24103 120 MINUTES

1.	The purpose of a FASTA search in sequence analysis is:											
	A)	Identifying homologo	•									
	B)	Predicting protein terti										
	C)	Determining RNA secondary structure										
	D)	Analyzing gene expres	ssion level	S								
2.	According to Gleason's individualistic concept, plant communities:											
	A)			sional stages toward a stable climax state	:							
	B)	Are determined by the										
	C)	Exhibit predictable patterns of species composition										
	D)	Form due to specific physiological requirements of individual species										
3.	The term which refers to the smallest recognizable unit in phytosociological classification, typically representing a community with distinct vegetation features:											
	A)	Community associatio		Plant formation	. 05.							
	C)	Phytocoenosis	D)	Ecological niche								
	0)		2)									
4.		micronutrient deficiency rosis in young leaves:	in plants v	which lead to the development of interve	inal							
	A)	Iron (Fe) B) Z	inc (Zn)	C) Copper (Cu) D) Manganese	e (Mn)							
5.	caus			found in immunocompromised patients commonly infects the lungs and can spre								
	A)	Aspergillosis	B)	Candidiasis								
	C)	Cryptococcosis	D)	Mucormycosis								
6.	The enzymes which is responsible for unwinding the DNA helix during replication:											
	A)	DNA polymerase	B)	Helicase								
	C)	Ligase	Ď)	Topoisomerase								
7.	In bi	ochemistry, what does th	e term 'all	osteric regulation' refer to?								
	A)	Enzyme inhibition by										
	B)			y binding of a molecule to a site other that	an the							
	,	active site	<i>J</i>									
	C)	Enzyme activation by	a co-facto	r								
	Ď)	Feedback inhibition of										
8.	In al	ternative splicing what d	letermines	the specific exons included in mature m	RNAS							
.	Λ)	Endonucleases		the specific exons included in mature in	1 41 11 1.							

Exon Intron boundary mutations

B)

9.	 C) Small nuclear RNAs (snRNAs) D) Regulatory proteins and RNA splicing factors A lower E-value signify in a BLAST search result in: A) Higher sequence similarity B) Lower sequence similarity C) Higher query coverage D) Lower query coverage 											
10.	Which 1. Zn ²		llowing are FAD ⁺			rs and o	coenzymes?					
	A)	1& 4 onl	y B)	2& 3	only	C)	1, 2, 3 & 4	D)	2, 3 & 4 only			
11.	compa A) B)	arison? Smith-W BLAST a FASTA a	aterman al	gorithm	1	l alignı	ment algorith	m used	for sequence			
12.	The ra A) B) C) D)	Glucose-	6-phospha fructokinas ase	te dehy			nate pathway:					
13.	The m	nolecules v ATP	which serve B)	es as a s GTP	second	ary mes	ssenger: ADP	D)	cAMP			
14.	The property (A) (C)	igments re Chloroph Phycoery	nyll a	for the	red col B) D)	Chlor	in red algae: ophyll b ocyanin					
15.	In who A) B) C) D)	Deep Occornal ree Within ro	ean waters	er subst	trates	ind end	dolithic algae	?				
16.	_	hylum of a isms in the Chloroph Rhodoph	e world: nyta	h includ	des the B) D)	Phaeo	telp, one of the ophyta nophyta	ne fastes	st-growing			
17.	What A)	is the fund Reproduc		renoids	in cert B)	ain typ Sense	es of algae co light	ells?				

	C)	Storage of p	roteins	D)		ved in the opentration proc		of a carbo	on-		
18.		lgae responsib ul to marine l		_				produce t	coxins		
	A)	Diatoms		B)	Cyan	obacteria					
	C)	Dinoflagella	tes	Ď)	-	n algae					
19.		echnique comi dization?	monly used	to overco	ome inc	compatibility	barrier	s in interg	generic		
	A)	Embryo resc	ue	B)	Self-	oollination					
	C)	Mutation bre	eeding	D)	Graft						
20.	The bacterial genus which includes species that are known for their ability to fix nitrogen in the root nodules of leguminous plants:										
	A)	Escherichia		B)	_	tococcus					
	C)	Rhizobium		D)	Clost	ridium					
21.	The p	rimary function	on of bacter	ial capsul	le is:						
	A) ¹	Facilitate mo	vement	B)	Prote	ction against	phagoc	ytosis			
	C)	Reproduction	n	D)	Nutri	ent absorption	n				
22.		acterial genus eterized by fev Borrelia Clostridium			e, and a Myco				SS		
23.	 Tra Tar Cel 	are the function nslation of vir geting of the value and/o l-to-cell and/o ivation of R g	ral RNA viral genom or systemic	e to its si	te of re	plication. e virus					
	A)	1 & 2 only	B) 2 &	3 only	C)	1 & 4 only	D)	1, 2, 3 6	& 4		
24.	replication 1. RN 2. RN 3. DN	fy the viral enation of retrov A dependant l A dependant l A dependant l A dependant l	viruses: DNA polym RNA polym DNA polym	nerase nerase	r conve	erting RNA to	DNA	during the			
	A)	2& 4 only	B) 1, 2	2 & 4 only	y C)	2 only	D)	1 only			
25.		ungal disease only affects s Candidiasis	-		_	ns and anima	_	ytes and			

