23711

120 MINUTES

1. Which of the following regarding the Cenozoic succession of Assam is **not** correctly matched?

A) Renji Formation : Barail Group
B) Laisong Formation : Surma Group
C) Sylhet Limestone : Jaintia Group
D) Girujan Clays : Tipam Group

- 2. Identify the correct statement regarding extinction of minerals among the following:
 - A) All sections of minerals crystallizing in Triclinic System give symmetrical extinction
 - B) Clinopinacoidal sections of minerals crystallizing in Monoclinic System give straight extinction
 - C) Pinacoidal sections of minerals crystallizing in Orthorhombic System give straight extinction
 - D) Sections of minerals crystallizing in the Tetragonal and Hexagonal Systems give oblique extinction
- 3. A cuspate, bulged or lobate form of coarse lineation developed in strongly deformed rocks, within the rock or at lithological interfaces of competent and incompetent units:

A) Slickenline

B) Boudin

C) Pinch and Swell

D) Mullion

4. Match the items in List-I with those in List-II:

List-I

a. Concept of Quantification, Concept of Time and Concept of Equilibrium

List-II

1. Schumm's theory

b. Concept of Geomorphic Thresholds and Concept of Complex Response 2. Davisian theory

c. Concept of Geographical Cycle

3. Penck's theory

d. Concept of Slope Development and
Weathering Processes

4. Gilbert's theory

A) a-4, b-1, c-3, d-2

B) a-4, b-3, c-1, d-2

- C) a-3, b-4, c-2, d-1
- D) a-4, b-1, c-2, d-3
- 5. The most common topological data structure in GIS is ---- data model.
 - A) Arc-Node

B) Polygon-Arc

C) Spaghetti

D) Polygon

6. Match the Indian Remote Sensing Satellites in List-I with their other name in List -II:

List -I

a. IRS-P6

b. IRS-P4 c. IRS-P5

d. GSAT-3

List -II

1. Edusat

2. Cartosat

3. Oceansat

4. Resourcesat

A) a-3, b-4, c-2, d-1

B) a-4, b-3, c-2, d-1

C) a-2, b-4, c-3, d-1

D) a-2, b-1, c-3, d-4

- 7. Which of the following statements regarding biogeochemical exploration is **incorrect**?
 - A) Biogeochemical anomalies are areas where vegetation contains an abnormally high concentration of metals
 - B) Universal indicator plants are found only on mineralized soils and do not grow elsewhere
 - C) In biogeochemical surveys shallow rooted plants are generally preferred to deep rooted plants
 - D) The concentrations of trace elements decrease in the order of leaves, twigs, root and bark
- 8. Match the Isotopes in List -I with their Geological Applications in List -II:

List -I

List -II

a. Sulphur

- 1. As temperature or climate proxies
- b. Oxygen
- 2. As a tool for stratigraphic correlation and resolving the evolution of Precambrian Earth
- c. Hydrogen
- 3. As oceanic transient tracer and tracing of groundwater
- d. Nitrogen
- 4. As proxies for depositional redox conditions
- A) a-2, b-1, c-4, d-3
- B) a-2, b-3, c-1, d-4
- C) a-3, b-2, c-1, d-4
- D) a-2, b-1, c-3, d-4
- 9. To make a boundary between two different rock units in the field the most important thing we need to do is:
 - A) Apply the 'V' Rule.
 - B) Make a cross section of the geologic units in the field.
 - C) Measure strike and dip in field observation.
 - D) Take a documentation using digital camera.
- 10. The Bering Land Bridge that did **not** emerge until around 35700 years ago, less than 10000 years before the height of the Last Glacial Maximum, connects:
 - A) Asia to Africa
- B) North America to South America
- C) Europe to Asia
- D) Asia to North America

