24703 120 MINUTES

l.	Iden 1. 2. 3. 4.	They are com They are infe They lack a p They have a l	nposec ectious protein	l of prot agents coat.	eins. that in		nts.					
	A)	1 only	B)	2 & 3	only	C)	3 only	T	D)	4 only		
2.	Iden 1. 2. 3. 4.	 Formation of Fimbriae is governed by plasmid genes Formation of Pili is governed by genes of the nucleoid 										
	A) C)	1, 2 & 3 only 1 & 4 only	•		B) D)	1 only 2 & 4						
3.	Identi A) B) C) D)	tify the incorre d Lipids - Majo Proteins - Can DNA - Releas biofilm Quorum sens EPS production	or comn be posed by	nponent of Eld art of Eld bacteri Signalin	of EPS PS and al cell g mec	S, formal contributions, adds	ing a get bute to to the s	el-like biofili tructu	matrix n stabil ral inte	grity of the		
1.	The	virus having sin		randed I	ONA a							
	A)	Hepadna viru	IS		B)	Parvo						
	C)	Circo virus			D)	Papov	a virus					
5.	In a : 1. 3. 5.	retro virus the p Membrane as Major capsid Transmembra	ssociat	ted or m	atrix p					pe-link id protein		
	A)	1,2 & 5 only	B)	3 & 5	only	C)	2 & 3	only	D)	1,2,3 & 4	only	
Ó.	Whie A) C)	ch among the fo Rabies Virus Both A&B		ng is a n	egativ B) D)	Influe	e (-RNA enza vir er A no	us	ıs?			
7.	Whie A)	ch among the fo Dunaliella sa Spirulina		ng is kno	own to B) D)	-	desmus		of beta	carotene?		

8.	Clado A)	siphonic sipho Selaginella		is seen Osmu		C)	Marsilea	D)	Pteridium
9.	The p A) C)	teridophyte co Osmunda reg Pteridium aq	galis		B)	Polys	fern: stichum acro nium nidus	stichoid	es
10.	II: List I a. Co b. Cy c. Glo d. Be	ordaites	List II 1. Lea 2. Lar 3. Cor 4. Plan d-1	fy stru ge, fen ne-bean nts wit	ctures n-like I ring pla h cone B)	resem leaves ants w -like r	bling moder with promir ith palm-like	n-day pa nent vein e leaves	
11.	List I a. Sta b. Iso c. Gn d. Co A)	netales onifer a-4, b-3, c-2,	d-1	List II 1. Mc 2. Am 3. Phy 4. An	onocoty nentife yllospe giospe B)	yledon rae the ermae t rm the a-3, b	theory cory theory cory 0-1, c-4, d-2	ngiosper	ms
12.	,	a-3, b-2, c- 4 h among the fo Kadar Koraga				e of K Chol	anaikan		
13.	C) Koraga D) Santhal								
14.	Coom A) C)	Aromatic gro Both A & B		target a	amino B) D)	Basic	rith: e side chain ic side chain		
15.	The m plants A) C)		for long	distan	ce and B) D)	Gluta	ent transport umine nonium ions	of nitro	gen in leguminous

16.		form of inhibition whe	n there	e is an	increas	se in apparent	K _m but	value of V_{max} is
	A)	Reversible competit	ive	B)	Non	competitive		
	C)	Uncompetitive		D)		ersible compe	titive	
17.	Rote	none inhibits Electron	Transp	oort C	hain in	respiration by	/ bindin	g:
	A)	Coenzyme Q		B)	NAD	H Dehydroge	enase	
	C)	Fumarate Hydratase		D)	Succ	inate Dehydro	genase	
18.	The	molecule when accum	ulated	provid	les desi			seeds:
	A)	LEA protein B)	Treha	lose	C)	Glutathione	D)	All of these
19.		thuss mechanism is the	_					
	A)	Electrochemical grad	dient			niosmosis		
	C)	Proton gradient		D)	Proto	on hopping		
20.		min B12 is a cofactor f		D)	,1	1 1 10	•	
	A)	pyruvate carboxylas		B)		ylmalonyl-Co		se
	C)	acetyl-CoA carboxy	iase	D)	pyruv	vate dehydrog	enase	
21.	The	radioisotope used to st	udy rat	te of c	ell divi			121
	A)	P^{32} B)	S^{35}		C)	H^3	D)	I^{131}
22.	-	ue class of DNA trans	posons		_	_	ng-circl	le mechanism:
	A)	LINES		B)		ransposons		
	C)	Helitrons		D)	Pack-	-MULEs		
23.		codon UGA in mitoche	ondrial	l DNA				
	A)	Stop codon		B)		es for Tyrosine		
	C)	Codes for Tryptopha	an	D)	Code	es for Selenocy	ystein	
24.		NA interference the en NAs is:	zyme 1	that cl	eaves lo	ong hairpin R	NAs to	SiRNAs and
	A)	Ribozyme B)	DICE	R	C)	Argonaute	D)	RISC complex
25.	Whic	ch among the following	g is the	e most	abunda	ant green hous	se gas?	
	A)	Water vapour (H ₂ O)		B)		ane (CH ₄)		
	C)	Nitrous oxide (NO ₂))	D)	Chlo	ro fluro carbo	n (CFC)
26.	The	wetland/lake not desig		as Rar				
	A)	Vembanad-Kol Wet	land	B)		amudi Wetlan	d	
	C)	Kottoli Wetland		D)	Sasth	amkotta lake		
27.		art of Bonsai has its or	_		hinese			
	A)	Yamadori B)	Penjir	ng	C)	Saikei	D)	Hon non bo