	C)	Aspergillosis		D)	Histo	plasmosis						
26.		ungal phylum which I in aquatic habitats		es fung	i that p	produce motile	spore	s and ar	re often			
	A)	Ascomycota	<i>.</i>	B)	Basic	diomycota						
	C)	Chytridiomycota		D)		neromycota						
	- /			- /								
27.		ungal compound preffects in humans a			e Molo	ds and can con	tamina	ite food	, causing			
	A)	Ergotamine		B)	Aflat	oxin						
	C)	Penicillin		D)	Cycl	Cyclosporine						
28.		Which fungal structure allows certain fungi to survive adverse conditions, such as lack of nutrients or dehydration?										
	A)	Conidia B)		ngium	C)	Sclerotium	D)	Asco	spore			
	,	,	•	Ü					•			
29.		s in fer	ns aids	in spore dispe	ersal ar	nd is of	ten found or	n				
	A)	nderside of fronds? Sorus B)	Indus	ium	C)	Fiddlehead	D)	Rhizo	ome			
	11)	Solus D)	maas	IWIII	C)	1 Idaichead	D)	Tanz	ome			
30.		e APG IV system of ot order that include Ranunculales	•			and cherries?	the fo	llowing	g is a			
	C)	Rosales		D)	Lam							
	Ο)	11054105		2)	Lum							
31.	The term which refers to a taxonomic group that consists of all the descendants of a common ancestor, both extinct and extant species?											
	A)	Genus B)	Clade	;	C)	Family		D)	Order			
22	The corr	aa af yaina ah	. d t h			t aultivation is	4					
32.	A)	ourpose of using shall Reduce water cor			n pian	cumvation is	10.					
	B)	Protect plants fro			her co	nditions						
	C)	Filter harmful UV										
	D)	Create a barrier a	-	-		-						
	2)			obio uni	a aison							
33.		compound, found ir				•	ntribut	es to the	e flavour			
		ealth benefits by a	cting as a									
	A)	Tannin		B)		bromine						
	C)	Catechin		D)	Caps	aicin						
34.	The c	oilseed plant which	is a rich	source	of alp	ha-linolenic ac	id, an	essentia	al omega-3			
	A)	Glycine max		B)	Heli	anthus annuus						
	C)	Linum usitatissim	ıum	D)		his hypogaea						
	- /		-	,		VI - 0						

35.	The embedding materials commonly used for electron microscopy due to its excellent contrast and ability to be sectioned into ultrathin slices:											
	A) Paraffin wax B) Resin C) Gelatin D) Agar											
36.	The micronutrient essential for nitrogen fixation in leguminous plants:											
	A) Boron (B) B) Molybdenum (Mo)											
	C) Zinc (Zn) D) Copper (Cu)											
37.	The staining technique specifically used to visualize structures in the nucleus, especially DNA and RNA?											
	A) Hematoxylin and eosin staining											
	Feulgen staining											
	C) Periodic acid-Schiff staining											
	D) Masson's trichrome staining											
38.	The enzyme, commonly used as a marker in histochemistry, which is responsible for breaking down hydrogen peroxide into water and oxygen?											
	A) Peroxidase B) Lipase C) Catalase D) Amylase											
39.	The histochemical stain commonly used to identify the presence of polysaccharides and glycoproteins in tissues:											
	A) Alcian Blue staining											
	B) Hematoxylin and eosin staining											
	C) Giemsa staining											
	D) Masson's trichrome staining											
40.	In angiosperms, the primary function of the suspensor during embryonic development is:											
	A) Nutrient absorption from the endosperm											
	B) Protection of the embryo inside seed coat											
	Push the embryo deeper into the endosperm within the seed coat											
	D) Facilitating water uptake from the soil											
41.	The micronutrient essential for nitrogen metabolism, enzyme activation and nucleic											
	acid synthesis in plants:											
	A) Iron (Fe) B) Copper (Cu)											
	C) Manganese (Mn) D) Molybdenum (Mo)											
42.	In microtechnique, what is the role of osmium tetroxide in tissue fixation?											
	A) Enhance cell permeability											
	B) Stabilize lipids in cell membranes											
	C) Preserve DNA structure											
	D) Harden the tissue											
43.	In the context of evolution, what does the term "fitness" refer to?											
	A) Physical strength of an organism											
	B) Ability of an organism to survive and reproduce in its environment											
	C) Size of an organism											