11.		re are five discontinuities ngement of these dis conti			-								
	A)												
	B)												
	C)	·											
	D)	Lehman Discontinuity → Comac Lehman Discontinuity → Mohor	→ Gutten	berg D	iscontinuity → Repo	eti							
12.	Bou Chil	Which of the following geomagnetic reversals is a marker for the Global Boundary Stratotype Section and Point (GSSP) defining the base of the Chibanian Stage and Middle Pleistocene Subseries at the Chiba Section, Japan?											
	A)	Gauss-Gilbert	B)	Brun	hes-Matuyama								
	C)	Gauss-Matuyama	D)		yama-Gilbert								
13.		underground coal mining ing for extraction of coal for Horizon mining Board and Pillar mining Short-wall mining with the Long-wall mining with the second coal mining with	from thic	k seam	-	nod of							
14.		ecent methodology for strane mid 70's:	tigraphic	e interp	retation pioneered b	y Peter Vail							
	A) C)	Sequence Stratigraphy Cyclostratigraphy	B) D)		stratigraphy nostratigraphy								
15.	The A)	'Safe Yield' of an aquifer The total volume of wat from it due to evapo-tran The average volume of v	er obtain aspiratio	n	-								
	C)	unit surface area of aqui The amount of water tha	fer, per u	ınit dro	p of hydraulic head	-							
	D)	producing an undesired The total quantity of wa	result		•								
16.	The A)	most abundant and the monotonic Nakhlites B) Lhe	ost diver erzolites										
17.	The A) C)	deepest underground coal Singareni, Telengana Singrauli, Madhya Prade	B)	Chin	s: akuri, West Bengal a, Jharkhand								

18.	Mat List	ch the Types of C	oasts in Li	ist -I w List -		ir Examples i	in List -l	II:				
	a. Haff Coastline					sett Bay, Rho	ode Islan	nd, U.S.A.				
		Ria Coastline				ast of Germa	•	~ .				
		Dalmatian Coastling	ne			hore of Adria		Croatia				
	u. F	Fjord Coastline		4. 50	gnerjo	rden, Norway	/					
	A)	a-2, b-1, c-4, d-3	3	B)	a-1, ł	o-2, c-3, d-4						
	C)	a-2, b-1, c-3, d-4	1	D)	a-1, t	o-2, c-4, d-3						
19.	The	metamorphic text	ure, which	n is inh	erited	from the prot	tolith roc	ck textures				
-, .		is preserved even				-						
	A)	Corona B)	Kelyp	hitic	C)	Mylonitic	D)	Palimpsest				
20.	One	of the most typica	al types of	wall-r	ock alt	eration in alu	ıminium	-rocks, such				
		lates, granites, etc.	• •					, , , , , , ,				
	A)	Sericitization		B)	1.	ylitization						
	C)	Chloritization		D)	Potas	ssic alteration	1					
21.	The Alwarez Hypothesis is related to the:											
	A)	Younger Drias cold period, the Big Freeze.										
	B)	Cretaceous-Tert										
	C)	Origin of life on		evolut	tion of	biological co	mplexit	y.				
	D)	Isostasy of Earth	i s ciust.									
22.		o first developed t					•					
		e led to the produc		_	_	-		_				
	-	mordial soup' in w n present?	vnich the r	equire	a buna	ing blocks ic	or me wo	ouid nave				
	A)	Mendel and Lan	narck	B)	Char	les Darwin						
	C)	Miller and Urey		D)	Opar	in and Halda	ne					
23.		energy is a non-re	newable s	ource	of ener	gv.						
	A)				C)	Wind	D)	Tidal				
24.	The	minaral assamble	go vyollost	onita	on orti	hita I diancie	la in ma	tomornhosod				
24.		mineral assembla onate rocks is cha	_			_		_				
	A)	Eclogite facies		B)		dinite facies	огринан	•				
	C)	Blueschist facies	S	D)	Zeoli	ite facies						
25.	The	geologist who firs	st nronose	d the c	oncent	of lavering i	n sedim	entary rocks				
45.		introduced the ter					ii scaiiil	ciitai y 10cks				
	A)	William Smith		B)		olas Steno						
	C)	James Hutton		D)	Char	les Lyell						