28.	The a	algorithm that	_		_							
	A)	Needleman-	-Wunsc	eh .	B)	Smit	h-Waterman					
	C)	Hirsche's			D)	None	e of these					
29.	The	centre of origi	n of Ba	ınana ad	ecordir	ng to Va	avilov is:					
	A)	South East A	Asia		B)	Afric	a					
	C)	Central Am	erica		D)	Cent	ral Asia					
30.		key signalling	moleci	ule that	plays	a centra	al role in indu	cing Sy	stemic Acqui	red		
	A)	Jasminic ac	id		B)	Ethy	lene					
	C)	Abscissic ac			D)	-	ylic acid					
31.	The volatile organic compound capable of priming plants in a field of pathogen or herbivore attack: A) Methyl Jasmonic acid											
	A)	-										
	B)	Methyl Sali	-									
	C)			s(GLVs	s)							
	D)	All the above	/e									
32.	Whic	ch among the	followi	ng is Bi	irds ne	st fung	us:					
	A)	Cyathus	B)	Geast	trum	C)	Morchella	D)	Auricularia			
33.		selected as the cation:	e type s	pecime	n when	no ho	lotype was in	dicated	at the time of	•		
	A)	Lectotype	B)	Neoty	ype	C)	Isotype	D)	Paratype			
34.	The enzyme involved in the lytic cycle of bacteriophage which can degrade the peptidoglycan layer of bacteria is:											
	A)	Chitinase			B)	Endo	nuclease					
	C)	Interferon			D)	Endo	olysin					
35.		tify the histon DNA is wrap							ome core part	icles		
	A)	H1	B)	H2A		C)	H2B	D)	Н3			
36.		tify the phenor cances when the Radiation do	ney mo	ve throu		nedium	-	ne speed		ve		
				-	,		•					
	C)	Cerenkov ra	iuiatioi	I	D)	Neuo	x reactions					
37.	The 1	primary applic		_			_	_				
	A)					-	molecules in	_	le			
	B)						g fluorescent					
	C)			-			cules in tissue					
	D)	Separation of	of macr	omolec	ules b	ased on	their size and	d charg	e			

38.		statistical test a bles in a conti		-	zing th	e association	betwee	n two categorical	
	A)	Z-test	ingency t	В)	t-tes	t			
	C)	Chi-square t	est	D)		ysis of Varia	nce (AN	IOVA)	
39.	The j	primary function	on of tel	omerase in	DNA re	eplication is:			
	A)	Proofreading	g DNA f	or errors					
	B)	Repairing da	amaged l	DNA					
	C)	Adding repe	titive se	quences to t	he end	s of chromoso	mes		
	D)	Facilitating l	DNA un	winding du	ring rep	olication			
40.		term which des				expression of	a genot	ype in different	
	A)	Codominano		B)		etrance			
	Ć)	Epigenetics		D)	Inco	mplete domin	ance		
41.		phenomenon w						veen two genes on	a
	A)	Segregation	cs the m	B)		ference	vent ne	aroy.	
	C)	Recombinati	ion	D)		pendent assor	tment		
	C)	Recombinati	1011	D)	mac	pendent assor	tillelit		
	2. To bl 3. To ev 4. C su	different host he fimbriae als lood cells such he location of the venly over the ertain mutant b	surfaces so have a as leuko the fimb entire su pacteria	s to facilitate in important ocytes, eryth- riae is in the arface of the possess no f	e colon role to rocyte poles bacter imbria	ization during play in agglus, as well as e of the cell or ial cell e and hence c	bacteriutinating pithelia they mi	g the different l cells	
	A)	2 &3 only	B)	1,3 &4 only	(C) 1	&2 only	D)	1, 2, 3 & 4	
43.	1. Ca 2. Sp be 3. Ca	tify the correct alamites- lived whenophyllum - ginning of the aytonia- Middle ordaites - Uppe	during t - lived fr Triassic e Triassi	he Carbonif om the end Period c to Cretace	erous a of the	nd Permian p	eriods		
	A)	1,2 &3 only	B)	1& 4 only	C)	2 & 3 only	D)	1, 2, 3 & 4	
44.	tips,		role in fl and yell	lowering sta	ge of a wer lea	plant, its def		parts such as root show dead shoot Copper	