	D)	Number of o	ffspring	g produ	iced by	an org	anism			
44.		nicronutrient on nts, characteri Nitrogen (N) Iron (Fe)	zed by	-		size and	l abnormal le anese (Mn)		-	mptoms
45.		pproximate les base pairs.	ngth of	`DNA v	wrappe	d aroui	nd a single nu	ıcleoso	me core pa	rticle is
	A)	100	B)	146		C)	200	D)	250	
46.		orrelation and ation coefficient There is a structure is a structure is no continuous transfer in the	ent is -0 rong po rong ne correlat	0.85, which is the second of t	hat doe correlat correla ween k	es this is in the tion bethe tion be inesing	ndicate? ween kinesin tween kinesin and dynein e	and dy and dy and dy	nein expre ynein expre	ssion
47.	The p A) C)	henomenon w Geotropism Phototropisn	-	ants be	end in re B) D)	Thign	e to touch or notropism otropism	mechar	nical stimul	us:
48.	_	lant structure butes to the pl Root hairs Vascular can	lant's al	oility to			for nutrients a			
49.	The p A) B) C) D)	rimary role of Regulation o Phototropisn UV-B light p Shade avoida	of circac n percepti	dian rhy on	_	ant pho	otoreception i	S:		
50.	The primary function of heat shock proteins (HSPs) in plants under stress conditions is 1. Facilitate photosynthesis 2. Prevent denaturation of proteins and assist in protein refolding 3. Enhance water uptake								litions is:	
	A)	1 & 2 only	B)	2 only	1	C)	2 & 4 only	D)	3 only	
51.		cientist who p tion occurs in Richard Daw Lynn Margul	rapid b vkins		_	d by lo	ng periods of en Jay Gould	fstabili	-	ţ

52.	In Raunkiaer's system, plants with perennating buds located just above the soil surface are classified as:											
	A)	Chamaephyt	tec	B)	Cryn	tophytes						
	C)	Hemicryptop		D)		erophytes						
	C)	Tremmeryptop	pnytes	D)	1 man	crophytes						
53.	Which of the following is a characteristic of a climax community in Clementsian ecological theory?											
	A) High species diversity B) Rapid changes in species composition											
	B) Rapid changes in species compositionC) Stability and resistance to disturbances											
	C)	•			ances							
	D)	D) Constant disturbance regime										
54.	Whic	h of the follow	wing staten	nents abou	t riboz	ymes is/are	true?					
	Which of the following statements about ribozymes is/are true? 1. They are exclusively found in eukaryotic cells.											
		2. They can act as catalysts without the need for protein enzymes.										
	3. They are involved in the synthesis of amino acids.											
	4. They are only present in viruses.											
	A)	1 & 2 only	B) 1	& 3 only	C)	2 only	D)	4 only				
	and .	0.1		4 4			.1 11					
55.	The purpose of the centrosome duplication checkpoint in the cell cycle is to:											
	A) Prevent premature entry into the next phase											
	B) Ensure accurate DNA replication											
	C) Monitor spindle assembly											
	D)	Regulate cel	ll sıze									
56.	What happens if centrosome duplication is not properly regulated and cells enter											
	mitosis with more than two centrosomes?											
	A)	Delay in cell										
	B)	Formation of		ar spindles								
	Ć)	Premature co	_	1								
	Ď)	,										
57.	Thor	epair mechani	iam which	is specifie	alls, da	esigned to h	ondla dan	naga ta indix	ridual			
37.		caused by ox		-	-	signed to in	andic dan	nage to marv	iduai			
	A)	Base excisio		acammatic	<i>)</i> 11.							
	B)	Direct repair	•									
	C)	Nucleotide e		nair								
	D)	Mismatch re	-	pan								
	D)	TVIISIII TO	pun									
58.		ng the SOS res	•	-	hat typ	e of DNA r	epair mec	chanism is ac	tivated			
		sponse to exter		~			_					
	A)	Base excisio	_	B)		eotide excis	•	r				
	C)	Error-prone	repair	D)	Misn	natch repair	ſ					