26.	Whin A) B) C) D)	97.5% of the total v salt water. The cryosphere is the cryosphere	e Earth' volume he froze oth und	arth's surface is occupied by water. me of water on Earth is fresh water and 2.5% is rozen water part of the Earth water system. underground and surface water on the surface of						
27.	of el List a. M b. S c. E	ch the components in ements in List -III Moon's surface ea water arth's crust Universe	ı List -I	List -1 1. O> 2. O> 3. H>	II >Si>A >Cl>H >He>C	orresponding r l>Fe>Ca l>Na>Mg D>C>Ne e>Mg>Ca	elative	abundance		
	A) C)	a-4, b-2, c-3, d-1 a-2, b-1, c-3, d-4		B) D)		b-1, c-2, d-4 b-2, c-1, d-3				
28.		ries of overlapping rerse faults and boundences: Flucan structure Overthrust		-	elow Fene		-angle to	hrust		
29.	The A) C)	Mid-oceanic ridges l Kermadec Ridge Reykjanes Ridge	located	in the l B) D)	Carls	c Ocean: sberg Ridge cay Ridge				
30.	simu	binary system, when altaneously at a partic tallization. Reactive B)		fixed t		rature, the pro	ocess is			
31.		ch of the following h gory of the 'cold' ori Meteorite Hypothes Tidal Hypothesis of Proto-planetary Hy Weizacker's Hypot	gin of E sis of O f Jeans a pothesis	Earth? . J. Sch and Jef	midt freys	of Earth does	not belo	ong to the		
32.		ining method which hods: Sluicing Hydraulicking	does n o	bt below B) D)		nering	f Alluvi	al Mining		

33.		diagenetic processes in the formation of sedimentary rocks cannot bring th of the following changes in the rocks? Complete or partial dissolution of minerals Replacement of one mineral by another mineral Baking and change of mineral structure of rock Mobilization and migration of elements								
34.		most accepted ed for bedded, Bulk samplir Muck sampli	banded 1g			er and d Chan	-			
35.	Iden 1. 2. 3.	where glaciers retreat. 2. Atmospheric and Terrestrial triggered ice ages or glacial are the most common categories.								
	A)	1, 2 & 3	B)	1 & 2	only	C)	1 only	D)	2 only	
36.	The A)	first commerc MapInfo	ial GIS B)	softwa ArcG		C)	AGISMap	D)	ARC/INFO	
37.		ch of the follo al photographs Focal length Weather con	? of cam	era	loes no B) D)	Eye-b		aggera	tion' in	
38.	Match the Permo-carboniferous Continental Drift Theory in List occurrence in List -II List -I a. Dwyka Tillites b. Talchir Tillites c. Tubaro Tillites d. Pagoda Tillites A) a-3, b-2, c-4, d-1 C) a-4, b-3, c-2, d-1				-I, with List - 1. Aı	n their r II ntarctica buth Afr dia razil a-3, b	regions of pres a			
39.	The A)	mineral discov Perovskite	vered in B)	n the lu Painit		cks coll C)	ected by Apo Kyawthuite			

40.	Match the Indices/Scales in List -I with their corresponding Natural Hazards in List -II:											
	List				List -II							
		almer Index			1. Hurricane							
		Richter Scale			2. Dr							
		oloviev-Imam	ura Sca	le		rthqual	ke					
		affir-Simpson		.10	4. Tsunami							
		_										
	A)				B)		-3, c-2, d-1					
	C)	a-4, b-3, c-1,	d-2		D)	a-2, b	-3, c-4, d-1					
41.	Who	discovered th	e astero	oid Cer	es in th	ne aste	roid belt on 1s	st Janua	rv 1801?			
	A)	Karl Ludwig			B)		an Goldschmi					
	C)	Giuseppe Pia			D)		Friedrich Gaus					
		_						_				
42.	A zone around a mineral deposit where the metal values are less than those of the deposit but significantly higher than the background values found in the											
						tne ba	ackground var	ues iou	nd in the			
	country rocks around the deposit. A) Halazone				B)	Diene	ersion Halo					
	C)	Epithermal Z	one.		D)	-	ger Lode Zone					
	C)											
43.	Whi	ch of the follo	wing is	not us	ed in 'l	Fission	n-track dating'	?				
	A)	Zircon	B)	Tourn	naline	C)	Sphene	D)	Apatite			
44.	,	classification i	e tha el	accifica	ation so	hama	of ignaous roo	eke on t	ha basis of			
тт.		actual minera					•					
		quantitative n				, 010	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0., 011 0				
	A)	IUGS	B)	Tabula		C)	CIPW	D)	TAS			
	-	~										
45.		Cyprus type v	_	genic m	assive	sulphi	ide deposits ar	e usual	ly			
		ciated with		Carba	notitos	C	Onhiolitas	D)	Davidatitas			
	A)	Kimberlites	В)	Carbo	natites	C)	Ophiolites	D)	Peridotites			
46.	Mate	ch the Type of	Ore de	posits i	in List	-I with	the World oc	curren	ces in List -II:			
	List	-I					List -II					
	a. T	in and tungste	n depos	sits of C	Cornwa	ıll	1. Sedex de	posits				
		Bingham Canyo		e Copp	er Dep	osit	2. Greisen d	leposits	3			
		of Utah, U.S.A										
		Vitwatersrand (Gold de	eposits,			3. Palaeo-pl	acer de	eposits			
		South Africa	an D -14				4 Do1	da '	A a			
	a. Z	Zambian Copp	er Belt				4. Porphyry deposits					
	A) a-4, b-1, c-2, d-3				B)	a-2. h	-4, c-3, d-1					
	C)	a-1, b-4, c-3,			D)		-4, c-1, d-3					

