। मूल गति, किमी/घं, में थी 1.90 2.80 3.70 4.60 A1 ₁ A2 2 2 A3 ₃ 3 A4 4 4

ctive Questi 705004		2.0	0.50
, , , , , , , , , , , , , , , , , , , ,	Three consecutive integers a, b, c, add to 15. Then the value of $(a-2)^2 + (b-2)^2 + (c-2)^2$ would be		
	1. 25		
	2. 27		
	3. 29		
	4.31		
	तीन क्रमानुगत पूर्णांकों a , b , c , का योग 15 है। तब $(a-2)^2+(b-2)^2+(c-2)^2$ का मान होगा		
	1. 25		
	2. 27		
	3. 29		
	4. 31		
	A1 1 :		
	1		
	A2 2		
	2		
	A3 3 :		
	3 A4 4		
	:		
tive Questi			
705005	A 50 litre mixture of paint is made of green, blue, and red colours in the ratio 5:3:2. If another 10 litre of red colour is added to the mixture, what will be the new ratio? 1. 5:2:4	2.0	0.50
	2. 4:3:2		
	3. 2:3:5		
	4. 5:3:4		

		हरे, नीले और लाल रंगों को 5:3:2 के अनुपात में मिश्रित कर 50 लीटर का एक पेन्ट बनाया गया था। इस मिश्रण में यदि 10 लीटर लाल रंग और मिलाया जाये, रंगों का नया अनुपात क्या होगा? 1. 5:2:4 2. 4:3:2 3. 2:3:5		
		4. 5:3:4		
		A1 ₁		
		1		
		A2 2		
		$\stackrel{A3}{\cdot}$ 3		
		3		
		A4 4		
	ctive Question	on .		
6		Price of an item is increased by 20% of its cost price and is then sold at 10% discount for Rs. 2160. What is its cost price? 1. 1680 2. 1700 3. 1980 4. 2000 एक वस्तु की कीमत को उसके क्रथ मूल्य का 20% बढ़ा दिया जाता है और फिर इसें 10% छूट पर 2160 रु में बेचा जाता है। क्रथ मूल्य क्या है? 1. 1680 2. 1700 3. 1980 4. 2000 Al 1 1 1 A2 2 2 2 A3 3	2.0	0.50
		: 3 3 A4 4 :		

		चार पुरुषों के समूहों में पिता-पुत्र की जोडियों की अधिकतम संख्या कितनी है?		
		1. 3		
		2. 2		
		3. 4		
		4. 6		
		A1 :		
		1 A2		
		A2 2 :		
		2 A3 ₃		
		: ³ 3		
		A4 ₄		
		: 4		
Objec	tive Questic	on		
9	705009	Three friends having a ball each stand at the three corners of a triangle. Each of them throws her ball independently at random to one of the others, once. The probability of no two friends throwing balls at each other is	2.0	0.50
		1. 1/4		
		2. 1/8		
		3. 1/3		
		4. 1/2		
		तीन मित्र एक त्रिभुज के तीन कोनों पर खड़े हैं और प्रत्येक के पास एक गेंद है। इनमें से प्रत्येक अपनी गेंद को स्वतंत्र याद्दच्छिक रूप से अन्यों में से किसी एक की ओर एक बार फेंकता है। कोई दो मित्र एक-दूसरे की ओर		
		गेंद नहीं फेंक रहे हैं, इसकी प्रायिकता है		
		1. 1/4		
		2. 1/8		
		3. 1/3		
		4. 1/2		
		A1 1		
		; ¹		
		A2 2		
		· 2		
		A3 ₃		
		3		
		A4 ₄ :		
		4		
Objec	tive Questic	on		

The populations and gross domestic products (GDP) in billion USD of three countries A, B and C in the years 2000, 2010 and 2020 are shown in the two figures below.

The decreasing order of per capita GDP of these countries in the year 2020 is

- 1. A, B, C
- 2. A, C, B
- 3. B, C, A
- 4. C, A, B.

वर्षों 2000, 2010 और 2020 में तीन देशों A, B, और C की जनसँख्या और सकल घरेलू उत्पाद (GDP) को अरब अमेरिकी डॉलर (USD) में दो चित्रों में नीचे दिया गया है।

वर्ष 2020 में इन देशों की प्रति व्यक्ति जीडीपी अवरोही क्रम में है

- 1. A, B, C
- 2. A, C, B
- 3. B, C, A
- 4. C, A, B.
- A1
 - 1
- A2 2
 - 2
- A3 ₃
- 3
- A4 4
- :

4

Objective Ques	tion		
705011	Consider two datasets A and B , each with 3 observations, such that both the datasets have the same median. Which of the following MUST be true?	2.0	0.50
	1. Sum of the observations in $\mathbf{A} = \text{Sum of the observations in } \mathbf{B}$.		
	 Median of the squares of the observations in A = Median of the squares of the observations in B. 		
	3. The median of the combined dataset = median of \mathbf{A} + median of \mathbf{B} .		
	4. The median of the combined dataset = median of \mathbf{A} .		
	दो डाटासेट A और B पर गौर करें जिनमें प्रत्येक में तीन प्रेक्षण हैं। इन दो सेट की माध्यिकाएँ समान हैं। निम्नलिखित में से कौनसा आवश्यक रूप से सत्य होना चाहिए?		
	1. A के प्रेक्षणों का योग = B के प्रेक्षणों का योग		
	2. ${f A}$ के प्रेक्षणों के वर्गों की माध्यिका = ${f B}$ के प्रेक्षणों के वर्गों की माध्यिका		
	3. संयोजित डाटासेट की माध्यिका = ${f A}$ की माध्यिका + ${f B}$ की माध्यिका		
	4. संयोजित डाटासेट की माध्यिका = A की माध्यिका		
	A1 ,		
	$A2 \frac{A}{2}$		
	A3 3 :		
	3 A4 ₄		
Objective Ques	tion		
705012	Three fair cubical dice are thrown, independently. What is the probability that all the dice read the same?	2.0	0.50
	1. 1/6		
	2. 1/36		
	3. 1/216		
	4. 13/216		
	तीन निष्पक्ष घनाकार पासों को स्वतन्त्र तरीके से फेंका जाता है। इसकी कितनी प्रायिकता है कि सभी पांसे एक ही अंक दर्शाएं?		
	1. 1/6		
	2. 1/36		
	3. 1/216		
	4. 13/216		
	A1 1		
ı II		II I	

OL:		: 1 A2 2 : 2 A3 3 : 3 A4 4 : 4		
	705013	Persons A and B have 73 secrets each. On some day, exactly one of them discloses his secret to the other. For each secret A discloses to B in a given day, B discloses two secrets to A on the next day. For each secret B discloses to A in a given day, A discloses four secrets to B on the next day. The one who starts, starts by disclosing exactly one secret. What is the smallest possible number of days it takes for B to disclose all his secrets? 1. 5 2. 6 3. 7 4. 8 व्यक्तियों A और B प्रत्येक के पास 73 गुप्त सूचनाएँ हैं। किसी एक दिन, दोनों में से ठीक एक ही दूसरे को गुप्त सूचना देता है। किसी भी दिन, A द्वारा B को दी गयी प्रत्येक गुप्त सूचना के बदले, B अगले दिन A को दो गुप्त सूचनाये देता है। किसी भी दिन, B द्वारा A को दी गयी प्रत्येक गुप्त सूचना के बदले, A अगले दिन B को चार गुप्त सूचनाएँ देता है। यह कम जो भी आरम्भ करता है, वह ठीक एक गुप्त सूचना देकर करता है। B द्वारा अपनी सभी गुप्त सूचनाएँ देने में लगने वाले सबसे कम दिनों को संभावित संख्या कितनी है? 1. 5 2. 6 3. 7 4. 8 Al 1 1 Al 2 2 2 Al 3 3 3 Al 4 4 4	2.0	0.50
_	ctive Questi	on .		
14	705014		2.0	0.50

		In a buffet, 4 curries A , B , C and D were served. A guest was to eat any one or more than one curry, but not the combinations having C and D together. The number of options available for the guest were 1. 3 2. 7 3. 11 4. 15 एक आहार कक्ष में 4 सब्जियां A , B , C और D रखी गयी थीं। मेहमान को इन सब्जियों में से एक या एक से अधिक सब्जियां को खाना था, बशर्ते C और D एक साथ न हो। मेहमान के लिए उपलब्ध विकल्पों की संख्या थी 1. 3 2. 7 3. 11 4. 15		
		A1 1 : 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		A2 ₂		
		2		
		A3 3		
		3		
		A4 ₄ :		
Obje	ctive Question	on 4		
	705015	Sum of all the internal angles of a regular octagon is degrees.	2.0	0.50
		1. 360		
		2. 1080		
		3. 1260		
		4. 900		
		एक नियमित अष्टकोण के सभी आतंरिक कोणों का योग डिग्री है।		
		1. 360		
		2. 1080		
		3. 1260		
		4. 900		
		$\overset{\mathbf{A1}}{:} \ _{1}$		
		1		

	$\begin{bmatrix} A2 \\ . \end{bmatrix}$	
	2	
	A3 3	
	3	
	$A4_{4}$	
	:	
Objective Quest		
705016	If two trapeziums of the same height, as shown below, can be joined to form a parallelogram of area $2(a+b)$, then the height of the parallelogram will be	2.0 0.50
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	1. 4	
	2. 1	
	3. 1/2	
	4. 2	
	जैसे नीचे चित्र में दिए गए हैं, यदि दो समान ऊं <mark>चाई के</mark> समलं <mark>ब चतुर्</mark> भुजों को जोड़ कर 2(<i>a</i> + <i>b</i>) क्षेत्रफल का एक समान्तर चतुर्भुज बनता हो तो इसकी ऊं <mark>चाई होगी</mark>	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	2. 1	
	3. 1/2	
	4. 2	
	000 44.54 0	
	1	
	A2 2	
	2	
	A3 3	
	3	
	A4 4	
	4	
Objective Quest	ion	