- 59. What is the function of small interfering RNAs (siRNAs) in gene regulation? Enhance transcription A) B) Inhibit translation C) Induce mRNA degradation D) Promote splicing 60. The type of T cells involved in killing infected cells directly: Helper T cells (Th) B) Cytotoxic T cells (Tc) Regulatory T cells (Treg) D) C) Memory T cells 61. The "precautionary principle" in environmental science suggests that: Conservation efforts should always prioritize charismatic species If an action or policy has the potential to cause harm to the public or the B) environment, in the absence of scientific consensus, the burden of proof falls on those advocating for the action Conservation decisions should be made solely based on economic C) considerations Species should only be protected if they have immediate economic value D) 62. Which of the following is **not** a criterion used by IUCN for assessing the conservation status of a species? Population size and trends A) Geographic range B) Genetic diversity C) Population viability analysis D) 63. Which among the following belongs to Arecaceae? Phoenix dactylifera Copernicia prunifera 1. 2. 3. Ceroxylon andicola 4. Roystonea regia A) 1 & 2 only B) 2 & 3 only 1, 3 & 4 only 1, 2, 3 & 4 D) C)
- 64. Which statement correctly define the author citation Use of ex
 - A) The names of two authors are linked by ex when the first author had proposed a name but was validly published only by the second author, the first author failing to satisfy all or some of the requirements of the Code.
 - B) The rules of botanical nomenclature specify that whenever the name of a taxon is changed by the transfer from one genus to another, or by upgrading or downgrading the level of the taxon, the original epithet should be retained by using ex
 - C) The names of authors are linked by ex when the first author published a new species or a name in a publication of another author.

D)	Names of two authors are linked by ex, when the second author makes some change in the diagnosis or in the circumscription of a taxon without altering the
	type.
Ident	ify the correct statement linked to plant classification:
A)	Angiosperms was divided into two Classes – Magnoliopsida and Liliopsida =
	Bessey's system
B)	Divided angiosperm into two classes Alternifoliae and Oppositifoliae = Armen
	Takhtajan system, 1997
C)	Plant kingdom is classified in to Dicotyledonae, Gymnospermae and
-	Monocotyledonae = Bentham and Hooker's classification

D) None of these

Which among the following is/are **not** the feature/s of Dipterocarpaceaea?

1. Gigantic trees with abundant resin, leaves coracious

2. Flower actionomorphic, hermaphrodite, hypogynous

3. 5 sepals, polysepalous; polypetalous; stamens 5 in one whorl

4. Carpels 3, syncarpous, fruit drupe & enclosed in persistent sepals

A) 3 & 4 only B) 3 only C) 1 & 4 only D) 2 & 4 only

67. Select the correctly matched pairs of Botanical garden and location:

1. Lloyd's Botanical Garden - Sikkim

65.

66

2. National Botanical Garden - Lucknow

3. Acharya Jagadish Chandra Bose Indian Botanic Garden - Kolkata

4. Desert Botanical Garden - Morocco

A) 1, 2 & 3 only B) 2 & 3 only C) 1 & 4 only D) 1, 2, 3 & 4

68. Formation of gametophyte directly from sporophyte without meiosis is known as:

A) Apospory B) Apogamy C) Amphimixis D) Parthenogenesis

69. Which of the following statements related for seed is **not** correct?

A) As the seed matures, its water content is reduced and seeds become relatively dry (10-15% moisture by mass)

B) The seed dormancy is the innate inhibition of generation of normal viable seeds

C) Scarification refers incubation of seeds at a suitable low temperature over a moist layer before conveying them to a temperature worthy of germination

D) Because of dormancy seeds remain viable for longer period and can be stored

70. Identify the correct statements connected to Paraffin wax:

1. Selection of paraffin was depends on the nature of the tissue to be embedded and thickness of section required.

2. A high melting point of the wax (e.g., 55–60°C) increases the hardness and decreases the thickness to which the tissue may be sectioned (e.g., 45–50°C is considered soft)

3. Paraffin wax is commonly used and heated to a temperature that is 2–3°C above its melting point. Any higher temperature will result in tissue hardening.