47.	extre	exture characemely fine-grand corysts are for Eutaxitic	nined, sl	lender, l y rapid	hollow coolin	crysta g or qu	ls or acicula	ar olivine ultramafi	,		
48.	A) B) C)	ch of the follow Represents of Accurately reasy workflow Easy to prod	continuo epresen ow and	ous feat its true	ures shape a			in GIS?			
49.	 The correct sequence of index minerals with increasing metamorphic grade in metamorphic terrains: A) Biotite → Chlorite → Andalusite → Almandine Garnet → Sillimanite → Kyanite 										
	B) Chlorite → Muscovite → Almandine Garnet → Andalusite → Kyanite → Sillimanite										
	 C) Muscovite → Chlorite → Andalusite → Calcite → Sillimanite → Kyanite D) Chlorite → Biotite → Almandine Garnet → Staurolite → Kyanite → 										
	D)	Chlorite → l Sillimanite	Biotite-	→Almaı	ndine (Garnet	→ Staurolit	e → Kya	$nite \to$		
50.	The Ryoke-Abukama belt of the Sanbagawa-Ryoke paired metamorphic belt in Japan represents: A) High pressure / Low temperature belt B) Low pressure / High temperature belt C) High pressure / High temperature belt D) Low pressure / Low temperature belt										
51.	eleva	are the brow	graphic	e map?	Č		•	•	•		
52.	Whic	Isohyets th of the follouses is incor Topographic GPS is used Geological to	owing street? c map is to deteroupe is	atemen s used to used to	nts rega o make ocation o measu	rding g traver in the ire stra	geological fi se for the fic field tigraphic th	eld equipeld track	oment and		
53.		synonym for Phytocoenos Thanatocoer	sis	Assemb	olage' i B) D)	Bioco	igraphy: enosis ocoenosis				

54.	 A) Prevention → Disposal – B) Prevention → Recycle – C) Prevention → Reuse → 	e correct order of waste management hierarchy is: Prevention→ Disposal → Recycle → Reuse Prevention → Recycle → Reuse → Disposal Prevention → Reuse → Recycle → Disposal Recycle → Reuse → Disposal → Prevention							
55.	The geological condition mostA) Gentle downstream dipC) Steep downstream dip	ideal for B) D)	r dam construction is tilted beds with Gentle upstream dip Steep upstream dip						
56.	List -I a. Phosphatic microfossils b. Calcareous microfossils c. Siliceous microfossils d. Organic microfossils A) a-1, b-4, c-3, d-2	List - 1. Co 2. Ra 3. Ch 4. Co B)	onodonts adiolarians nitinozoans occoliths a-2, b-4, c-3, d-1						
57.	C) a-1, b-4, c-2, d-3 The intrusive granitic pluton be Supergroup of Aravalli-Bunder A) Erinpura Granite C) Siwana Granite	•	ned at the final stages of Bhilwara						
58.	The Geological Survey of Indi A) 1851; Kolkata C) 1861; Jaipur	ia establi B) D)	1841; Delhi						
59.	Match the List -I (Axial Lengt List -I a. $a \neq b \neq c$; $\alpha = \beta = \gamma = 90^{\circ}$ b. $a = b = c$; $\alpha = \beta = \gamma = 90^{\circ}$ c. $a = b \neq c$; $\alpha = \gamma = 90^{\circ}$, $\beta \neq$ d. $a = b = c$; $\alpha = \beta = \gamma \neq 90^{\circ}$		Angles) with List -II (Crystal Systems): List -II 1. Trigonal 2. Orthorhombic 3. Monoclinic 4. Cubic						