	बीस लीटर बरसाती पानी जिसमें सल्फेट आयनों की सांद्रता 2.0 µmol/L है, इसे 4.0 µmol/L सल्फेट आयनों की सांद्रता के चालीस लीटर पानी में मिलाया जाता है। यदि कुल पानी का 50% फिर वाष्पित कर दिया जाता है, शेष पानी में सल्फेट की सांद्रता कितनी होगी? 1. 3 µmol/L 2. 3.3 µmol/L 4. 6.7 µmol/L Al 1 1 A2 2 2 A3 3 3 A4 4 4		
Objective Questi			=
19 705019	A building has windows of sizes 2, 3 and 4 feet and their respective numbers are inversely proportional to their sizes. If the total number of windows is 26, then how many windows are there of the largest size? 1. 4 2. 6 3. 12 4. 9 एक इमारत में 2, 3, और 4 फुट माप की खिड़िकयों हैं जिनकी संख्या क्रमशः उनके माप की विलोमानुपाती है। यदि इमारत में कुल 26 खिड़िकयों हैं तो सबसे बड़े माप की कितनी खिड़िकयों हैं? 1. 4 2. 6 3. 12 4. 9 Al 1 1 Al 2 4. 9 Al 1 1 Al 2 4. 9 Al 3 3 3 3		.50

	A4 4		
	4		
bjective Que	stion		
705020	Given only one full 3 litre bottle and two empty ones of capacities 1 litre and 4 litres, all ungraduated, the minimum number of pourings required to ensure 1 litre in each bottle is	2.0	0.50
	1. 2		
	2.3		
	3.4		
	4.5		
	केवल एक पूरी भरी 3 लीटर की बोतल और दो चिह्नरहित खाली बोतलें दी गयी हैं जिनकी धारिता 1 लीटर और 4 लीटर है। प्रत्येक बोतल में 1 लीटर प्राप्त करने के लिए उंडेलने की न्यूनतम संख्या है		
	1. 2		
	2. 3		
	3. 4		
	4. 5		
	A1 1		
	A2 2		
	2 A3 ₂		
	A3 3 : 3 : 3 : 3 : 3 : 3 : 3 : 3 : 3 : 3		
	A4 ₄		
ojective Que	stion	2.5	0.00
705021	The value of the integral $I = \int_{0}^{\infty} e^{-x} x \sin(x) dx$ is	3.5	0.88
	$1.\frac{3}{4}$		
	$2, \frac{2}{3}$		
	$3.\frac{1}{2}$		
	$4.\frac{1}{4}$		

choosing J2. If a ball picked at random from one of the jars turns out to be red, the probability that it came from J1 is

किसी बर्तन 11 में बराबर संख्या में लाल, नीली तथा हरी गेदें हैं। जबकि अन्य बर्तन 12 में समान संख्या में ही केवल लाल तथा नीली गेदें हैं। J1 को चुनने की प्रायिकता J2 को चुनने की प्रायिकता से दो गुनी है। यदि दोनों में से एक बर्तन से यादिक्छेक रूप से चुनी गई कोई गेंद लाल निकले, तो इसके J1 से निकले होने की प्रायिकता है

- 1. $\frac{2}{3}$

- A1

		A2 2 : 2		
		A3 3 :		
		3		
		A4 4 :		
		4		
Obje	ective Quest	ion		
23	705023	The locus of the curve Im $\left(\frac{\pi(z-1)-1}{z-1}\right)=1$ in the complex z-plane is a circle centred at (x_0, y_0) and radius R.	3.5	0.88
		The values of (x_0, y_0) and R , respectively, are		
		$1.\left(1,\frac{1}{2}\right)$ and $\frac{1}{2}$		

$$2.\left(1,-\frac{1}{2}\right)$$
 and $\frac{1}{2}$

- 3. (1,1) and 1
- 4. (1,-1) and 1

वक्र $\operatorname{Im}\left(\frac{\pi(z-1)-1}{z-1}\right)=1$ का सम्मिश्र z-समतल में बिन्दु (x_0,y_0) पर केंद्रित वृत्त त्रिज्या R का है। (x_0,y_0) तथा R के मान क्रमशः हैं

$$1.\left(1,\frac{1}{2}\right)$$
 तथा $\frac{1}{2}$

$$2.\left(1,-\frac{1}{2}\right)$$
 तथा $\frac{1}{2}$

- 3. (1,1) तथा 1
- 4. (1,-1) तथा 1

A1 ₁

A2 ₂

A3 ₃

Objective Question

24	705024		3.5	0.88	

The matrix $M = \begin{pmatrix} 3 & -1 & 2 \\ -1 & 2 & 0 \\ 2 & 0 & 1 \end{pmatrix}$ satisfies the equation $M^3 + \alpha M^2 + \beta M + 3 = 0$ if (α, β) are 1.(-2,2)2.(-3,3)3.(-6,6)4.(-4,4)आव्यूह $M = \begin{pmatrix} 3 & -1 & 2 \\ -1 & 2 & 0 \\ 2 & 0 & 1 \end{pmatrix}$ समीकरण $M^3 + \alpha M^2 + \beta M + 3 = 0$ को तब संतुष्ट करेगा यदि (α, β) निम्न हैं 1.(-2,2)2.(-3,3)3.(-6,6)4. (-4,4) A1 A2 ₂ 2 A3 3 4 Objective Question 25 705025 3.5 0.88 A one-dimensional rigid rod is constrained to move inside a sphere such that its two ends are always in contact with the surface. The number of constraints on the Cartesian coordinates of the endpoints of the rod is 1.3 2.5 3.2 4.4 एक-विमीय दृढ़ छड़ एक गोले के अन्दर इस प्रकार से चलने के व्यवरुद्ध है कि इसके दोनों सिरे सदा सतह के साथ संपर्क में रहते हैं। छड़ के अंत्य बिंदुओं के कार्तीय निर्देशाकों के लिए व्यवरोधों की संख्या है 1.3 2.5 3.2

4.4

A1 ₁

A2 ₂

	\parallel 2		II
	$A3_3$		
	$\begin{bmatrix} 3 \\ A4 \end{bmatrix}$		
	A 4 :		
	4		
bjective Que 705026	tion	3.5	0.88
7 03 02 0	The minor axis of Earth's elliptical orbit divides the area within it into two halves. The eccentricity of the orbit is 0.0167. The difference in time spent by Earth in the two halves is closest to	3.3	0.00
	1. 3.9 days		
	2. 4.8 days		
	3. 12.3 days		
	4. 0 days		
	पृथ्वी की दीर्घवृत्तीय कक्षा का लघु अक्ष इसके अन्दर के क्षेत्र को दो अर्थों में बांटता है। कक्षा की उत्केन्द्रता 0.0167 है। पृथ्वी द्वारा दोनों अर्थों में बिताई गई अविधयों में अन्तर निम्न के निकटतम् है		
	1. 3.9 दिनों		
	2. 4.8 दिनों		
	3. 12.3 दिनों		
	4. 0 दिनों		
	1		
	A2 2		
	A3 ₃		
	A4 4		
	4		
ojective Que	rtion		
705027	The Hamiltonian of a two particle system is $H = p_1 p_2 + q_1 q_2$, where q_1 and q_2 are generalized coordinates and p_1 and p_2 are the respective canonical momenta. The Lagrangian of this system is	3.5	0.88
	1. $\dot{q}_1 \dot{q}_2 + q_1 q_2$		
	$2\dot{q}_1\dot{q}_2 + q_1q_2$		
	$3\dot{q}_1\dot{q}_2 - q_1q_2$		
	$4. \dot{q}_1 \dot{q}_2 - q_1 q_2$		

			I	II.
		कोई एक द्वि-कणीय तंत्र का हैमिल्टनी $H=p_1p_2+q_1q_2$, है, जहां q_1 तथा q_2 व्यापकीकृत निर्देशांक हैं तथा p_1 एवं p_2 संगत विहित आघूर्ण हैं। तंत्र का लग्नांजी है		
		$1 \dot{q}_1 \dot{q}_2 + q_1 q_2$		
		$2\dot{q}_1\dot{q}_2 + q_1q_2$		
		$3\dot{q}_1\dot{q}_2 - q_1q_2$		
		$4.\dot{q}_{1}\dot{q}_{2}-q_{1}q_{2}$		
		A1 :		
		1		
		A2 ₂		
		2		
		A3 ₃		
		3		
		A4 4		
		4		
Object	ive Questio	on		
28 7	05028	A uniform circular disc on the xy-plane with its centre at the origin has a moment of inertia I_0 about the x-axis. If the disc is set in rotation about the origin with an angular velocity $\omega = \omega_0(\mathbf{j} + \hat{\mathbf{k}})$, the direction of its angular momentum is along	3.5	0.88
		$1. \ -\hat{\boldsymbol{\imath}} + \ \hat{\boldsymbol{\jmath}} + \hat{\boldsymbol{k}}$		
		$2\hat{\imath} + \hat{\jmath} + 2\hat{k}$		
		3. $\hat{j} + 2\hat{k}$		
		$4. \ \hat{\boldsymbol{\jmath}} + \hat{\boldsymbol{k}}$		
		x_y -समतल पर मूल बिन्दु पर केन्द्रित किसी एकसमान वृत्तीय तश्तरी का x -अक्ष के इर्द-गिर्द जड़त्व आघूर्ण I_{\circ} है। यदि तश्तरी का मूल बिंदु के इर्द-गिर्द कोणीय वेग $\omega = \omega_0(\hat{\jmath} + \hat{k})$, से घूर्णन कराया जाता है तो कोणीय संवेग निम्न दिशा में होगा		
		$1. \ -\hat{\boldsymbol{\imath}} + \ \hat{\boldsymbol{\jmath}} + \hat{\boldsymbol{k}}$		
		$2\hat{\imath} + \hat{\jmath} + 2\hat{k}$		