	4.	The paraffin wax should be less to the volume of the	ne tissue used
71.	A) Identi 1. 2. 3. 4.	1, 2 & 3 only B) 3 & 4 only C) 1 & 2 only fy the correct statements connected to Electron micromagnetic than the image since more electrons strike contrast, the transparent regions are darker. The electron gun is a heated tungsten filament, which there exists of condenser lenses focus the electron then into a thin tight beam. The electron beam coming out of the specimen magnetic coils called the objective lens, which has intermediate magnified image. The third set of magnetic coular) lenses produce the final further magnified.	ectrons and therefore appear that area of the screen. In the generates electrons beam on the specimen and passes down the second of as high power and forms the gnetic lenses called projector
	A)	1 & 4 only B) 2 & 4 only C) 1, 2 & 3 o	only D) 1, 2, 3 & 4
72.	Navas A) B) C) D)	chin's fluid was published in 1912 and the principal of Chromic acid, acetic acid and formalin Chromic acid, Picric acid and formalin Chromic acid, acetic acid, picric acid and formalin Chromic acid, acetic acid, picric acid	components used were:
73.	I. 2. 3.	fy the correct statements connected to apical meristed Both are primary meristems Both appear early in plant life Contribute to the formation of the primary plant both as 2 only B) 1 & 3 only C) 2 & 3 only	dy
74.	Identi A) B) C) D)	fy the incorrect statement: Cork cambium is part of periderm Ground meristem includes cortex and pith of dicot Procambium is a primary vascular tissue Protoderm is the initial vascular tissue of monocot	
75.	Who (A) (C)	Sknown as the Father of Indian Ethno botany? Sudhanshu Kumar Jain B) B M Johri Kailas Nath Kaul D) Janaki Ammal	
76.	The p A) C)	lant species which yield gum: Acacia nilotica B) Acacia catechu Steruculia urens D) All the above	
77.	The n A)	nembrane attack complex (MAC) in the complement C5b, C6,C7, C8, C9 B) C3b, C3, C2, C	÷

 78. Identify the disease symptoms of Red Rust of Tea: 1. Leaves develop lesions that are roughly circular, raised, and purple to reddish brow The alga may spread from leaves to branches and fruit. Most algal spots develop of the upper leaf surface. Older infections become greenish-gray and look like lichen 2. Yellowing of the leaf followed by wilting and then sudden death of the bush or entire bush with the weathered leaves are attached to the stem for several days 									al spots develop on ad look like lichen. of the bush or			
	A)	1 only	B)	2 only	•	C)	Bot	h 1 & 2	D)	Neither 1 nor 2		
 Which statements given below are true about certification? As far as possible only seeds certified as pathogen free are allowed to enter the country. Other planting materials can be allowed to enter the country without certification. Quarantine is needed for the seeds from foreign countries while it is certified. Is meant to prevent existing pathogens. Certification is the method of management of pathogen i.e. avoiding the contact between the pathogen and the host 							nout certification. it is certified.					
		2, 4 & 5 only 1, 2 & 3 only				1, 3, 4 1, 2, 3		•				
80.	List I a. See b Mal c. Fath	n the List I wind plant technic e sterility in cher of Organicher of pomolo	ique wa cauliflov c Farmi	s develower was	_	-	ру	2. Pu 3. De	II erson Ishkarna ecandol bert Ho	le		
	A) C)	a-2, b-1, c4, a-3, b-4, c-1			B) D)	a-4, b a-1, b		2, d-1 3, d-4				
81.	 Ma Ma Ma A 		cal mul age of t be alig	tiple se the PRS ned wit	SS prog h itsel	gram is f to ide	that intify	it doesn internal	't allow repeat			
	A)	1 only	B)	1 & 3	only	C)	3 &	4 only	D)	2, 3 & 4 only		
82.		the following the correct or	-	nples of	f Gene	Regul	ation	with ty	pe of F	Recombination and		
	•	m & Recombi				site				hbination		
	 Phase variation (Salmonella) Hin/hix Mating-type switch (yeast) HO endonuclease, RAD52 protein, other proteins/MAT 								Site-specific Nonreciprocal gene conversion			