45.	Identify the specie 1. Strawberries	es gien below which d 2. Pineapple	1 1 4 1	
	A) 1& 2 only	B) 2 & 3 only	C) 1 &4 only	D) 1, 2& 3 only
46.	A) White damB) HennaC) Nutmeg	- Lyth	culiaceae raceae sinaceae	ent with the family:
47.	plants: 1. Several familie 2. The orders are These names do 3. It adopts the phy 4. Classification b	et statements regardin es or genera have not recognized under info o not conform to the ylogenetic principle of below the rank of fam B) 1, 2& 4 only	been placed yet in the ormal groups like Ma ICBN. of monophyly and pointly is not attempted.	gnoliids, Eudicots.
48.	Identify the correct first formulated by 1. The sepals are petals are chart 2. The B and C grequire C gene 3. Function D sport function from determination 4. Function E relational verticits, development of	et statements about the y George Haughn and solely characterized racterized by the coessens establish the ide es to be active. Type A ecifies the identity of the development of the	e ABC model of flow Chris Somerville.: by the expression of A and C genes are received as a separate carpels, which occur requirement that is fally described as necession of the control of the control of the control of the control of the carpels and the control of the co	A genes, while the genes. and the carpels only eiprocally antagonistic attereproductive turns after their a characteristic of all tessary for the
49.	 Identify the feature Single circular Ribosomes are Programmed concluster biogene Detoxification 	es associated with eur r DNA molecule e 70S cell death, reactive ox esis	karyotic mitochondri	a: ion, and iron-sulphur
	A) 1& 2 only	B) 2 & 4 only	C) 1 & 3 only	D) 1,2, 3 & 4

50.	the e	expected freque	ency of 'A	ka' individu	als is:			equency of 'A' is 0.3,
	A)	0.18	B) (0.63	C)	0.42	D)	0.21
51.	1. 2. 3. 1. 4. 1.	stify the correct Siphonous alga uninucleated to The reserve foo Pigmentation is and abundant fu Most live in fre walls are compo- cellulose.	ne are con o many nu d is chrys chloroph ncoxanthi sh water,	mposed of aclei solaminaria nyll a, with a but some a	multiple n small a are foun	tubular cells mounts of chl d in marine ar	. c, beta	a carotene habitats; cell
	A)	2 & 4 only	B) 2	2& 3 only	C)	1 & 4 only	D)	1, 2, 3& 4
52.	Iden 1. 2. 3. 4.	Ulotrichales Oedogoniale Chaetophora Volvocales	- es -	Ente Bult	eromorploo-chae eocloniu	ha te		
	A)	1 only	B) 4	4 only	C)	3 only	D)	None of these
53.								
	A) C)	Ectocarpace: Laminariace		B) D)	_	teridaceae ssaceae		
54.								
	C)	form eight as A zygote that	-		earp und	ergoes plasmo	ogamy,	meiosis, and

and mitosis to form eight ascospores.

D)

mitosis to form eight ascospores.

A dikaryotic ascus that forms in the ascocarp undergoes plasmogamy, meiosis,

55.	 Read the characters related to the classes of Haplomastigomycotina and Select the correctly correlated statement with the group/s 1. Chytridiomycetes – Fungi with motile cells with a single tinsel flagellum inserted at the anterior end 2. Hyphochytridiomycetes- Fungi producing zoospores furnished with a single whiplash flagellum inserted at the posterior end. 3. Plasmodiophoromycetes- Parasitic fungi producing biflagellate motile cells with both the flagella of whiplash type inserted at the anterior end. A) 3 only B) 1 &2 only C) 1 &3 only D) 1, 2 & 3 									
	A) 3 only B) 1 &2 only C) 1 &3 only D) 1, 2 & 3									
56.	 Which among the following members belong to Basidiomycetes? A) Neurospora, yeasts, morels, truffles B) Neurospora, Smuts, earthballs, puffballs C) Puccinia, Puffballs, Cryptococcus, Jelly fungi D) Neurospora, Rusts, Tremella, Auricularia 									
57.	The father of lichenology in India is: A) Erik Acharius B) Dalip Kumar Upreti C) Anupam Dikshit D) Dharani Dhar Awasthi									
58.	 Read the salient features given below and identify the group in the division Marchantiophyta Leaves flattened, in 2 or 3 rows, usually broadened to attachment, often lobed; shoots reclining, erect, or pendent; rhizoids smooth-walled Archegonia terminating shoot, surrounded by a chlorophyllose sheath Sporophyte with seta; sporangium spherical to elongate, with elaters and thickenings of the jacket cell walls, opening by 4 longitudinal lines (rarely helical) 									
	A) CalobryalesB) JungermannialesC) SphaerocarpalesD) Metzgeriales									
59.	 Consider the features of archegonia from Anthoceros and select the correct statements The mature archegonia remain completely embedded in the dossal surface of the gameto¬phyte including the dozen of cover cells. In the grow¬ing archegonium, the cover cells are usually associated with a mucilage mound Neck consists of a vertical row of 4 to 6 neck canal cells. The Venter consists of a ventral canal cell and a large egg 									
60.	A) 1, 2, 3 & 4 B) 2,3 & 4 only C) 1 & 2 only D) 1, 3 & 4 only Rosin or colophony is the byproduct primarily obtained from the genus: A) Cedrus sp. B) Pinus sp. C) Cephalotaxus sp. D) Dioon sp.									