3. $\hat{j} + 2\hat{k}$

 $4. \ \hat{\pmb{\jmath}} + \widehat{\pmb{k}}$

A1 :

A2 2 : 2

A3 3 : 3

A4 :

A long cylindrical wire of radius R and conductivity σ , lying along the z-axis, carries a uniform axial current density I. The Poynting vector on the surface of the wire is (in the following $\hat{\rho}$ and $\hat{\varphi}$ denote the unit vectors along the radial and azimuthal directions respectively)

1.
$$\frac{I^2R}{2\sigma}\widehat{\boldsymbol{\rho}}$$

$$2. -\frac{I^2R}{2\sigma} \widehat{\boldsymbol{\rho}}$$

3.
$$-\frac{I^2\pi R}{4\sigma}\widehat{\boldsymbol{\varphi}}$$

4.
$$\frac{I^2\pi R}{4\sigma}\widehat{\boldsymbol{\varphi}}$$

z-अक्ष की दिशा में, त्रिज्या R तथा चालकता σ वाले लम्बे बेलनी तार में से होकर एकसमान अक्षीय धारा घनत्व I का बहना होता है। तार की सतह पर प्वाइन्टिंग सदिश हैं (निम्न में ρ तथा φ क्रमश: त्रिज्य तथा दिगंशीय दिशाओं में एकक सदिश हैं)

- 1. $\frac{I^2R}{2\sigma}\widehat{\boldsymbol{\rho}}$
- $2. -\frac{I^2R}{2\sigma} \widehat{\boldsymbol{\rho}}$
- 3. $-\frac{l^2\pi R}{4\sigma}\widehat{\boldsymbol{\varphi}}$
- 4. $\frac{l^2\pi R}{4\sigma}\widehat{\boldsymbol{\varphi}}$
- A1
- A2
 - 2
- A3
- 3
- A4 :

Objective Question

31 705031

A small circular wire loop of radius a and number of turns N, is oriented with its axis parallel to the direction of the local magnetic field B. A resistance R and a galvanometer are connected to the coil, as shown in the figure.

3.5 0.88

When the coil is flipped (i.e., the direction of its axis is reversed) the galvanometer measures the total charge Q that flows through it. If the induced emf through the coil $E_F = IR$, then Q is

- $1. \pi N a^2 B/(2R)$
- $2.\ \pi N\,a^2B/R$
- $3. \sqrt{2} \pi N a^2 B/R$
- $4.\ 2\pi N\ a^2B/R$

त्रिज्या a तथा N फेरों वाले एक छोटे तार-पाश का अक्ष स्थानीय चुबंकीय क्षेत्र B की दिशा के समांतर अभिविन्यस्त है। कुडंली से प्रतिरोध R तथा गैल्वनोमीटर चित्रानुसार जुड़े हैं

जब कुंडली को फ़ेरा जाता है (अर्थात अक्ष की दिशा उलट देते हैं), तो गैल्वनोमीटर अपने में से गुजरने वाले कुल आवेश Q को मापता है। यदि कुंडली में प्रेरित $\operatorname{emf} E_F = IR$ हो तो Q है

- 1. $\pi N a^2 B/(2R)$
- $2 \cdot \pi N a^2 B/R$
- $3.\sqrt{2}\pi N a^2 B/R$
- $4.2\pi N a^2 B/R$
- A1 1
- : 2
- A3 2
- 3
- A4 _
 - 1

Objective Question

32 705032

The electric potential on the boundary of a spherical cavity of radius R, as a function of the polar angle θ , is $V_0 \cos^2 \frac{\theta}{2}$. The charge density inside the cavity is zero everywhere. The potential at a distance R/2 from the centre of the sphere is

$$1.\,\frac{1}{2}V_0\left(1+\frac{1}{2}\cos\theta\right)$$

- 2. $\frac{1}{2}V_0\cos\theta$
- $3. \ \frac{1}{2}V_0\left(1+\frac{1}{2}\sin\theta\right)$
- 4. $\frac{1}{2}V_0\sin\theta$

त्रिज्या R की गोलाकार गुहिका की सीमा पर, धुवीय कोण θ के फलन के रूप में वैद्युत विभव $V_0\cos^2\frac{\theta}{2}$ है। गुहिका के अन्दर आवेश घनत्व सर्वत्र शून्य है। गोले के केन्द्र से R/2 दूरी पर विभव है

$$1.\,\frac{1}{2}V_0\left(1+\frac{1}{2}\cos\theta\right)$$

$$2. \frac{1}{2}V_0\cos\theta$$

$$3. \frac{1}{2}V_0\left(1+\frac{1}{2}\sin\theta\right)$$

4.
$$\frac{1}{2}V_0\sin\theta$$

A1 ₁

A2 2

2

A3

3

A4 4

Objective Question

705033

A charged particle moves uniformly on the xy-plane along a circle of radius a centred at the origin. A detector is put at a distance d on the x-axis to detect the electromagnetic wave radiated by the particle along the xdirection. If $d \gg a$, the wave received by the detector is

- 1. unpolarised
- 2. circularly polarized with the plane of polarization being the yz-plane
- 3. linearly polarized along the y-direction
- 4. linearly polarized along the z-direction

कोई आवेशित कण xy-समतल में मूल बिंदु पर केंद्रित वृत्तीय पथ में एकसमान रूप से गतिमान है। कण द्वारा x-दिशा में विकिरित विद्युत चुम्बकीय तरंगों का पता लगाने के लिए x-अक्ष पर दूरी a पर एक संसूचक रखा जाता है। यदि a ≫a, संसूचक द्वारा गृहीत तरंग

- 1. अध्रवीकृत
- 2. yz-समतल में ध्रुवण समतल के साथ वृत्त ध्रुवित
- 3. y-दिशा में रैखिकत: ध्रुवित
- 4. z-दिशा में रैखिकत: ध्रवित

A3

3.5 0.88

	3		
	A4 ₄		
ctive Ques			
705034		3.5	0.88
	The Hamiltonian of a two-dimensional quantum harmonic oscillator is $H = \frac{p_x^2}{2m} + \frac{p_y^2}{2m} + \frac{1}{2}m\omega^2 x^2 + 2m\omega^2 y^2$ where		
	m and ω are positive constants. The degeneracy of the energy level $\frac{27}{2}\hbar\omega$ is		
	1. 14		
	2. 13		
	3. 8		
	4. 7		
	किसी द्वि-विमीय क्वांटम सरल आवर्ती दोलक का हैमिल्टनी है $H=\frac{p_x^2}{2m}+\frac{p_y^2}{2m}+\frac{1}{2}m\omega^2x^2+2m\omega^2y^2$ जहां m तथा ω धनात्मक नियतांक		
	हैं। उर्जा-स्तर $\frac{27}{2}\hbar\omega$ की अपभ्रष्टता है		
	1.14		
	2. 13		
	3. 8		
	4.7		
	A1 1		
	A2 2		
	2 A3 3 A4 4 4		
ctive Ques	tion		
705035	The value of $\langle L_x^2 \rangle$ in the state $ \varphi \rangle$ for which $L^2 \varphi \rangle = 6\hbar^2 \varphi \rangle$ and $L_z \varphi \rangle = 2\hbar \varphi \rangle$, is 1. 0	3.5	0.88
	2. 4ħ ²		
	3. 2ħ ²		
	4. \hbar^2		

अवस्था $| \varphi \rangle$ में, जिसके लिए $L^2 | \varphi \rangle = 6 \hbar^2 | \varphi \rangle$ तथा $L_z | \varphi \rangle = 2 \hbar | \varphi \rangle$, है, $\langle L_x^2 \rangle$ का मान है 1.0 2. 4ħ² 3. 2ħ² 4. \hbar^2 A1 ₁ Objective Question 36 705036 3.5 0.88 A particle in one dimension is in an infinite potential well between $\frac{-L}{2} \le x \le \frac{L}{2}$. For a perturbation $\epsilon \cos\left(\frac{\pi x}{L}\right)$, where ϵ is a small constant, the change in the energy of the ground state, to first order in ϵ , is $1.\frac{5\epsilon}{\pi}$ $2. \frac{10\epsilon}{3\pi}$ $4. \frac{4\epsilon}{\pi}$ एक विमा में कोई कण $\frac{-L}{2} \le x \le \frac{L}{2}$ के बीच के अनंत विभव कूप में हैं। क्षोभ $\epsilon \cos\left(\frac{\pi x}{L}\right)$ के लिए, जहां ϵ एक छोटा नियतांक है. ϵ में प्रथम कोटि (order) तक, निम्नतम अवस्था की ऊर्जा में परिवर्तन है 1. $\frac{5\epsilon}{\pi}$ 4. $\frac{4\epsilon}{\pi}$ A3 ₃

मुख्य क्वांटम अंक n=2 तथा कक्षीय क्वांटम अंक $\ell=0$ वाले हाइड्रोजन परमाणु का त्रिज्य तरंग फलन है

 $R_{20} = N\left(1-rac{r}{2a}
ight)e^{-rac{r}{2a}}$, जहां N प्रसामान्यीकण नियतांक है। इलेक्ट्रॉन के r एवं r+dr के बीच होने के लिए प्रायिकता घनत्व

P(r) का सर्वश्रेष्ठ व्यवस्थात्मक निरूपण है

A2 :

A3 a

: 3

A4 :