Properdin

D)

Colicins

C)

83.	The transgenic plants are glyphosate resis	. Which of the following enzyme is inhibited ate 7-phosphate synthase
84.	Identify the correct statements related to I	Introns:
	periods of evolutionary time. 2. The intron structure of genes in a parlocation of genes of genome sequence. 3. Eukaryotic genes that encode protein number but same length 4. There are four major classes of introns	g position in a eukaryotic gene for long ticular eukaryote is used for predicting the es s are interrupted by introns of varying s: self-splicing group I and group II introns, iceosomal introns in nuclear pre-mRNA
	•	3 & 4 only 1 & 2 only
85.	large tank but, due to an electrical shornight. The remaining 5% are left to bre traits on to future generations. What type A) Extinction B)	dfish. You have more than 10,000 fish in one t circuit, 95% of the fishes perished in one ed and repopulate, passing their genes and of genetic drift this may be considered? Natural selection Founder effect
86.	induces immune complexes which deposed joint and cerebral lesions.A) Pernicious anemia B)	non-organ specific antigens such as DNA and sit in the vascular bed causing kidney, skin, Systemic lupus erythematosus Myasthenia gravis
87.	of them are gray. You know that the bla squirrel. Using the Hardy-Weinberg Equ heterozygous (having gray fur, but with o	Malayan squirrels, where 20 are black and 80 ack color is a recessive trait for this type of uilibrium equation, what number would be nly one gray fur allele)? C) 10 D) 50
88.		A, B and C. In a cross AaBbCc × AaBbCc, s observed as 1: 6: x: 20: x: 6: 1. What is the

	A)	15	B)	9		C)	25	D)	3			
89.	Asser	tion (A):	A flower is changes in				l shoot i.e.,	the shoot	apical meristem			
	Reaso	on (R):	Internode	of the s	shoot g	ets con	densed to five nodes i					
	A) B) C) D)	Both (A) Both (A)	lse but (R)) and (R) ar) and (R) ar ue but (R) i	e true are true t	` ′				` ′			
90.	Matcl List I	h the List	I with List	II	List I	Г						
	a. Sex-influenced trait					rcupine	e skin					
	b. Holandric trait				2. Pattern baldness							
	c. Sex-linked traitd. Sex-limited traits				3. Duchenne muscular dystrophy4. Barred coloring in chickens							
		a-2, b-1,					-2, c-4, d-3					
	C)	a-1, b-2,					-2, c-4, d-3 -3, c-2, d-1					
91.	 Identify the correct statements related to Pleiotropy: Pleiotropy means controlling of multiple traits by a multiple gene. Mechanism behind pleiotropy is the effect of a gene on metabolic pathways Phenylketonuria is an example for pleiotropy, individual which is affected by lacks a liver enzyme called phenylalanine hydroxylase which is responsible for converting phenylalanine into tyrosine It has a wide range of genotypic results and usually unaffected by environmental variables 											
	A)	2 & 3 or	nly B)	1 & 2	only	C)	1& 4 only	/ D)	2, 3 & 4 only			
92.	aaBb chron	0 = 746; as no some?	abb =280. V		the dis	tance b	etween the		0; Aabb =774; s on the			
	A)	20 map			B)		nap units					
	C)	1 map u	IIIt		D)	23 1118	p units					
93.			shows lept	ospora	_		_	ent:				
	A)	Azolla Marattia			B)	-	oglossum					
	C)	Marattia			D)	Tilles	ipteris					
94.		-	ecies which	displa	-	-		in the ad	ult plant:			
	A) C)	Adiantui Lygodiu			B) D)	Osmu Gleicl						
	\cup	Lygouru	111		נע	OICICI	iciiia					