61.	 The antherozoids are unicellular, uninucleate and biciliate structure in Lycopodium, Selaginella The antherozoids are multiciliate in Psilotum, Tmesipteris, Isoetes, Equisetum Homosporous life-cycle is found in the Psilotum, Tmesipteris, Lycopodium, Equisetum 								
	4. Heterosporous pteridophytes are obligatorily heterothallic found in the Selaginella, Isoetes, Masilea, Salvinia, Azolla, Regnellidium								
	A) 1 & 3 only B) 2 & 4 only C) 1,3 & 4 only D) 1, 2, 3 & 4								
62.	Tendrils derived from modified terminal leaflets in: A) Naravelia B) Smilax C) Cissus D) Ampelocissus								
63.	 A) Herbs with perennial rhizome, leaves are large, alternate with prominent midrib and sheathing petiole, petals united below in a tube, adnate to the staminal column, imbricate B) Androecium consists of a petaloid stamen with half anther on the margin and 5 								
	petaloid staminodes of which 3 outer imbricate, 2 inner more or less connate C) Ovary inferior, 3-celled; ovules many on axile placentation; style passing through the groove of fertile stamen, undivided or 2-lipped or dentate; ovary rarely 1-celled with parietal or basal placentas, a pair of epigynous glands are present that secrete nectar.								
	D) Fruit a capsule, seeds many, rounded, with copious hard perisperm and a straightenbryo								
64.	 Read the features related to the sub families of Nymphaeaceae. Identify the correctly matched statement/s with the group: 1. Cabomboideae: Flowers cyclic, trimerous and hypogynous, Perianth segments in two whorls of 3 each, outer one forming sepals and inner petals, Stamens 6. Carpels, 3, free. 2. Nelumboideae: Flowers acyclic and hypogynous, Perianth-segments indefinite, outer whorl of 5 sepals. Stamens indefinite. Carpels many, free. 3. Nymphaeaoideae: Flowers hypogynous, perigynous or epigynous, Perianth-segments in indefinite whorls, of 4-5 sepals in each whorl, Stamens indefinite, carpels many, united. 								
	A) 3 only B) 1 & 2 only C) 2 & 3 only D) 1, 2 & 3								
65.	Which among the following is not a member of Verbenaceae? A) Gmelina arborea B) Lippia alba C) Congea tomentosa D) Durio zibethinus								

	A)	2 & 4 only	B)	1 &3 only	C)	1 & 2 only	D)	1, 2,3 & 4	
67.	1. Ur 2. Tr	et the correctly nilacunar Node ilacunar Node ultilacunar No	2	Nerium,Polygon	Lantar um, Co ndron s	•	icia rum, A	ralium ium album and	
	A)	1 only	B)	2 only	C)	1 & 3 only	D) 1	, 2 & 3	
68.	Which A) B) C) D)	The cambium cuts off difficantial actions case. So see outer side of remain embed and producing of new tissurformed on the radially array Anomalous which remain the cambium and producing formed on the radially array anomalous which remains the case of the cambium and producing of the cambium and producing of the cambium and producing the cambium and prod	m is not recent ivities condard the but edded in origing second in the inner i	proportions of continue in the y growth is randles cuts of in a non-vasculates in the dondary tissues he outer side different parenchyma compent results abedded in so	sition as f xyleme individual f secondard are and are	and phloem in idual bundles of idual conjunctive idual parenchymato idual bundles of idual bundles idual bundl	begin on differ sor sor the interpretate tissue of the interpretate the in	with, but it soon erent points me time and soon abium arises on the nner side, which e. eycle go on dividing later small amount	
69.	 Identify the correct statement/s: Coomassie G-250 is the commonly used for protein detection since it can be used to detect as little as 0.1 μg of protein. Coomassie R-250 can be used to quantify the amount of protein in the solution, upon binding with proteins, the dye will produce a bluish tint. 								
	A)	1 only	B)	2 only	C)	Both 1 & 2	D)	Neither 1 nor 2	

Consider the features related to wood and chose the correct statements:

3. Weight: hardwoods are usually less denser than softwoods.

Colour: Hardwoods tend to be darker than softwoods, which are often lighter.
 Hardness: Hardwoods are usually stronger, more scratch resistant and harder wearing. If the wood chips easily with a chisel, it's most likely a softwood.

4. Pine, Spruce, Douglas fir are Hardwoods, while Oak, Mahogony, maple are

66.

softwoods

70.	1. A ir 2. E au ur 3. H ur 4. M	cridine Orange staining bacter osin is an acide and extracellulated sed as a counter dematoxylin: indergoes oxida	e is a serial entic dye or structurerstain s a basertion to	ynthetic dye b dospore composed of b tures in tissues in combination ic dye derived o form hemate	oromir s, impa n with from in, stai	nated fluoresce arting a pink on hematoxylin i the heartwood ns nuclei blue	in, stai red con H & of cert or pur	ns cytoplasm blor. It is often E staining. tain trees and
	A)	2 & 3 only	B)	1 & 2 only	C)	1 & 3 only	D)	1, 2 & 3 only
71.	Select A) B) C) D)	Onagrad type Solanad type embryo Chenopodiad	e: Basa e: Both d type:	l cell plays lit basal and terr Basal cell usu	tle or a ninal c	no role in the deells take part in orms a suspens	levelopen the control of the control	ow in dicotyledons: oment of the embryout levelopment of the wo or more cells inbryo formation
72.	Chen A) C)	nicals recorded Olivomycin Cyclohexim		effective in ov B) D)	p-ch	ing self-incom loromercuribe of these	-	lity in flowers are:
73.	 Pl an Ad nu Per mi Dr 	umbago type of tipodals doxa type - 8 ruclei of the coe naea type the futotic divisions usa type 16 nu	of embrauclei veno-me Four hap forminacleate	yo sac is char which are form gaspore ploid nuclei of g 16 nuclei. embryo sac ch	acterized by fithe contacted aracte	the mitotic divorance of the mitotic divorance	re unde	synergids and of the four haploid ergo two successive or of antipodals
74.	A) Ident	2 & 3 only ify the Gymno	,	3& 4 only group that ext	,	•	ע)	1, 2, 3& 4
, 1.		cadales	2. Te		_	netales	4. Co	oniferales
	A)	3 & 4 only	B)	2, 3& 4 only	(C)	1 &2 only	D)	1, 2, 3 & 4
75.	-	ons lost or reco 18 atoms of 18 atoms of 16 atoms of	vered: carbon carbon carbon	have been rechave been rec	overed	pathway and f d and 6 atoms d and 9 atoms d and 10 atoms	of carb	on are lost bon are lost