Objective Question

38 705038

Two energy levels, 0 (non-degenerate) and ϵ (doubly degenerate), are available to N non-interacting distinguishable particles. If U is the total energy of the system, for large values of N the entropy of the system

is
$$k_B \left[N \ln N - \left(N - \frac{U}{\epsilon} \right) \ln \left(N - \frac{U}{\epsilon} \right) + X \right]$$
. In this expression, X is

$$1. -\frac{u}{\epsilon} \ln \frac{u}{2\epsilon}$$

$$2. - \frac{u}{\epsilon} \ln \frac{2u}{\epsilon}$$

$$3. -\frac{2U}{\epsilon} \ln \frac{2U}{\epsilon}$$

$$4. -\frac{v}{\epsilon} \ln \frac{v}{\epsilon}$$

3.5 0.88

N अन्योन्यक्रिया विहीन विभेद्य कणों के लिए दो ऊर्जा-स्तर, 0 (अनपभ्रष्ट) तथा ϵ (द्विधा-अपभ्रष्ट), उपलब्ध हैं। यदि समूह की कुल ऊर्जा U हो तो N के बड़े मानों के लिए समूह की एन्ट्रॉपी $k_B \left[N \ln N - \left(N - \frac{U}{\epsilon} \right) \ln \left(N - \frac{U}{\epsilon} \right) + X \right]$ है। इस अभिव्यक्ति में, X है

- $1. \frac{u}{\epsilon} \ln \frac{u}{2\epsilon}$
- $2. -\frac{v}{\epsilon} \ln \frac{2v}{\epsilon}$
- 3. $-\frac{2U}{\epsilon} \ln \frac{2U}{\epsilon}$
- $4. \frac{u}{\epsilon} \ln \frac{u}{\epsilon}$
- A1 1
- A2 2
 - 2
- A3 :
- 3 A4 ₄
- : 4

Objective Question

39 705039

The single particle energies of a system of N non-interacting fermions of spin s (at T=0) are $E_n=n^2E_0$, $n=1,2,3\cdots$. The ratio $\epsilon_F\left(\frac{3}{2}\right)/\epsilon_F\left(\frac{1}{2}\right)$ of the Fermi energies for fermions of spin 3/2 and spin 1/2, is

- 1. 1/2
- 2. 1/4
- 3.2
- 4. 1

प्रचक्रण $_{5}$ वाले $_{N}$ अन्योन्यक्रियाहीन फर्मिऑन समूह की एक-कण ऊर्जियें ($_{T=0}$ पर) $_{E_{n}=n^{2}E_{0}}$, $_{n=1,2,3}$ \cdots हैं। प्रचक्रण $_{3/2}$ तथा प्रचक्रण $_{5/2}$ के फर्मिऑन की फर्मी ऊर्जिओं का अनुपात $_{F}\left(\frac{3}{2}\right)/\epsilon_{F}\left(\frac{1}{2}\right)$ है

- 1. 1/2
- 2. 1/4
- 3.2
- 4.1
- A1
 - 1
- A2 2
 - 2
- A3 3
- : 3

3.5 0.88

	N अन्योन्यक्रियाहीन इलेक्ट्रॉन समूह के हर इलेक्ट्रॉन को उपत	तुब्ध ऊर्जा $E_n=nE_0,n=0,1,2,\cdots$. हैं। एक ऐसा चुम्बकीय क्षेत्र इस समूह	
	पर लगाया जाता है जो ऊजी स्पक्ट्रम का प्रभावित नहीं करता । ऊर्जा अवस्था में परिवर्तन है	लेकिन इलेक्ट्रॉन प्रचक्रण का पूर्णत: ध्रुवित कर देता है। समूह की निम्नतमें	
	$1.\frac{1}{2}N^2E_0$		
	2. $N^2 E_0$		
	$3. \frac{1}{8} N^2 E_0$		
	$3. \frac{1}{8}N^{2}E_{0}$ $4. \frac{1}{4}N^{2}E_{0}$		
	7. 4 ²⁴ L ₀		
	A1 :		
	1		
	A2 2 : 2		
	A3 3		
	3		
	A4 4 :		
ective Ques	4		
	e of the motor is the ratio between the work done	by the motor and the energy delivered to it. If $M=2.00\pm0.02$ and $t=300\pm15$ s, then the fractional error $ \delta e/e $ in the	
	1. 0.05		
	2. 0.09		
	3, 0.12		
	4. 0.15		
	लगाई वोल्टता, I धारा तथा t मोटर के चलने की अवधि है। मो	मोटर का उपयोग करते हैं। मोटर को दी गई वैद्युत ऊर्जा VIt है, जहां V Iटर की दक्षता e, मोटर द्वारा सम्पन्न कार्य तथा उसे दी गई ऊर्जा का =10.0±0.1 V, I=2.00±0.02 A तथा t=300±15 s है, तो मोटर की	
	1. 0.05		
	2. 0.09		
	3. 0.12		
	4. 0.15		
	A1 1 :		
	1 A2 2		
	: 2		
	A3 3		

3.5

0.88

Objective Question

43 705043

For the given logic circuit, the input waveforms A, B, C and D are shown as a function of time.

To obtain the output Y as shown in the figure, the logic gate X should be

- 1. an AND gate
- 2. an OR gate
- 3. a NAND gate
- 4. a NOR gate

दिये गये तर्क-परिपथ में, निवेशित तरंग रूप A, B, C तथा D समय के फलन के रूप में दिखाये गए हैं।

चित्र में प्रदर्शित निर्गत Y को पाने के लिए, तर्क-द्वार (logic gate) X को होना चाहिए

- 1. AND द्वार
- 2. OR द्वार
- 3. NAND द्वार
- 4. NOR द्वार
- A1
 - 1
- A2 2
 - 2
- A3 ₃
- 3

Objective Question 44 705044 3.5 0.88 A circuit needs to be designed to measure the resistance R of a cylinder PQ to the best possible accuracy, using an ammeter A, a voltmeter V, a battery E and a current source I_s (all assumed to be ideal). The value of R is known to be approximately 10 Ω , and the resistance W of each of the connecting wires is close to 10 Ω . If the current from the current source and voltage from the battery are known exactly, which of the following circuits provides the most accurate measurement of R? 1. (b) 2. (a) 3. (d) 4. (c)

In the circuit below, there is a voltage drop of 0.7 V across the diode D in forward bias, while no current flows through it in reverse bias.

If V_{in} is a sinusoidal signal of frequency 50 Hz with an RMS value of 1 V, the maximum current that flows through the diode is closest to

- 1. 1 A
- 2. 0.14 A
- 3.0A
- 4. 0.07 A

निम्न परिपथ में, अग्रदिशिक बायस के साथ, डायोड D पर $0.7~\mathrm{V}$ का वोल्टता पात है, जबिक विपरीत बायस होने पर इसमें से कोई धारा नहीं बहती।

यदि V_{in} एक ज्यावक्रीय सिग्नल है जिसकी आवृत्ति 50 Hz तथा RMS मान 1 V है, तो डायोड में से बहने वाली अधिकतम धारा निम्न के निकटतम है

- 1.1A
- 2. 0.14 A
- 3.0A
- 4. 0.07 A

A1 ,

. .

 $^{\mathrm{A2}}_{\cdot}$ 2

2

A3 3

3

A4 2

Objective Question

A random variable Y obeys a normal distribution

$$P(Y) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(Y-\mu)^2}{2\sigma^2}\right]$$

The mean value of e^{y} is

- 1. $e^{\mu + \frac{\sigma^2}{2}}$
- 2. $e^{\mu-\sigma^2}$
- 3. $e^{\mu+\sigma^2}$
- 4. $e^{\mu-\frac{\sigma^2}{2}}$

कोई यादिन्छक चर Y निम्न प्रसामान्य बंटन $P(Y) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(Y-\mu)^2}{2\sigma^2}\right]$ का पालन करता है। e^Y का माध्य मान है

- 1. $e^{\mu + \frac{\sigma^2}{2}}$
- ². $e^{\mu-\sigma^2}$
- 3. $e^{\mu+\sigma^2}$
- 4. $e^{\mu-\frac{\sigma^2}{2}}$
- A1 :
 - 1
- A2 2
 - 2
- A3
- 3
- A4 :

Objective Question
47 | 705047 |

The bisection method is used to find a zero x_0 of the polynomial $f(x) = x^3 - x^2 - 1$. Since f(1) = -1, while f(2) = 3, the values a = 1 and b = 2 are chosen as the boundaries of the interval in which the x_0 lies. If the bisection method is iterated three times, the resulting value of x_0 is

5.0

1.25

- 1. $\frac{15}{8}$
- $2.\frac{13}{9}$
- 3. $\frac{11}{8}$
- $4.\frac{9}{8}$

		बहुपद $f(x)=x^2-x^2-1$ का शून्य x_0 निकालने के लिए द्विभाजन पद्धित का उपयोग करते हैं। क्योंकि $f(2)=3$ तथा $f(1)=-1$ है, जिस अंतराल में x_0 है, उसकी परिसीमाओं को $a=1$ तथा $b=2$ चुन लेते हैं। यदि तीन बार द्विभाजन पद्धित को पुनरावृत्त करते हैं, तो x_0 का परिणामी मान है $1. \frac{15}{8}$ $2. \frac{13}{8}$ $3. \frac{11}{8}$ $4. \frac{9}{8}$ $^{A1} 1$ $^{A2} 2$ 2 2 3 3 3 3 44 4		
	ctive Questio	on .		
48		The value of the integral $\int_{-\infty}^{\infty} dx 2^{-\frac{ x }{\pi}} \delta(\sin x)$ where $\delta(x)$ is the Dirac delta function, is 1. 3 2. 0 3. 5 4. 1 White the proof of the integral $\int_{-\infty}^{\infty} dx 2^{-\frac{ x }{\pi}} \delta(\sin x)$ of the Hirt, $\log \delta(x)$ [Setton-Section for $\delta(x)$]. Setton-Section for $\delta(x)$ is the Dirac delta function, is 1. 3 2. 0 3. 5 4. 1 All 1 All 2 2 2 All 3 3 A4 4 4	5.0	1.25

Objective Question

49 705049

If the Bessel function of integer order n is defined as $J_n(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(n+k)!} \left(\frac{x}{2}\right)^{2k+n}$ then $\frac{d}{dx} \left[x^{-n} J_n(x)\right]$ is