60. A six-faced crystal form wherein three faces on top are offset by three identical upside down faces on the bottom, as a result of 3-fold roto-inversion axis:

B)

D)

A) Octahedron

C)

A) a-4, b-2, c-1, d-3

a-2, b-3, c-4, d-1

B) Rhombohedron

a-3, b-1, c-2, d-4

a-2, b-4, c-3, d-1

C) Dipyramid

D) Scalenohedron

61.		ch one of the orrect?	follow	ing state	ements	s regard	ding gravit	y anomalie	es is			
	A) B)	Over Mid-oceanic ridges, the free-air anomalies are small. The Bouguer anomaly is positive over high continental areas and negative over ocean basins.										
	C) D)) Intense isostatic and free-air anomalies occur along island-arcs.										
62.	Plas A)	ticity Index fo	or Sand B)		:	C)	< 17	D)	> 17			
63.	Match the Igneous rock types in List -I with their corresponding minerals in List-II											
	List				List -	-II						
		Peridotite			K-feldspar (Sanidine), Na-rich, plagioclas Quartz, Biotite							
	b. S	b. Syenite					plagioclase roxene, Oli		oxene, and/or phibole			
	c. R	Chyolite			3. Olivine, Orthopyroxene, Clinopyroxene							
	d. C	Gabbro					eldspar, Pla Pyroxene	gioclase, A	Amphibole,			
		a-4, b-3, c-1			B)		b-3, c-2, d-					
	C)	a-2, b-3, c-4	, u-1		D)	a-5,	b-4, c-1, d-	·Z				
64.		portal of Indi	_			_		O) which j	provides all			
		Yuktdhara					Bhuvan	D)	MOSDAC			
65.		best known e	-	-		glacie	r :					
	,	Vatnajokull										
	B)	Lambert Fis				ctica						
	C) D)	Malaspina C Fedchenko C										
	D)	redeficito (Jiaciei	or rajii	xistaii							
66.		F, AKF and A										
		ology. Which	of the	followi	ıg stat	ement	s regarding	these tria	ngular plots			
		correct?		1.0	<i>a</i> 0	• 1 т	7.0	1				
	A)	AKF diagram					-					
	B) C)	AFM diagra ACF diagra		_		_		-				
	C)	ACT diagram	ns are	uscu 101	A12U	3 anu C	2aO-11CII 1C		1			

Combined ACF/AKF diagrams are a good way to view mineral assemblages in most meta-sedimentary rocks

D)

67.	Choose the correct increasing order of concentrations of ionic constituents of sea water from among the following: A) $K^+ o Mg^{2+} o Ca^{2+} o SO_4^{2-} o Cl^- o Na^+$ B) $K^+ o Ca^{2+} o Mg^{2+} o SO_4^{2-} o Na^+ o Cl^-$ C) $Mg^{2+} o Ca^{2+} o K^+ o Na^+ o SO_4^{2-} o Cl^-$ D) $Ca^{2+} o K^+ o Mg^{2+} o SO_4^{2-} o Cl^- o Na^+$									
68.	The vertical stratigraphic succession that typifies marine transgression and regression is a classic example of: A) Stefan's Law B) Walther's Law									
	C) Steno's Law D) Uddens's Law									
69.	 Which of the following is the correct hierarchical sequence of Periods of the Phanerozoic Eon in the Geological Time Scale? A) Silurian → Cambrian → Triassic → Permian → Palaeogene B) Cambrian → Silurian → Permian → Triassic → Palaeogene C) Cambrian → Permian → Silurian → Palaeogene → Triassic D) Permian → Cambrian → Silurian → Palaeogene → Triassic 									
70.	The single largest mass extinction known on the Earth, also called the "Great Dying", which depleted a wide range of species including vertebrates. A) Permian - Triassic Extinction B) Cretaceous - Tertiary Extinction C) Ordovician - Silurian Extinction D) Triassic - Jurassic Extinction									
71.	Match the Formations of Gondwana Supergroup in List -I with their ages in List -II: List -I a. Talchir Formation b. Kota Formation c. Raniganj Formation d. Panchet Formation A) a-4, b-3, c-1, d-2 C) a-2, b-1, c-4, d-3 D) a-3, b-4, c-1, d-2									
72.	Which of the following are not Quaternary 'proxies'? A) Stromatolites B) Ostracodes C) Foraminifera D) Diatoms									
73.	The units of feet per day, gallons per day per square foot, metres per day and metres per second are characteristic of: A) Intrinsic Permeability B) Storativity C) Transmissivity D) Hydraulic Conductivity									