76. Observe the pattern of apoplastic and symplastic phloem loading and chose the correct statement/s:

	Apoplastic loading	Symplastic loading
1.Type of sugar transported	sucrose	Sucrose+ other
		oligosugars
2. Type of companion cells in the	Ordinary or transfer	Intermediary cells
small vein	cells	
3. Number of plasmadesmata	fewer	abundant
connecting the sieve tube		
(including companion cells) to		
surrounding cells		

A)	1 & 3 only	B)	3 only	C)	1 & 2 only	D)	1, 2 & 3
----	------------	----	--------	----	------------	----	----------

77. Identify the correct statements related with plant hormones:

- 1. Naphthalene acetamide prevents lodging or falling of crop plants during windy season
- 2. Application of naphthalene acetic acid increases the number of dwarf shoots as well as the number of fruits in apple.
- 3. Chlorophenoxy propionic acid enhances the quality of vegetable crops by preventing flower formation.
- 4. Low concentration 2, 4-D is useful in preventing pre¬-harvest fruit drop of Orange and Apple. NAA is similarly useful for checking fruit drop of Tomato.
- 5. Methyl ester of NAA prevents the sprouting of Potato tubers kept in storage.

A)	2, 4& 5 only B)	1, 2& 3 only C) 4 & 5 only	D)	1,2,3,4 & 5
----	-----------------	----------------	--------------	----	-------------

78. Identify the correct statement/s:

- 1. Phototropin a flavoprotein with two flavin mononucleotide (FMN) chromophores. The protein has a carboxy-terminal domain with a serine/threonine kinase activity. In the amino-terminal half, there are distinct light, oxygen, or voltage regulated domains (LOV1, LOV2) that each bind flavin mononucleotide (FMN). The FMN is noncovalently bound to a LOV domain in the dark, but becomes covalently linked upon exposure to suitable light
- 2. Cryptochrome possesses two domains, an amino-terminal photolyase-related (PHR) region and a carboxy-terminal domain of varying size. The PHR region appears to bind two chromophores, cofactors that absorb light; one chromophore is flavin adenine dinucleotide and the other 5, 10-methenyltetrahydrofolate (pterin or MTHF)
- A) 1 only B) 2 only C) Both 1 & 2 D) Neither 1 nor 2
- 79. Which among the conditions promote Z-DNA conformation from B-DNA conformation?
 - 1. Negative DNA super coiling 2. High salt concentration
 - 3. 5-methylated cytosine
 - A) 1 & 3 only B) 1 & 2 only C) 2 & 3 only D) 1, 2 & 3

	3. Inversely proportional to the atomic radii of the atoms participating in the bond (since the atomic radius is directly proportional to bond length). Select the correct statement given above related to bond energy											
	A) 1 & 2 only B) 3 only C) 1 & 3 only D) 1, 2 & 3											
81.	 Which of the following statements given below is true? A) Tryptophan and tyrosine are significantly more polar than phenylalanine B) Amino acids contain aliphatic R groups that are polar are Valine, leucine, isoleucine, C) Aspartate and glutamate amino acids having R groups with a positive net charge at pH 7.0 D) Lysine is a non-essential amino acid 											
82.	The phospholipids such as Phosphatidylinositol, phosphatidylglycerol and phosphatidylserine are easily separated by: A) Absorption chromatography B) HPLC C) Gas-liquid chromatography D) Thin layer chromatography											
83.	dentify the incorrectly matched pair: A) Racemases - Interconversion of L and D stereoisomers B) Carboxylases - Ligases enzyme C) Statin drugs - Irreversible inhibitor used to control cholesterol Binding energy - Free energy released in the formation of enzyme-sub- interaction	estrate										
84.	The standard free energy change ΔG° for the hydrolysis of ATP is - 7.3 kcal/mol a that for the hydrolysis of glucose-6-phosphate is - 3.3 kcal/mol, what is the ΔG° for the hydrolysis of glucose using ATP? A) +10.6 kcal/mol B) +4.0 kcal/mol C) -10.6 kcal/mol D) -4.0 kcal/mol											
85.	 dentify the statement/s true about motor proteins: The rate of movement of kinesin and dynein along the microtubule is determine primarily by the ATPase domain of the proteins. Kinesin moves along the microtubule in the minus direction, whereas dynein in the plus direction. Motor proteins are the driving force behind movements generated by cilia and 	moves										
	A) 1 & 3 only B) 1 & 2 only C) 3 only D) 1, 2 & 3											

The strength of a chemical bond is directly proportional to the amount of energy

required to break it. Therefore, bond energy is:
1. Directly proportional to the bond length.
2. Inversely proportional to the bond order.

80.