- 95. Analyze the features of Salvinia and find out the **incorrect** one:
 - A) Vascular arrangement of Rhizome suggests an ectophloic siphonostele
 - B) Sporocarps are mono-sporangiate, the first one or two sporocarps in each cluster are megasporangiate whereas all the later formed ones are microsporangiate.
 - C) Degenerating spores and the tapetum harden and surround the functional megaspores in the form of a thick layer. This is often called the perispore.
 - D) Archegonia are deeply sunk in the apical cushion have a short neck, an egg cell, a venter canal cell and a two neck canal cells.
- 96. What is the role of topoisomerases II in eukaryotic cells?
 - A) That binds to the 3' Carbon end of the DNA and unwind using ATP
 - B) That cuts on a single strand of DNA. It is not an ATP-dependent enzyme
 - C) That binds to the 3' Carbon end of the DNA and forms nick in one strand without using ATP
 - D) That cut both strands of the DNA helix simultaneously in order to manage DNA tangles and supercoils and utilize ATP
- 97. Identify the correct statements among the following:
 - 1. Lichens are the first organisms to colonise a bare rock.
 - 2. Selaginella is a homosporous pteridophyte.
 - 3. Coralloid roots in Cycas have vesicular-arbuscular mycorrhiza.
 - 4. Main plant body in bryophytes is gametophytic, whereas in pteridophytes it is sporophytic.
 - A) 1, 3 & 4 only B) 2, 3 & 4 only C) 1 & 4 only D) 2 & 3 only
- 98. Read the following statements and select the **incorrect** ones:
 - 1. Archegonium of Mosses possesses a ventral canal cell and an egg. The neck consists of an axial row of 5 neck canal cells. The tip of the neck is closed by four cover cells
 - 2. In liverworts, the haploid free living sporophyte is formed by spore germination.
 - 3. Polytrichum is dioecious
 - 4. Marchantia is a homosporous bryophyte.
 - A) 1, 2 & 3 only B) 3 & 4 only C) 2 & 4 only D) 1, 3 & 4 only
- 99. Identify the correct statements related to Lichens:
 - 1. It is of the opinion that algal-fungal relationship in lichens as helotism
 - 2. Rhizocarpon is an example for crustose & saxicolous lichen
 - 3. Majority, lichens are the pollution indicators of Sulphur
 - 4. Vegetative reproduction in lichens takes place by isidia & Soredia
 - A) 1 & 2 only B) 3 & 4 only C) 1, 3 & 4 only D) 1, 2, 3 & 4

100.	1. SA 2. En 3. co	ARS-CoV-2 ca terovirus caus exsackievirus c erpesviridae ca	uses CO se dengu auses ha	VID-1 e fever and, fo	9 ot and			orrectly	match	ned pair	?
	A)	1 & 4 only	B)	2 & 3	only	C)	1 & 3 only	D)	1, 2	, 3 & 4	
101.	 The te Al TI Or 	ify the correct the first sporophyt trasoporophyt bsence of flag they form pit can the pit connect to symplastic tra- their cell wall in	hyte is the ella and onnections are ansport.	centrice carp	ospord bles pit plant to pl	ugs fori ay a rol	m during cyt	tokinesis	s follo	wing mi	nd/
		2 & 4 only			,	,	3 only				
102.	same value A)	- shows the individuals.	The valu variable	ues of	tween	ariable e vertic Scatte	uantitative v	he horiz	zontal		
103.		e mean and th					ta set is 18 a	and 5 re	specti	vely. Fii	nd the
	A) C)	36 & 27.779 25 & 33.339			B) D)		27.77% 33.33%				
104.	Aton	nic force micro	oscope (.	AFM)	was in	vented	by:				
	A) C)	Wolfgang G Fredrick W.		. 1	B) D)		ng, Quate & Binnig and l			cor	
105.	Analy corre	yze the examp ect ones? orelimbs of ma	ole which	n displa	ays ho	mologo arts of o	ous or Analog	gous org , mosqu	gans ai	nd choos	
	A) B) C) D)	1 & 3 homo 1 & 2 homo 2 & 3 homo 1 & 4 homo	logous; logous;	3 & 4 <i>1</i> 1 & 4 <i>1</i>	Analog Analog	gous gous					