74.	Ramsay's Fold classification is based upon curvature of the inner and outer lines of a fold, and the behaviour of dip isogons. Which of the following are correct according to this scheme of classification? 1. Class 2 – Dip isogons are parallel 2. Class 1A – Limbs thicker than hinges 3. Class 3 – Dip isogons converge downward towards axial surface 4. Class 1B – Layer thickness constant								
	A)	1 & 2 only	B)	2 & 3	only	C)	1, 2 & 4 o	nly D)	3 & 4 only
75.			Iorth A Iountain uth Am	merica ns of C	entral .		to be the o	ldest fold	l mountain
76.	List List a. L b. A c. Q d. A	arkosic Arenite Arkosic Arenite Authority Arkosic Wackes Arkosic Wacke a-1, b-3, c-2,	Pott's s e e e d -4		of class List - 1. M roo 2. M tha 3. M tha 4. M	ssificati II ore that ck fragg ore that an rock ore that an rock ore that an rock ore that	on of Sands n 25% rock ments than n 5% feldsp fragments	fragmen feldspar oar and m spar and i	tuents in ts and more ore feldspar more feldspar
77.		statements give statement/s Top slicing i Shrinkage sto The operatio development 1 & 2 only	is/are c s a goo oping is n of the t work.	orrect? d methes used it e sublev	od for in gent	soft ore ly dipp ping in	es with wea	k walls. ith weak nsiderabl	walls. e amount of
78.		classifiers used	d in ore	benefi		ntially	free vortex ocyclone		-

79.		remote sens	_		oes n	ot belo	ng to the cat	egory of	Space-
	A)	• • •	B)	Hyper	ion	C)	MODIS	D)	AVIRIS
80.		al photograph 'd' is direch 'd' is direch 'd' is direch	hs is cor tly prope tly prope tly prope sely pro	rect? ortional ortional ortional portiona	to the to the to the al to th	flying height focal l ne radia	theight 'H'. theight 'H'. th' of the oblength 'f' of the oblength 'f'.	oject. The aerial	camera
81.	Paci	fic Plates ald e Boundary. Constructiv	ong the r		_	margir Tran	dary of the None of British Constructions of British Constructions of the None		
82.	List a. C b. F c. N	_	rogeny ogeny ony	List -I w	List - 1. N 2. E 3. A	·II	merica a	occurren	ce in List-II:
	A) C)	a-2, b-1, c- a-2, b-1, c-					-3, c-2, d-1 -4, c-2, d-1		
83.	tens A)	engineer and ile strength o Charles Au Karl von T Fernando I Arthur Cas	of rocks: gustin (erzaghi L.L.B. C	Coulomb arneiro		ed the '	'Brazilian Te	st' to de	termine the
84.		in-situ field Correlation To Cone Pene Standard P	ests: tration T	Test	B)	Pum	ocks grouped p Test er Test	d under t	he category
85.	A) B) C)	ch among the Developme Desiccation Soil erosion Salinisation	ent of Hy on of Soi n	ydric soi	ils	ympton	n of desertifi	cation?	