1.25

5.0

1.25

- $1. x^{-(n+1)} J_{n+1}(x)$
- $2. x^{-(n+1)} J_{n-1}(x)$
- $3. -x^{-n}J_{n-1}(x)$
- $4. x^{-n} J_{n+1}(x)$

यदि पूर्णांक कोटि (integer order) n के बेसल फलन को निम्नवत परिभाषित करें $J_n(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(n+k)!} \left(\frac{x}{2}\right)^{2k+n}$ तब $\frac{d}{dx} \left[x^{-n} J_n(x)\right]$ है

- $1. x^{-(n+1)} J_{n+1}(x)$
- $2. -x^{-(n+1)}J_{n-1}(x)$
- $3. -x^{-n}J_{n-1}(x)$
- $4. x^{-n} J_{n+1}(x)$
- A1
 - 1
- A2 :
 - 2
- A3 3
 - 3
- A4 . 4

Objective Question

50 705050

The matrix $R_{\widehat{\mathbf{n}}}(\theta)$ represents a rotation by an angle θ about the axis $\widehat{\mathbf{n}}$. The value of θ and $\widehat{\mathbf{n}}$ corresponding

to the matrix $\begin{pmatrix} -1 & 0 & 0 \\ 0 & -\frac{1}{3} & \frac{2\sqrt{2}}{3} \\ 0 & \frac{2\sqrt{2}}{3} & \frac{1}{3} \end{pmatrix}$, respectively, are

- 1. $\pi/2$ and $\left(0, -\sqrt{\frac{2}{3}}, \frac{1}{\sqrt{3}}\right)$
- 2. $\pi/2$ and $\left(0, \frac{1}{\sqrt{3}}, \sqrt{\frac{2}{3}}\right)$
- 3. π and $\left(0, -\sqrt{\frac{2}{3}}, \frac{1}{\sqrt{3}}\right)$
- 4. π and $\left(0, \frac{1}{\sqrt{3}}, \sqrt{\frac{2}{3}}\right)$

हैं

- 1. $\pi/2$ तथा $\left(0, -\sqrt{\frac{2}{3}}, \frac{1}{\sqrt{3}}\right)$
- 2. $\pi/2$ तथा $\left(0, \frac{1}{\sqrt{3}}, \sqrt{\frac{2}{3}}\right)$
- $3. π तथा <math>\left(0, -\sqrt{\frac{2}{3}}, \frac{1}{\sqrt{3}}\right)$
- 4. π तथा $\left(0, \frac{1}{\sqrt{3}}, \sqrt{\frac{2}{3}}\right)$
- A1 . 1
- A2 ;
- . . .
- A3 3 : 3
- A4 4

Objective Question

51 705051

A system of two identical masses connected by identical springs, as shown in the figure, oscillates along the vertical direction.

5.0

1.25

The ratio of the frequencies of the normal modes is

1.
$$\sqrt{3-\sqrt{5}}$$
 : $\sqrt{3+\sqrt{5}}$

2.
$$3 - \sqrt{5}$$
 : $3 + \sqrt{5}$

3.
$$\sqrt{5-\sqrt{3}}$$
 : $\sqrt{5+\sqrt{3}}$

4.
$$5 - \sqrt{3}$$
 : $5 + \sqrt{3}$

प्रसामान्य विधाओं (modes) की आवृत्तियों का अनुपात है

$$1.\sqrt{3-\sqrt{5}}$$
 : $\sqrt{3+\sqrt{5}}$

$$2 \cdot 3 - \sqrt{5}$$
 : $3 + \sqrt{5}$

3.
$$\sqrt{5-\sqrt{3}}$$
 : $\sqrt{5+\sqrt{3}}$

$$4.5 - \sqrt{3}$$
 : $5 + \sqrt{3}$

A1 . 1

A2 2

A3 3

A4

Δ

Objective Question

52 705052

For the transformation $x \to X = \frac{\alpha p}{x}$, $p \to P = \beta x^2$ between conjugate pairs of a coordinate and its momentum, to be canonical, the constants α and β must satisfy

$$1.\ 1 + \frac{1}{2}\alpha\beta = 0$$

$$2.1 - \frac{1}{2}\alpha\beta = 0$$

$$3.1 + 2\alpha\beta = 0$$

$$4. \ 1 - 2\alpha\beta = 0$$

निर्देशांक तथा इसके संवेग के संयुग्मी युग्मों के बीच रूपांतरण $x \to X = \frac{\alpha p}{x}, \ p \to P = \beta x^2$ के विहित होने के लिए, नियताकों α तथा β को निम्न को संतुष्ट करना ही होगा

$$1.\ 1 + \frac{1}{2}\alpha\beta = 0$$

$$2.1 - \frac{1}{2}\alpha\beta = 0$$

$$3.1 + 2\alpha\beta = 0$$

$$4. 1 - 2\alpha\beta = 0$$

A1 1 1 A2 2 2 A3 3 3 A4 4 4 4 The charge density and current of an infinitely long perfectly conducting wire of radius a , which lies along the 2-axis, as measured by a static observer are zero and a constant f , respectively. The charge density measured by an observer, who moves at a speed $v=\beta c$ parallel to the wire along the direction of the current, is 1. $-\frac{B}{na^2c\sqrt{1-\beta^2}}$ 2. $-\frac{B\sqrt{1-\beta^2}}{na^2c}$ 3. $\frac{B}{na^2c\sqrt{1-\beta^2}}$ 4. $\frac{B\sqrt{1-\beta^2}}{na^2c}$ 2. $\frac{B}{na^2c\sqrt{1-\beta^2}}$ 4. $\frac{B}{na^2c\sqrt{1-\beta^2}}$ 2. $-\frac{B}{na^2c\sqrt{1-\beta^2}}$ 3. $\frac{B}{na^2c\sqrt{1-\beta^2}}$ 3. $\frac{B}{na^2c\sqrt{1-\beta^2}}$ 4. $\frac{B}{na^2c\sqrt{1-\beta^2}}$ 3. $\frac{B}{na^2c\sqrt{1-\beta^2}}$ 4. $\frac{B\sqrt{1-\beta^2}}{na^2c}$ 5. $\frac{B}{na^2c\sqrt{1-\beta^2}}$ 6. $\frac{B}{na^2c\sqrt{1-\beta^2}}$ 7. $\frac{B}{na^2c}$ 7. $\frac{B}{na^2c}$ 8. $\frac{B}{na^2c\sqrt{1-\beta^2}}$ 9. $\frac{B}{na^2c\sqrt{1-\beta^2}}$ 1. $\frac{B}{na^2c\sqrt{1-\beta^2}}$ 1. $\frac{B}{na^2c\sqrt{1-\beta^2}}$ 1. $\frac{B}{na^2c\sqrt{1-\beta^2}}$ 2. $\frac{B}{na^2c\sqrt{1-\beta^2}}$ 3. $\frac{B}{na^2c\sqrt{1-\beta^2}}$ 4. $\frac{B}{na^2c\sqrt{1-\beta^2}}$ 5. $\frac{B}{na^2c\sqrt{1-\beta^2}}$ 6. $\frac{B}{na^2c\sqrt{1-\beta^2}}$ 7. $\frac{B}{na^2c\sqrt{1-\beta^2}}$ 8. $\frac{B}{na^2c\sqrt{1-\beta^2}}$ 8. $\frac{B}{na^2c\sqrt{1-\beta^2}}$ 9. $\frac{B}{na^2c1-$	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
The charge density and current of an infinitely long perfectly conducting wire of radius a , which lies along the z -axis, as measured by a static observer are zero and a constant I , respectively. The charge density measured by an observer, who moves at a speed $v=\beta c$ parallel to the wire along the direction of the current, is $1 \frac{i\beta}{\pi a^2c\sqrt{1-\beta^2}}$ $2 \frac{i\beta\sqrt{1-\beta^2}}{\pi a^2c}$ $3. \frac{i\beta}{\pi a^2c\sqrt{1-\beta^2}}$ $4. \frac{i\beta\sqrt{1-\beta^2}}{\pi a^2c}$ $4. \frac{i\beta\sqrt{1-\beta^2}}{\pi a^2c\sqrt{1-\beta^2}}$ $2 \frac{i\beta\sqrt{1-\beta^2}}{\pi a^2c\sqrt{1-\beta^2}}$ $2 \frac{i\beta\sqrt{1-\beta^2}}{\pi a^2c\sqrt{1-\beta^2}}$ $2 \frac{i\beta\sqrt{1-\beta^2}}{\pi a^2c}$ $3. \frac{i\beta}{\pi a^2c\sqrt{1-\beta^2}}$ $4. \frac{i\beta\sqrt{1-\beta^2}}{\pi a^2c}$ $3. \frac{i\beta}{\pi a^2c\sqrt{1-\beta^2}}$ $4. \frac{i\beta\sqrt{1-\beta^2}}{\pi a^2c}$ $4. \frac{i\beta\sqrt{1-\beta^2}}{\pi a^2c}$ $4. \frac{i\beta\sqrt{1-\beta^2}}{\pi a^2c}$	The charge density and current of an infinitely long perfectly conducting wire of radius a , which lies along the z-axis, as measured by a static observer are zero and a constant t , respectively. The charge density measured by an observer, who moves at a speed $v=\beta c$ parallel to the wire along the direction of the current, is 1. $-\frac{1\beta}{\pi a^2 c \sqrt{1-\beta^2}}$ 2. $-\frac{1\beta \sqrt{1-\beta^2}}{\pi a^2 c}$ 3. $\frac{1\beta}{\pi a^2}$ 4. $\frac{1\beta \sqrt{1-\beta^2}}{\pi a^2 c}$ 4. $\frac{1\beta \sqrt{1-\beta^2}}{\pi a^2 c}$ 2. $-\frac{1\beta}{\pi a^2 c \sqrt{1-\beta^2}}$ 3. $\frac{1\beta}{\pi a^2 c \sqrt{1-\beta^2}}$ 4. $\frac{1\beta \sqrt{1-\beta^2}}{\pi a^2 c}$ 3. $\frac{1\beta}{\pi a^2 c \sqrt{1-\beta^2}}$ 4. $\frac{1\beta \sqrt{1-\beta^2}}{\pi a^2 c}$ 3. $\frac{1\beta}{\pi a^2 c \sqrt{1-\beta^2}}$ 4. $\frac{1\beta \sqrt{1-\beta^2}}{\pi a^2 c}$ 3. $\frac{1\beta}{\pi a^2 c \sqrt{1-\beta^2}}$ 4. $\frac{1\beta \sqrt{1-\beta^2}}{\pi a^2 c}$ 4. $\frac{1\beta \sqrt{1-\beta^2}}{\pi a^2 c}$ 5. $\frac{1\beta}{\pi a^2 c \sqrt{1-\beta^2}}$ 6. $\frac{1\beta}{\pi a^2 c \sqrt{1-\beta^2}}$ 7. $\frac{1\beta}{\pi a^2 c \sqrt{1-\beta^2}}$ 8. $\frac{1\beta}{\pi a^2 c \sqrt{1-\beta^2}}$ 9. $\frac{1\beta}{\pi a^2 c \sqrt{1-\beta^2}}$ 9. $\frac{1\beta}{\pi a^2 c \sqrt{1-\beta^2}}$ 1. $\frac{1\beta}{\pi a^2 c \sqrt{1-\beta^2}}$ 1. $\frac{1\beta}{\pi a^2 c \sqrt{1-\beta^2}}$ 2. $\frac{1\beta}{\pi a^2 c \sqrt{1-\beta^2}}$ 3. $\frac{1\beta}{\pi a^2 c \sqrt{1-\beta^2}}$ 4. $\frac{1\beta}{\pi a^2 c \sqrt{1-\beta^2}}$ 3. $\frac{1\beta}{\pi a^2 c \sqrt{1-\beta^2}}$
	5.0 1.25