86.	The cotechnia A) B) C) D)	oncept of trans que? Single particl Freeze-fraction Freeze-fractu Fraction repli	e tracking of on replication re replication	r SPT n	was ob	tained from th	e resul	ts of which		
87.	 Identify the correct statements related to cell cycle regulators: Maturation-promoting factor complexes add phosphate tags to several different proteins in the nuclear envelope, resulting in its breakdown and also activate targets that promote chromosome condensation and other M phase events Maturation-promoting factor also triggers its own destruction by activating the anaphase-promoting complex/cyclosome (APC/C), a protein complex that causes M cyclins to be destroyed starting in anaphase. The APC/C first adds an ubiquitin tag to a protein - separase, sending it for recycling Separase normally binds to, and inactivates, a protein - securin. When separase is sent for recycling, securin becomes active and can do its job. Securin chops up the cohesin that holds sister chromatids together, allowing them to separate. Key to the DNA damage response is a protein called p53, a famous tumor suppressor often described as the guardian of the genome. p53 works on multiple levels to ensure that cells do not pass on their damaged DNA through cell division. First, it stops the cell cycle at the G check point by triggering production of Cdk inhibitor (CKI) proteins. 									
	A)	2, 3& 4 only	B) 1, 28	& 4 only	(C)	1 & 3 only	D)	1, 2, 3 & 4		
88.	statem 1. C tl 2. C 3. S r 4. C	nents G1Phase: cell uses his phase, the logo Phase: restict phase: the amemains in a dip G2 phase: is a	undergoes ra biosynthetic ng phase wh nount of DN ploid state shortened gred. Parts nec	pid grow and met here the o A in the rowth pe	wth and tabolic cell has cell ha cell ha ceriod in for mito	performs its ractivities of the left the cycle s effectively desired which many costs and cell discontinuous.	routine ne cell of and ha loubled organel	functions. Duri occur at a high s stopped divid , though the cel- les are reprodu	ing rate ing ll	
	A)	2, 3& 4 only	B) 1&2	only	C)	1,3 &4 only	D)	1, 2, 3 & 4		
89.		_		lly unfo		-	_	tion, oriC. Bind mplate ssDNA. HU/IHF	_	
90.	The R A) C)	AST ideally n IgE antibodie IgG antibodie	es	B) D)	_	en concentrati	on			

91.	Identify the correct statement:										
	A)			_			using Single	_			
	B)	•	_		•		nation was do	•	•		
	C)	The tendency of linkage is directly proportional to the rate of crossing over between two genes									
	D)	omplex, hence no synapsis, there is no									
92.	Organisms characterized by a relatively constant mortality or survivorship rate throughout their life expectancies belongs toSurvivorship curve.										
	A)	Type II	B)	Type		(C)	Type III	D)	Type IV		
93.	Calcu	late Simpson's	s Index	of Div	ersity ı	ısing tl	ne data from a	a plot g	iven below:		
		lsi = 2, 2. L			-	_			5. Sedge =3.		
	A)	0.7	B)	1		C)	0.3	D)	0.4		
94.	Select the group of Greenhouse gases with their increasing order of Global Warming Potential										
	A)	Methane, Ni	trous C	Oxide, I	Hydrocl	nlorofl	urocarbon, Su	ılphur l	nexafluoride		
	B)	Hydrochloro						_			
	C) D)	Nitrous Oxid Methane, Hy			-		uoride, Hydrous Oxide, Su				
95.	Which	Which of the following can be found as pollutants in the water in some parts of India?									
	1. Ca	dmium	2.Niti	rate	3. Lea	ıd	4.Formaldel	nyde	5. Uranium		
	A)	1, 2 and 3 on	ly		B)	2, 4 a	nd 5 only				
	C)	1, 3 and 5 on	ly		D)	1, 2, 3	3 and 5 only				
96.	Limits in DB during day and Night in residential areas as per the Noise Pollution (Regulation and Control) Rules, 2000 is.										
	A)	60 & 50	B)	50 &		C)	45 & 35	D)	55 & 45		
97.	The w	ord GREENE	X рор	ularize	d in me	dia rec	cently is conn	ected w	vith:		
	A)	India's first o	earbon-	-efficie	nt live i	index d	-		y Stock Exchange in		
	B)	collaboration Primarily enl					vestock & fis	heries t	hrough development		
		of production	n & ris	k mana	gement	modu	lated by ICA	R.			
	C)	Research networks in the areas of climate change impacts on important socio- economic sectors like agriculture, health, natural ecosystems, biodiversity,									

improving the forest cover on additional 5 hectares by MoEFCC

Cumulative target of increasing forest cover on 5 million hectares of land while

coastal zones by NCAP

D)