106.	Ident	ify the saturat	-	acid:								
	A)	Behenic aci			B)		ic acid					
	C)	Nervonic ac	id		D)	Linol	eic acid					
107.	Whic	h of the follow	_		_			-				
	A)	Isocitrate de		•		-		carba	amoyla	ase		
	C)	Phosphofru	ctokinas	se	D)	All o	f these					
108.		ify the correct										
	1.	Free energy change criteria for predicting spontaneity is better than entropy										
		change criteria because the former requires free energy change of system only, whereas the latter requires entropy change of system and surroundings										
	2.	In an irrever	rsible re	eaction,	the fr	ee ener	gy of the 1	react	ion mi	xture is lower	than	
							-	Hen	ce, fre	e energy decre	ases	
		whether we	start fr	om reac	tants c	or prod	ucts.					
	A)	1 only	B)	2 only	ý	C)	Both 1 &	& 2	D)	Neither 1 nor	2	
109.	Noise	e Pollution (C	ontrol a	and Reg	gulation	n) Rule	s. 2000 de	fine	ambie	nt noise levels		
		ommercial Ar		_								
	A)	65 & 55	B)	55 &	-	C)	70 & 55		D)	60 & 50		
110.	Selec	t the group of	GHGs	with in	creasii	ng glob	al warmin	ıg po	tential	· ·		
	A)	Sulfur Hexa										
	B)	Methane, N										
	C)	Nitrous Oxi	-	-								
	D)	Hydrofluoro	ocarbon	is, Nitro	ous Ox	ide, Me	ethane, Sul	ltur I	Hexafi	uoride		
111.	Ident	ify the correct	statem	ent con	nected	l to Dis	solved Ox	yger	n (DO)	:		
	A)	The presence inorganic w		_				es its	s DO c	ontent and		
	B)	_						con	sidered	d contaminated		
	C)					_	-			by organisms,		
	,			-	-		-		_	e amount of D		
	D)		xvgen d	lemand	and B	iochem	ical Oxyg	en D	emand	l are inversely		
	D)	related	ry gon a	Cilialia	una Di		nour onyg	UII D	Cinane	are inversely		
112.	Ident	ify the animal	s which	n are cla	assified	d as cri	tically end	ange	ered by	IUCN:		
	1. White-rumped Vulture 2. Himalayan Quail											
	3. S	Sociable Lapw	ing		4. N	Malaba	r Civet					
	A)	1, 3, 4 only	B)	1, 2 &	2 3 onl	y C)	2 & 4 or	nly	D)	1, 2, 3 & 4		

113.	Identi A)		ent and	restoration of degraded soils, as well as in the
	B)	adoption of anticipatory in Smart and precision farm soil health and use appropriate the soil health a	ing usir	ng sensors and other scientific tools to manage
	C)	11	ata anal	ytics that will aid farmers in making informed
	D)	Methods of agricultural	manag nount of	gement that can help the land store more GHG that it releases into the atmosphere, in a
114.	Selec Keral	*	rs in ter	ms of Wildlife Sanctuary and districts from
	1.	Peppara Wildlife Sanctua	•	*
	2. 3.	Ranipuram Wildlife Sanc Karimpuzha Wildlife San	-	•
	4.	Kurinjimala Sanctuary in	-	птипаррагин
	A) C)	2, 3 & 4 only 1, 2 & 3 only	B) D)	•
115.	1. Ecc 2. The bio 3. A v	e influence of the uneven botype.	betweer ordering y contai	ne following: In two or more diverse ecosystems It is communities in the ecotone is referred as In some unique organisms which might be
116.	Analy Policy 1. Un 2. Lif 3. Na		le Value a for Ide -system	resilience
	A)	1, 3 & 4 only	B)	1, 2 & 3 only
	C)	2 & 4 only		1, 2, 3 & 4
117.		ologous genes where a gene function are conserved	e diverg	es after a speciation event, but the gene and its
	A)	Paralogous	B)	Homologous
	C)	Xenologs	D)	Orthologous

118.	Analyze the statement with major histocompatibility complex and select the correc
	Ones:

- 1. MHC I are distributed in all nucleated cells, while MHC-II in Antigen-presenting cells
- 2. Binding site for T cell co-receptor MHC I = CD8 binds to the α 3 region, while in MHC II = CD4 binds to the β 2 region
- 3. Interferon-g (INF-y) increases the expression of MHC-I or MHC-II molecules and can induce the expression of MHC-II molecules on certain cell types that do not normally express them. This may be very important both in normal immunologic function and in autoimmuni

	A)	1, 2 & 3	B)	1 only	\mathbf{C}	1 & 2 only	v D	2 & 3 onl
--	----	----------	----	--------	--------------	------------	-----	-----------

- 119. The matrix which can be used to identify more related proteins:
 - A) PAM100 B) PAM250 C) BLOSUM62 D) BLOSUM80
- 120. Name the most powerful eye irritant in the smoke:
 - A) Ozone B) Peroxyacetyl nitrate
 - C) Sulphur dioxide D) Carbon dioxide