An infinitely long solenoid of radius r_0 centred at origin which produces a time-dependent magnetic field $\frac{\alpha}{\pi r_0^2} \cos \omega t$ (where α and ω are constants) is placed along the z-axis. A circular loop of radius R, which carries unit line charge density is placed, initially at rest, on the xy-plane with its centre on the z-axis. If $R > r_0$, the magnitude of the angular momentum of the loop is

- 1. $\alpha R (1 \cos \omega t)$
- 2. $\alpha R \sin \omega t$
- $3. \, \frac{1}{2} \alpha R \, (1 \cos 2\omega t)$
- $4. \frac{1}{2} \alpha R \sin 2\omega t$

 $_Z$ -अक्ष के संग-संग, $_{r_0}$ त्रिज्या की एक अनंतत: लंबी परिनालिका मूलबिन्दु पर केन्द्रित है, जो कालाश्रित चुम्बकीय क्षेत्र $\frac{\alpha}{\pi\,r_0^2}\cos\omega t$ उत्पन्न कर रहा है (जहां $_{\alpha}$ तथा $_{\omega}$ नियतांक है)। एकक रेखा आवेश घनत्व तथा $_R$ त्रिज्या वाले वृत्ताकार पाश के केन्द्र को $_Z$ -अक्ष पर शुरु में स्थितावस्था में रखते हुए $_{xy}$ -समतल पर रखा जाता है। यदि $_R$ > $_{r_0}$ है, तो पाश के कोणीय संवेग का परिमाण है

- 1. $\alpha R (1 \cos \omega t)$
- 2. $\alpha R \sin \omega t$
- $3. \, \frac{1}{2} \alpha R \, (1 \cos 2\omega t)$
- $4. \ \frac{1}{2} \alpha R \sin 2\omega t$
- A1
 - .
- A2 :
 - 2
- A3
- 3
- A4 :

Objective Question

55 705055

The electric and magnetic fields at a point due to two independent sources are $\mathbf{E}_1 = E(\alpha \hat{\imath} + \beta \hat{\jmath})$, $\mathbf{B}_1 = B\hat{k}$ and $\mathbf{E}_2 = E\hat{\imath}$, $\mathbf{B}_2 = -2B\hat{k}$, where α , β , E and B are constants. If the Poynting vector is along $\hat{\imath} + \hat{\jmath}$, then

- $1. \alpha + \beta + 1 = 0$
- 2. $\alpha + \beta 1 = 0$
- $3. \alpha + \beta + 2 = 0$
- 4. $\alpha + \beta 2 = 0$

किसी बिंदु पर दो स्वतंत्र स्रोतों के कारण वैद्युत तथा चुम्बकीय क्षेत्र ${f E}_1=E(lpha\hat{m \iota}+eta\hat{m \jmath}),~{f B}_1=B\widehat{m k}$ तथा ${f E}_2=E\hat{m \iota},~{f B}_2=-2B\hat{m k},~$ हैं, जहां ${m lpha},{m eta},E$ तथा ${m B}$ नियतांक हैं। यदि प्वांइटिंग सदिश ${m \ell}+{m j},~$ की दिशा में है, तब 1. $\alpha + \beta + 1 = 0$ 2. $\alpha + \beta - 1 = 0$ 3. $\alpha + \beta + 2 = 0$ 4. $\alpha + \beta - 2 = 0$ A2 2 A3 3 A4 4 5.0 1.25 The angular width θ of a distant star can be measured by the Michelson radiofrequency stellar interferometer

Objective Question

705056

(as shown in the figure below).

The distance h between the reflectors M_1 and M_2 (assumed to be much larger than the aperture of the lens), is increased till the interference fringes (at P₀, P on the plane as shown) vanish for the first time. This happens for h=3 m for a star which emits radiowaves of wavelength 2.7 cm. The measured value of θ (in degrees) is closest to

- 1.0.63
- 2.0.32
- 3.0.52
- 4. 0.26

किसी दूरस्थ तारे की कोणीय चौड़ाई 🛭 (निम्न चित्र दिखाए गए) माइकेल्सन रेडियो आवृत्ति तारकीय व्यतिकरणमापी द्वारा मापी जा सकती है

परावर्तकों M_1 तथा M_2 के बीच की दूरी h (मानें कि यह लेंस के द्वारक से बहुत बड़ी है), तब तक बढ़ाई जाती रहती है, जब तक (समतल में P_0 तथा P पर, जैसा चित्र में प्रदर्शित है) व्यतिक्रम फ्रिंज पहली बार विलुप्त हो। यह $2.7~{\rm cm}$ की रेडियो तरंग-दैर्ध्य उत्सर्जित करने वाले तारे के लिए $h=3~{\rm m}$ पर होता है । θ का मापित मान (डिग्री में) निम्न के निकटतम है

- 1.0.63
- 2.0.32
- 3.0.52
- 4.0.26
- A1 ₁
- A2
 - 2
- $A3_3$
 - 3
- A4

Objective Question

57 705057

Two operators A and B satisfy the commutation relations $[H,A] = -\hbar\omega B$ and $[H,B] = \hbar\omega A$, where ω is a constant and H is the Hamiltonian of the system. The expectation value $\langle A \rangle_{\psi}(t) = \langle \psi | A | \psi \rangle$ in a state $|\psi\rangle$, such that at time t=0, $\langle A \rangle_{\psi}(0)=0$ and $\langle B \rangle_{\psi}(0)=i$, is

- $1.\sin(\omega t)$
- 2. $sinh(\omega t)$
- 3. $cos(\omega t)$
- 4. $\cosh(\omega t)$

दो संकारक (ऑपरेटर) A तथा B, क्रम- विनिमेय संबंधों $[H,A]=-\hbar\omega B$ तथा $[H,B]=\hbar\omega A$, को संतुष्ट करते हैं जहां ω एक नियतांक है तथा H समूह का हैमिल्टनी है। यदि अवस्था $|\psi\rangle$ में t=0 समय पर $\langle A\rangle_{\psi}(0)=0$ तथा $\langle B\rangle_{\psi}(0)=i$ हों. तब प्रत्याशा मान $\langle A\rangle_{\psi}(t)=\langle \psi|A|\psi\rangle$ है

- $1.\sin(\omega t)$
- $2 \cdot \sinh(\omega t)$
- 3. $cos(\omega t)$
- 4. $\cosh(\omega t)$

705058	All 1 A2 2 2 A3 3 A4 4 4 4 Two distinguishable non-interacting particles, each of mass m are in a one-dimensional infinite square well in the interval $[0,a]$, if x_i and x_i are position operators of the two particles, the expectation value (x_i,x_i) in the state in which one particle is in the ground state and the other one is in the first excited state, is 1. $\frac{1}{2}a^3$ 2. $\frac{1}{2}n^2a^3$ 3. $\frac{1}{4}a^3$ 4. $\frac{1}{4}n^2a^3$ 5. $\frac{1}{4}a^3$ 7. $\frac{1}{2}a^3$ 1. $\frac{1}{2}a^3$ 2. $\frac{1}{2}n^2a^3$ 3. $\frac{1}{4}a^3$ 4. $\frac{1}{4}n^2a^3$ 3. $\frac{1}{4}a^3$ 4. $\frac{1}{4}n^2a^3$ 3. $\frac{1}{4}a^3$ 4. $\frac{1}{4}n^2a^3$ 5. $\frac{1}{4}a^3$ 6. $\frac{1}{4}a^3a^3$ 7. $\frac{1}{4}a^3$ 8. $\frac{1}{4}a^3a^3$ 8. $\frac{1}{4}a^3a^3$ 8. $\frac{1}{4}a^3a^3$ 9. $\frac{1}{4}a^3a^3$ 1. $\frac{1}{4}a^3a^3$ 1. $\frac{1}{4}a^3a^3$ 1. $\frac{1}{4}a^3a^3$ 3. $\frac{1}{4}a^3a^3$ 3. $\frac{1}{4}a^3a^3$ 3. $\frac{1}{4}a^3a^3$ 3. $\frac{1}{4}a^3a^3$ 3. $\frac{1}{4}a^3a^3$ 3. $\frac{1}{4}a^3a^3$	5.0	1.25
retive Question 705059	4 on	5.0	1.25