98.	Operation Save Kurma implies to focus on the:											
70.	A)											
	B)											
	C)	Poaching, transportation and illegal trade of big cats of India										
	Ď)	Poaching, transportation and illegal trade of The Great Indian Bustard										
99.	Which India?	hich among the following is/are Constitutional Provisions for Wildlife protection in										
	A)	The 42 nd Amendment Act, 1976, Forests and Protection of Wild Animals and										
	11)	Birds was transferred from State to Concurrent List.										
	B)	Article 51 A (g) of the Constitution states that it shall be the fundamental duty of every citizen to protect and improve the natural environment including forests										
	C	and Wildlife.										
	C)	Article 48 A in the Directive Principles of State policy, mandates that the State										
		shall endeavor to protect and improve the environment and to safeguard the forests and wildlife of the country.										
	D)	All the above										
	D)	Thi the doore										
100.	Identif	dentify the mismatched pair:										
	A)	Rajiv Gandhi Orang National Park – Assam										
	B)	Namdapha National Park – Arunachal Pradesh										
	C)	Mahatma Gandhi Marine (Wandoor) National Park – Andaman & Nicobar Islands										
	D)	Simlipal National Park – Nagaland										
101.	Panna Biosphere Reserve in India recognized by UNESCO as part of the Man and the											
		nere (MAB) program in 2020 is in:										
	A) _	Madhya Pradesh B) Uttarakhand										
	C)	Meghalaya D) Sikkim										
102.	E20 is	in the news value. It implies:										
	A)	Blend of 20% ethanol and 80% petrol – signifies a substantial step forward towards biofuel										
	B)	Improving renewable energy sector to 20% in 2032										
	C)	Increasing of elephant population in 20 elephant states in India										
	D)	Improving green economy to 20% in India before 2032										
103.	Identit	by the events which facilitates speciation:										
105.		ural selection 2. Reproductive isolation										
		netic drift 4. Geographical isolation										
	A)	1, 2& 4 only B) 2 & 3 only C) 1& 4 only D) 1, 2, 3 & 4										
104	Doot -	vialvora ara:										
104.	KOOT S	uckers are:										

- Insects that suck nutrients from the roots of plants Shoots that arise from roots to form new plant A)
- B)
- New plant parts that arise from the branches of fruit trees C)
- Roots of neighboring plants that share water with the another plant D)

- 105. Consider the statements related to Deccan Plateau and chose the correct statements:
 - 1. India's largest biogeographic region, accounting for 42% of the total geographical area.
 - 2. It is a semi-arid region located in the rain shadow of the Western Ghats
 - 3. This bio-geographic zone of peninsular covering India's forests in the states of Madhya Pradesh, Maharashtra, and Odisha. The Vindhya and Satpura hill ranges, the Chhota Nagpur Plateau, the Eastern Ghats, the Tamil Nadu Plains, and the Karnataka Plateau are all part of the central highlands.
 - 4. The majority of the forests are deciduous, but there are areas of greater biological diversity in the hill ranges. The zone, which includes deciduous forests, thorn forests, and degraded scrubland, is home to a variety of wildlife species.
 - A) 1,3 &4 only B) 1& 2 only C) 2,3& 4 only D) 1, 2, 3 & 4
- 106. Which of the following statements given below is correct?
 - A) Contact freezing: Cold air is blown over the food product, which takes off its heat. The process gets repeated until the product core reaches a temperature of about -18 degrees celsius.
 - B) Brine freezing: This method is used to freeze products in bulk. Refrigerant gases preferred: Carbon dioxide, Freon 104 and Ammonia.
 - C) Blast freezing: The product to be frozen is submerged in cold circulating brine. Brine is made of either Calcium chloride or Sodium chloride.
 - D) Slow freezing occurs when food is directly placed in freezing rooms called sharp freezers. The temperature ranges from -15 to -29°C and freezing may take from 3 to 72 hours
- 107. During recombinant insulin synthesis, the bond between insulin polypeptide and galactosidase can be removed by using
 - A) cyanogen bromide B) chymotrypsin
 - C) carboxy peptidase D) chitin
- 108. What is Acetosyringone?
 - A) A phenolic compound secreted by wounded plant tissue and is known to be a potent inducer of Agrobacterium vir genes
 - B) A poly-cationic derivative of the carbohydrate polymer dextran, and it is one of the first chemical reagents used to transfer nucleic acids into cultured mammalian cells
 - C) Silicon carbide fibres (SCF) are about 0.3-0.6 pm in diameter and 10-100 pm in length. These fibres are capable of penetrating the cell wall and plasma membrane, and thus can deliver DNA into the cells
 - D) Chemical used for proliferating embryonic tissues that can be bombarded in cultures and then allowed to proliferate and regenerate.

109. What are Quorn Products?

- A) Healthy source of plant based mycoprotein- meat substitute products of Europe and North America
- B) Healthy source of plant based mycoprotein, biopesticide on sale in Western countries
- C) Healthy source of plant based mycoprotein for pigs and cattles
- D) Healthy source of plant based mycoprotein for fish cultures

110. Identify the true statements:

- 1. Arabidopsis thaliana that contains genes from bacteria that could clean TNT and RDX-explosive soil contaminants
- 2. First plant-made pharmaceutical for humans was approved: a recombinant human glucocerebrosidase produced in a carrot cell suspension culture system. This enzyme is used to treat Gaucher's disease caused by a mutation of the β -glucocerebrosidase gene
- 3. Virus resistant papaya were developed in response to a papaya ringspot virus (PRV) outbreak in Hawaii by incorporating PRV DNA
- 4. Genetically modified cassava under development offers lower cyanogen glucosides and enhanced protein and other nutrients called BioCassava
- A) 3 & 4 only B) 2 & 4 only C) 2&3 only D) 1, 2, 3 & 4