86.	Which of the following electrode arrafor groundwater has the widest horizon investigation but the poorest resolution A) Pole-Dipole B) C) Dipole-Dipole D)	ontal coverage and th	ne deepe	st depth of						
87.	The building stone which is greatly of construction in moist conditions:	ojectionable for use	in buildi	ng						
	A) Gneiss B) Limestone	C) Marble	D)	Granite						
88.	According to the Le Chatelier's principle, in endothermic reactions, a decrease in temperature A) first decreases and then increases the product formation B) increases the product formation C) decreases the product formation D) does not affect the reaction									
89.	b. 111 c. 331 2. F	onding terms in List-II Probable Mineral Reserved Mineral Reservation Reservation Reservation Reservation Mineral Reservation	t -II serve rve leserve	Reserves and						
	C) a-2, b-4, c-1, d-3 D)									
90.	The country that holds the maximum deep-sea mining contracts issued by the International Seabed Authority:									
	A) China B) Canada	C) Japan	D)	United States						
91.	The most important secondary polluta A) Carbon Monoxide B) C) Sulphur Dioxide D)	unt of air among the Ground level Ozo Particulate matter	one	g:						
92.	The analytical method used for non-delements in minerals ranging from Be 0.1 to 0.01% using in-built Waveleng Energy Dispersive Spectrometer (ED A) Electron Probe Micro Analyser B) Scanning Electron Microscope C) X-ray Fluorescence (XRF) D) X-ray Diffraction (XRD)	eryllium to Uranium th Dispersive Spectr S): (EPMA)	with det	ection limits						

which following lithostratigraphic unit in Indian stratigraphy? Sulcaculus Beds A) Umia Beds B) C) Bagh Beds D) Hedenstroemia Beds 94. Match the habits of minerals in List -I with the mineral examples in List -II. List -I List -II a. Tabular 1. Tridymite b. Fibrous 2. Wollastonite 3. Cerrusite c. Reticulated d. Scaly 4. Satin-spar a-4, b-2, c-1, d-3 a-3, b-4, c-2, d-1 A) B) C) a-2, b-4, c-3, d-1 D) a-4, b-1, c-2, d-3 95. The Vindhyan Supergroup of rocks is characterized by number of Shale Formations from Lower Vindhyans to Upper Vindhyans. The correct younging sequence of the Vindhyan Shales from oldest to youngest is: Suket Shales \rightarrow Bijaigarh Shales \rightarrow Binota Shales \rightarrow Panna Shales \rightarrow Sirbu Shales \rightarrow Jhiri Shales Binota Shales \rightarrow Suket Shales \rightarrow Bijaigarh Shales \rightarrow Panna Shales \rightarrow B) Jhiri Shales → Sirbu Shales C) Bijaigarh Shales \rightarrow Suket Shales \rightarrow Sirbu Shales \rightarrow Binota Shales \rightarrow Panna Shales \rightarrow Jhiri Shales Suket Shales \rightarrow Binota Shales \rightarrow Bijaigarh Shales \rightarrow Sirbu Shales \rightarrow D) Jhiri Shales \rightarrow Panna Shales 96. The other name for Regur Soil: Laterite Soil Black Soil A) B) Red Soil Alluvial Soil C) D) 97. The morphometric analysis of drainage basins includes the analysis of the characteristics of linear, areal and relief aspects of fluvially originated drainage basins. Choose the correct statement regarding this aspect from among the following options: A) The stream frequency is directly proportional to stream order The stream number is inversely proportional to size of contributing B) basin and to the channel dimension C) The higher bifurcation ratio leads to more chances of risk of flooding

Nimar Sandstone, Nodular Limestone and Coralline Limestone constitute

93.

D)

A)

C)

98.

density in the watershed

Contact metasomatic

Hydrothermal

B)

D)

Leakage anomalies are generally associated with---- deposits.