The phase shifts of the partial waves in an elastic scattering at energy E are $\delta_0 = 12^\circ$, $\delta_1 = 4^\circ$ and $\delta_{\ell \ge 2} = 0^\circ$. The best qualitative depiction of θ -dependence of the differential scattering cross-section $\frac{d\sigma}{d\cos\theta}$ is

ऊर्जा $_E$ पर प्रत्यास्थ्य प्रकीर्णन में आंशिक तरंगों के कला विस्थापन $\delta_0=12^\circ$, $\delta_1=4^\circ~$ तथा $\delta_{\ell \geq 2}\simeq 0^\circ~$ हैं। अवकली प्रकीर्णन परिच्छेद $\frac{d\sigma}{dcos\theta}$ की θ पर निर्भरता का सर्वश्रेष्ठ गुणात्मक चित्रण है $\pi/4$ $\pi/2$ $3\pi/4$ $\pi/2$ π/2 $3\pi/4$ A1 ₁ A2 ₂ 2 A3 ₃ 3 A4 ₄ 5.0 1.25

Objective Question

Electrons polarized along the x-direction are in a magnetic field $B_1 \hat{i} + B_2 (\hat{j} \cos \omega t + \hat{k} \sin \omega t)$, where $B_1 \gg B_2$ and ω are positive constants. The value of $\hbar \omega$ for which the polarization-flip process is a resonant one, is 1. $2\mu_B |B_2|$ 2. $\mu_B |B_1|$ 3. $\mu_B |B_2|$ 4. $2\mu_B |B_1|$ x-दिशा में ध्रुवित इलेक्ट्रॉन चुम्बकीय क्षेत्र $B_1\hat{\imath} + B_2(\hat{\jmath}\cos\omega t + \hat{k}\sin\omega t)$, में हैं, जहां $B_1\gg B_2$ तथा ω धनात्मक नियतांक हैं। $\hbar\omega$ के जिस मान के लिए ध्रुवण-प्रतिवर्तन प्रक्रिया अनुनादी है, वह है 1. $2\mu_B |B_2|$ 2. $\mu_B |B_1|$ 3. $\mu_B |B_2|$ 4. $2\mu_B |B_1|$ A1 ₁ A2 2 2 A3 3 3 A4 4 Objective Question 5.0 1.25 Two random walkers A and B walk on a one-dimensional lattice. The length of each step taken by A is one, while the same for B is two, however, both move towards right or left with equal probability. If they start at the same point, the probability that they meet after 4 steps, is 4. $\frac{3}{16}$

705061

62 705062

		A1 1		
		A4 ₄ :		
		4		
	ective Questi	on .		105
63	705063	A layer of ice has formed on a very deep lake. The temperature of water, as well as that of ice at the ice-water interface, are 0° C, whereas the temperature of the air above is -10 ° C. The thickness $L(t)$ of the ice increases with time t . Assuming that all physical properties of air and ice are independent of temperature, $L(t) \sim L_0 t^{\alpha}$ for large t . The value of α is	5.0	1.25
		1. 1/4		
		2. 1/3		
		3. 1/2		
		4. 1		
		किसी बहुत गहरी झील पर बर्फ की पर्त जम गई है। पानी तथा पानी-बर्फ के संधि-स्तर की बर्फ, दोनों के ही तापमान 0° C है जबिक ऊपर हवा का तापमान -10° C है। समय t के साथ बर्फ की मोटाई $L(t)$ बढ़ती जाती है। मानें कि हवा तथा पानी का कोई भी भौतिक गुण ताप पर निर्भर नहीं है, t के बड़े मानों के लिए, $L(t) \sim L_0 t^\alpha$ है। α का मान है		
		1. 1/4		
		2. 1/3		
		3. 1/2		
		A1 1 Adda 247 A2 2		
		: 2		
		2		
		A3 3 :		
		3		
		A4 ₄ :		
		4		
	705064	on	5.0	1.25
04	703004		3.0	1.25

The Hall coefficient R_H of a sample can be determined from the measured Hall voltage $V_H = \frac{1}{d} R_H B I + R I$,

where d is the thickness of the sample, B is the applied magnetic field, I is the current passing through the sample and R is an unwanted offset resistance. A lock-in detection technique is used by keeping I constant with the applied magnetic field being modulated as $B = B_0 \sin \Omega t$, where B_0 is the amplitude of the magnetic field and Ω is frequency of the reference signal. The measured V_H is

- 1. $B_0\left(\frac{R_H I}{d}\right)$
- $2. \frac{B_0}{\sqrt{2}} \left(\frac{R_H I}{d} \right)$
- $3. \frac{I}{\sqrt{2}} \left(\frac{R_H B_0}{d} + R \right)$
- 4. $I\left(\frac{R_H B_0}{d} + R\right)$

किसी नमूने का हॉल गुणांक R_H मापी गई हॉल वोल्टता $V_H = \frac{1}{d}R_HBI + RI$ से निर्धारित किया जा सकता है, जहां d नमूने की मोटाई, B लगाया गया चुम्बकीय क्षेत्र, I नमूने में से जा रही धारा तथा R अवांछित ऑफसेट प्रतिरोध है। I को स्थिर रखते हुए, चुम्बकीय क्षेत्र को $B = B_0 \sin \Omega t$ (जहां B_0 चुम्बकीय क्षेत्र का आयाम तथा Ω निर्देश सिग्नल की आवृत्ति है) के अनुरूप मॉडुलित करते हुए, अभिबंधी संसूचन तकनीक का प्रयोग किया जाता है। मापित V_H है

- 1. $B_0\left(\frac{R_H I}{d}\right)$
- $2. \frac{B_0}{\sqrt{2}} \left(\frac{R_H I}{d} \right)$
- $3. \frac{I}{\sqrt{2}} \left(\frac{R_H B_0}{d} + R \right)$
- $4. I\left(\frac{R_H B_0}{d} + R\right)$

A1 :

A2 2

2

A3

3 A4 4

:

Objective Question

65 705065

A train of impulses of frequency 500 Hz, in which the temporal width of each spike is negligible compared to its period, is used to sample a sinusoidal input signal of frequency 100 Hz. The sampled output is

1.25

- 1. discrete with the spacing between the peaks being the same as the time period of the sampling signal
- 2. a sinusoidal wave with the same time period as the sampling signal
- 3. discrete with the spacing between the peaks being the same as the time period of the input signal
- 4. a sinusoidal wave with the same time period as the input signal

आवृत्ति 100 Hz के ज्वायक्रीय निवेशी सिग्नल के प्रतिचयन के लिए आवृत्ति 500 Hz के आवेगों की तरंगावली का प्रयोग किया जाता है जिसमें हर शूल स्पंद (spike) की कालिक पृथुता इसके आवर्तकाल की तुलना में उपेक्षणीय है। प्रतिचयित निर्गत

- 1. वियुक्त है, जहां शिखरों के बीच की दूरी प्रतिचयन सिग्नल के आवर्तकाल जितनी है
- 2. एक ज्या-वक्रीय तरंग है. जिसका आवर्तकाल प्रतिचयन सिग्नल जितना है
- 3. वियुक्त है, जहां शिखरों के बीच की दूरी निवेशित सिग्नल के आवर्तकाल जितनी है
- 4. एक ज्या-वक्रीय तरंग है, जिसका आवर्तकाल निवेशी सिग्नल जितना है

A1

1

A2 2

2

A3 3

3

A4 . 4

/

Objective Question

66 705066

In the circuit shown below, four silicon diodes and four capacitors are connected to a sinusoidal voltage source of amplitude $V_{\rm in} > 0.7$ V and frequency 1 kHz. If the knee voltage for each of the diodes is 0.7 V and the resistances of the capacitors are negligible, the DC output voltage $V_{\rm out}$ after 2 seconds of starting the voltage source is closest to

- $1.4V_{in} 0.7V$
- $2.4V_{in} 2.8 V$
- 3. $V_{in} 0.7 V$
- 4. $V_{in} 2.8 V$

नीचे दिये गये प्रतिपथ में, चार सिलिकॉन डायोड तथा चार संघारित्र है जो आयाम $V_{\rm in}>0.7~{
m V}$ तथा 1 kHz आवृत्ति के ज्या-वक्रीय वोल्टता स्रोत से जुड़े हैं। यदि प्रत्येक डायोड के लिए जानु-वोल्टता (knee voltage) 0.7 V है तथा संघारित्रों के प्रतिरोध उपेक्षणीय है, तो वोल्टता स्रोत को आरंभ करने के दो सेकेंड बाद DC निर्गत वोल्टता $V_{\rm out}$ निम्न के निकटतम है

- 1. $4V_{in} 0.7 V$
- $2.4V_{in} 2.8 V$
- 3. $V_{in} 0.7 V$
- 4. $V_{in} 2.8 V$
- A1 1
- A2 2
 - 2
- A3 3
- 3
- A4 :
- .