111. Read the tools in bioinformatics and select the **mismatched** pair/s:

Tool	Explanation							
1.MACAW	indexing and parallel processing techniques for searching							
	DNA and Proteins sequences							
2.BLAST	is an algorithm and program for comparing primary							
	biological sequence information							
3. FASTA format	is a text-based format for representing either nucleotide							
	sequences or amino acid (protein) sequences, in which							
	nucleotides or amino acids are represented using single-							
	letter codes							
4. Genoogle	is both a local multiple sequence alignment program and a							
	sequence editing tool							
A) 1 & 2 only B)	4 only C) 2 & 3 only D) 1 & 4 only							

112. What is PRALINE?

- A) Multiple sequence alignment program with many options to optimize the information for each of the input sequences
- B) Flexible sequence alignment program that allows the use of various different measures of similarity
- C) Tool for generating multiple alignments of protein sequences
- D) Pair wise nucleotide sequence alignment for nucleotide sequences < 5 kb it gives colour alignments and a similarity score based upon Myers and Miller

113.	What is CARNA?											
	A) Is a tool for multiple alignment of RNA molecules											
	B) A program which renders sequence similarities and secondary structure information from aligned sequences for analysis and publication purpose											
	<i>(</i> 1)											
	C)		-	-		or transmembr	ane pr	oteins				
	D)	Part of VISI	A 100	ols for Compa	rative C	jenomics						
114.	Whic	h among the f	allowii	no is an exam	nle for	hiocontrol age	nt?					
111.	Which among the following is an example for biocontrol agent? 1. Bacillus amyloliquefaciens FZB42: Antimicrobial potential (fengycin-induced											
	systemic resistance in tomatoes against Sclerotinia sclerotiorum)											
			_			in biological c		_				
	(Colletotrichum	gloeos	sporioides and	d contro	olling anthracn	ose dis	sease in mangoe	S			
	A N	1 1	D)	2 1	<i>a</i>)	D 41 1 0 0	D)	NT 141 1 1	2			
	A)	1 only	В)	2 only	C)	Both 1 & 2	D)	Neither 1 nor 2	2			
115.	Ident	ify the correct	statem	ent/s related :	to False	smut of Padd	v.					
110.		Identify the correct statement/s related to False smut of Paddy: 1. Caused by Ustilaginoidea virens										
		2. The fungus transforms individual ovaries/grains into greenish spore balls of velvety										
	appearance. Few to several spikelets in a panicle are affected											
	3. T	he azole fungi	cide, p	ropiconazole	, has be	en found to be	effect	ive				
	A)	1 & 2 only	D)	1 2 & 2	C	1 & 3 only	D)	2 only				
	A)	1 & 2 Only	D)	1, 2 & 3	C)	1 & 3 Only	D)	2 Only				
116.	Rece	ntly, a Non-co	nventi	onal Energy S	Sources	namely Geoth	ermal	energy plant has	5			
		commissioned				•						
	A)	Gulf of Kacl		-								
	B)	Nagarcoil, T		adu								
	C)	Okhla in De		1 1 0 1 1								
	D)	Manikaran i	n Hima	achal Pradesh								
117.	Intern	national Union	for Co	onservation o	f Nature	e (IUCN) had a	a cruci:	al role in the				
,,		opment of imp				` '	. 010,01	w 101 0 111 v 110				
		Ramsar Conve	-									
	2. The World Heritage Convention (1972)											
	4.]	The Conventio	n on B	iological Div	ersity (1992)						
	A)	2 & 3 only	B)	1 & 2 only	C	1,3 &4 only	, D)	1 2 3 & 1				
	A)	2 & 3 Only	D)	1 & 2 Only	C)	1,5 &4 Omy	D)	1, 2, 3 & 4				
118.	Whic	h of the follow	ving gl	ycosidic linka	age is fo	ound in Lactos	e ?					
	A)			e with Galact	_							
	B)	•		with Glucose	e							
	C)	$\alpha 1 - 4$ Gluco										
	D)	α -1 – 2 β of	Galact	ose with Gluc	cose							

- 1. Several classes of HSPs have been described in eukaryotes including plants. They are designated by their approximate molecular weight (kDa) as HSP 110, HSP 90, HSP 70, HSP 60 and low molecular weight (LMW) HSPs (15 20 kDa). Ubiquitin synthesis increases during heat stress.
- 2. HSP70 /DnaK are conserved molecular chaperon proteins; DnaK is ubiquitously expressed both in the prokaryotes and eukaryotes, while HSP70 is only in the eukaryote counterpart.
- 3. HSP70s are expressed in different cellular locations, including cytosol, nucleus, endoplasmic reticulum (ER) and mitochondria.
- 4. Hsp70s have housekeeping functions in the cell in which they are built-in components of folding and signal transduction pathways, and quality control functions in which they proof read the structure of proteins and repair misfolded conformers. All of these activities appear to be based on the property of Hsp70 to interact with hydrophobic peptide segments of proteins in an ATP-controlled fashion.
- 5. HSP 70 has been identified in chloroplasts as the Rubisco subunit binding protein, involved in the assembly of Rubisco holoenzyme.
- A) 1,3 &4 only B) 1, 2,4 &5 only C) 1, 3 & 5 only D) 2, 3 & 5 only
- 120. The organelle that breaks down very long acyl chain molecules until they reach 8 carbon for beta oxidation in mitochondria:
 - A) Nucleolus B) Glyoxysomes C) Peroxisomes D) Chloroplast