Objective Question

67 705067

The electron cloud (of the outermost electrons) of an ensemble of atoms of atomic number Z is described by a continuous charge density $\rho(r)$ that adjusts itself so that the electrons at the Fermi level have zero energy. If V(r) is the local electrostatic potential, then $\rho(r)$ is

- 1. $\frac{e}{3\pi^2\hbar^3}[2m_e eV(\mathbf{r})]^{3/2}$
- 2. $\frac{Ze}{3\pi^2\hbar^3}[2m_eeV(\mathbf{r})]^{3/2}$
- 3. $\frac{e}{3\pi^2\hbar^3}[Zm_eeV(\mathbf{r})]^{3/2}$
- 4. $\frac{e}{3\pi^2\hbar^3}[m_e eV({\bf r})]^{3/2}$

परमाणु क्रमांक z के परमाणुओं के समुदाय के (बाह्यतम इलेक्ट्रॉनों का) इलेक्ट्रॉन अभ्र को संतत आवेश-घनत्व ho(r) से वर्णित किया जाता है जो स्वयं को इस प्रकार व्यवस्थित करता है कि फ़र्मी स्तर पर इलेक्ट्रॉन-ऊर्जा शून्य होती है। यदि V(r) स्थानीय स्थिर वैद्युत विभव हो, तो $\rho(r)$ है 1. $\frac{e}{3\pi^2\hbar^3}[2m_e eV(\mathbf{r})]^{3/2}$ 2. $\frac{Ze}{3\pi^2\hbar^3}[2m_eeV(\mathbf{r})]^{3/2}$ 3. $\frac{e}{3\pi^2\hbar^3}[Zm_eeV(\mathbf{r})]^{3/2}$ 4. $\frac{e}{3\pi^2\hbar^3}[m_e eV(\mathbf{r})]^{3/2}$ A1 ₁ A2 2 2 A3 ₃ 3 A4 Objective Question 68 705068 1.25 The red line of wavelength 644 nm in the emission spectrum of Cd corresponds to a transition from the ¹D₂ level to the ¹P₁ level. In the presence of a weak magnetic field, this spectral line will split into (ignore hyperfine structure) 1.9 lines 2. 6 lines 3. 3 lines 4. 2 lines Cd के उत्सर्जन वर्णक्रम में 644 nm की लाल रेखा $^{1}\mathrm{D}_{2}$ स्तर से $^{1}\mathrm{P}_{1}$ स्तर के संक्रमण के संगत है। दुर्बल चुम्बकीय क्षेत्र की उपस्थिति में, वर्णक्रमीय रेखा निम्न में टूट जायेगी (अतिसूक्ष्म संरचना की उपेक्षा कर दें) 1.9 रेखाएं 2. 6 रेखाएं 3. 3 रेखाएं 4. 2 रेखाएं A1 ₁ A2 ₂ 2 A3 ₃ 3 A4 4

	1		
	A2 ₂ :		
	2		
	$\begin{bmatrix} A3 \\ \vdots \end{bmatrix}$		
	3		
	A4 4		
	4		
Objective Questi	on .		
71 705071	A lattice A consists of all points in three-dimensional space with coordinates (n_x, n_y, n_z) where n_x, n_y and n_z are integers with $n_x + n_y + n_z$ being odd integers. In another lattice B, $n_x + n_y + n_z$ are even integers. The lattices A and B are	5.0	1.25
	1. both BCC		
	2. both FCC		
	3. BCC and FCC, respectively		
	4. FCC and BCC, respectively		
	जालक A में त्रि-विमीय समष्टि के निर्देशांकों (n_x,n_y,n_z) वाले सब बिं <mark>दु स</mark> माहित हैं, जहां n_x,n_y तथा n_z पूर्णांक हैं एवं $n_x+n_y+n_z$ विषम पूर्णांक हैं। एक अन्य जालक B में, $n_x+n_y+n_z$ सम पूर्णांक हैं। जाल <mark>क A तथा</mark> B हैं		
	1. दोनों BCC		
	2. दोनों FCC		
	3. क्रमश: BCC तथा FCC		
	4. क्रमश: FCC तथा BCC		
	Al ,		
	A2 2		
	A3 ₃ :		
	3		
	A4 4 :		
	4		
Objective Questi	on	5.0	1.25
72 705072	Two electrons in thermal equilibrium at temperature $T=k_B/\beta$ can occupy two sites. The energy of the	5.0	1.25
	configuration in which they occupy the different sites is $J\mathbf{S}_1 \cdot \mathbf{S}_2$ (where $J>0$ is a constant and \mathbf{S} denotes the spin of an electron), while it is U if they are at the same site. If $U=10J$, the probability for the system to be in the first excited state is		
	1. $e^{-3\beta J/4}/(3e^{\beta J/4} + e^{-3\beta J/4} + 2e^{-10\beta J})$		
	2. $3e^{-\beta J/4}/(3e^{-\beta J/4} + e^{3\beta J/4} + 2e^{-10\beta J})$		
	3. $e^{-\beta J/4}/(2e^{-\beta J/4} + 3e^{3\beta J/4} + 2e^{-10\beta J})$		
	4. $3e^{-3\beta J/4}/(2e^{\beta J/4} + 3e^{-3\beta J/4} + 2e^{-10\beta J})$		

तापमान $T=k_B/\beta$ पर तापीय साम्यावस्था में दो इलेक्ट्रॉन दो स्थितियों में रह सकते हैं। जिस विन्यास में वे भिन्न स्थितियों में रहते हैं, उसकी ऊर्जा है $J\mathbf{S}_1\cdot\mathbf{S}_2$ (जहां J>0 नियतांक है तथा \mathbf{S} इलेक्ट्रॉन का प्रचक्रण इंगित करता है), जबिक यह U होती यदि वे एक ही स्थिति में होते। यदि U=10J, इस तंत्र के प्रथम उत्तेजित अवस्था में होने की प्रायिकता है

1.
$$e^{-3\beta J/4}/(3e^{\beta J/4} + e^{-3\beta J/4} + 2e^{-10\beta J})$$

2.
$$3e^{-\beta J/4}/(3e^{-\beta J/4}+e^{3\beta J/4}+2e^{-10\beta J})$$

3.
$$e^{-\beta J/4}/(2e^{-\beta J/4}+3e^{3\beta J/4}+2e^{-10\beta J})$$

4.
$$3e^{-3\beta J/4}/(2e^{\beta J/4} + 3e^{-3\beta J/4} + 2e^{-10\beta J})$$

A1 :

A2 2

2

A3

3

A4 :

Objective Question

73 705073

The nucleus of 40 K (of spin-parity $^{4+}$ in the ground state) is unstable and decays to 40 Ar. The mass difference between these two nuclei is $_{\Delta M} c^2 = 1504.4$ keV. The nucleus 40 Ar has an excited state at 1460.8 keV with spin-parity $^{2+}$. The most probable decay mode of 40 K is by

- 1. a β^+ -decay to the 2⁺ state of ⁴⁰Ar
- $2\cdot\,$ an electron capture to the 2+ state of ^{40}Ar
- 3. an electron capture to the ground state of ⁴⁰Ar
- 4. a β^+ -decay to the ground state of 40 Ar

 $^{40}{
m K}$ का नाभिक (निम्नतम अवस्था में प्रचक्रण-समता $^{4+}$) अस्थायी है तथा $^{40}{
m Ar}$ में अपघटित हो जाता है। इन दो नाभिकों में द्रव्यमान-अंतर $_{\Delta M\,c^2=1504.4}$ keV है। नाभिक $^{40}{
m Ar}$ की 1460.8 keV पर प्रचक्रण-समता $^{2+}$ वाली एक उत्तेजित अवस्था है। $^{40}{
m Ar}$ की सबसे सम्भावित अपघटन विधा (mode) निम्न है

- $1.~\beta^+$ -अपघटन द्वारा $^{40}{
 m Ar}$ की 2^+ अवस्था में
- 2. इलेक्ट्रॉन परिग्रहण द्वारा ⁴⁰Ar को 2⁺ अवस्था में
- $_{3.}$ इलेक्ट्रॉन परिग्रहण द्वारा $^{40}{
 m Ar}$ की निम्नतम अवस्था में
- $^{4.}$ β $^{+}$ अपघटन द्वारा $^{40}{\rm Ar}$ की निम्नतम अवस्था में

A1

1

A2 2

2

A3

3

	A4 4 :		
	4		
bjective Quest	ion]
705074	A neutral particle χ^0 is produced in $\pi^- + p \to X^0 + n$ by s-wave scattering. The branching ratios of the decay of χ^0 to 2γ , 3π and 2π are 0.38, 0.30 and less than 10^{-3} , respectively. The quantum numbers J^{CP} of χ^0 are	5.0	1.25
	1. 0-+		
	2. 0*-		
	3. 1-+		
	4. 1+-		
	s-तरंग प्रकीर्णन द्वारा $\pi^- + p \to X^0 + n$ में आवेश-रहित कण X^0 बनता है। X^0 के 2γ , 3π तथा 2π में अपघटन के लिए शाखन-अनुपात क्रमशः 0.38 , 0.30 , तथा 10^{-3} से कम हैं। X^0 के J^{CP} क्वांटम अंक हैं		
	1. 0-+		
	2. 0*-		
	3.1-+		
	4. 1+-		
	A1 1:		
	1 A2 ₂		
	A3 3		
	3		
	A4 4		
	4		
bjective Quest	ion	5.0	11.05
5 705075	The energy (in keV) and spin-parity values $E(J^p)$ of the low lying excited states of a nucleus of mass number	5.0	1.25
	$A=152$, are $122(2^+)$, $366(4^+)$, $707(6^+)$, and $1125(8^+)$. It may be inferred that these energy levels correspond to a		
	1. rotational spectrum of a deformed nucleus		
	2. rotational spectrum of a spherically symmetric nucleus		
	3. vibrational spectrum of a deformed nucleus		
	4. vibrational spectrum of a spherically symmetric nucleus		
	द्रव्यमान क्रमांक $A=152$ के नाभिक की निम्नवर्ती उत्तेजित अवस्थाओं की ऊर्जा (keV में) तथा प्रचक्रण-समता $E(J^P)$ के मान $122(2^+)$, $366(4^+)$, $707(6^+)$, तथा $1125(8^+)$ हैं। यह तय कर सकता है कि ये ऊर्जा-स्तर निम्न के संगत हैं		
	1. विकृत नाभिक का घूर्णन स्पेक्ट्रम		
	2. गोलीयतः सममित नाभिक का घूर्णन स्पेक्ट्रम		
	3. विकृत नाभिक का कंपनिक स्पेक्ट्रम		
II.	4. गोलीयत: सममित नाभिक का कंपनिक स्पेक्ट्रम		

A1 : 1		
1		
A2 2 :		
A3 3		
3		
A4 4 :		
4		