The stream frequency exhibits a positive correlation with drainage

Magmatic

Pegmatitic

Match the mineral deposits in List -I with their corresponding mineral 99. indicators in List -II List -I List -II a. Base metals 1. Cr-pyrope garnet b. Diamond 2. Lepidolite/Spodumene c. Lithium deposits 3. Favalite d. REE deposits 4. Sphalerite a-4, b-1, c-3, d-2 B) a-3, b-1, c-4, d-2 a-4, b-1, c-2, d-3 a-1, b-3, c-2, d-4 D) C) 100. The type of rock cleavage that contains microlithons that were warped by a previous foliation: A) Crenulation cleavage B) Slaty cleavage Disjunctive cleavage Transposition cleavage C) D) 101. Eustatic sea level changes are driven by different processes that cause changes in the volume or mass of the world ocean and result in globally uniform mean sea level variations. Which of the following processes is **not** responsible for eustatic sea level changes? Tectonic sea floor spreading or sedimentation. A) Thermal expansion of the water. B) Subsidence or uplift of the crustal land. C) Melting or accumulation of continental ice sheets over time. D) 102. Match the type of folds in List-I with their corresponding characteristics in List -II: List -I List -II a. Parallel folds 1. Inclined hinge line 2. Parallel limbs b. Similar folds 3. Thinner limbs and thicker hinges c. Plunging folds d. Isoclinal folds 4. Orthogonal thickness of layers constant throughout A) a-2, b-3, c-1, d-4 a-4, b-3, c-1, d-2 B) a-3, b-4, c-2, d-1 D) a-4, b-3, c-2, d-1 Which of the following is **not** correctly matched? 103. Iron-nickel Spherules Cosmogenous A) Biogenous B) Siliceous Ooze

C)

D)

Evaporites

Manganese Nodules

A) Dawkins and DennetB) Gould and ElridgeC) Mayr and LernerD) Benton and Simpson

Lithogenous

Hydrogenous

105.	The A)	type ammono Ceratites		he Palaeozoio Goniatites		Ammonites	D)	Agoniatites				
106.	Radiating cracks at the centre of the rock or carbonate materials in large and oblate nodules are termed:											
	A)	Septaria Septaria	B)	Kankar	C)	Stylolites	D)	Stromatolites				
107.	The A) B) C) D)	the depth of the elevation the depth of elevation of the elevation freshwater-s the depth of	freshwa n of phr freshwa phreati n of phr saline w freshwa	ater-saline wa eatic level ab ater-saline wa c level above eatic level ab ater interface ater-saline wa	nter inte ove MS nter inte MSL ove MS below nter inte	erface below N SL is 40 times	MSL is MSL is the de	equal to the pth of equal to the				
108.		Transformation → Image Classification Image Classification → Image Registration → Image Filtering → Image Enhancement → Image Transformation Image Registration → Image Classification → Image Filtering → Image Transformation → Image Enhancement										
109.	The A)	Representativ Linear	e Fract B)	ion (RF) on n Graphical	naps is C)	a Scale. Verbal	D)	Ratio				
110.	 The best records of climate change during the Quaternary: A) Carbon isotope records from fossil fuel accumulations. B) Hydrogen isotope records from upper atmosphere and deep sea water. C) Oxygen isotope records from deep sea cores and glacial ice cores. D) Uranium, thorium and lead isotope records from fluvio-glacial lacustrine sediments. 											
111.	The first Miocene hominoid reported from Southern Africa:											
	A) C)	Otavipethec Proconsul	us	B) D)		topithecus oithecus						
		expedition is est points in e The Challen The Five De	each of t ger		ans. The N	manned expect Vautilus Bathyscape Tri		to the				

113.	The epicentre of the 7.8 Magnitude Turkey-Syria earthquake that occurred on 6 th February 2023:											
	A)											
	B) 90 km west of Murghob, Tajikistan											
	C)	, , , , , , , , , , , , , , , , , , ,										
	D) 30 km south of Halabja											
114.	elect	The theory which tells that the Earth's magnetic field is generated due to the electric current produced by convective motion of metallic fluids in the outer core of the Earth:										
	A)	Hubble's Theory	B)	B) Effective Field Theory								
	C)	•	D)	Quantum Field Theory								
115.	rocks	ostratigraphic unit compo and characterized by licated structural relations:	irregula									
	A)		ergroup	C) G1	roup	D)	Co	mplex				
116.	The Older Greenstone Belt in Dharwar Craton:											
110.	A)	Mangalwar Complex	B)									
	C)	Dharwar Supergroup	_	Peninsular Gneissic Complex								
117.	The divergent boundary of the Indian Plate with the African plate is called:											
	A)	Murray Ridge	B)	<u>•</u>								
	C)	Owen Fracture Zone	D)		Fault Zon	_						
118.	The largest inland oil discovery in India:											
	A) Mangala Oil Field in Rajasthan											
	B) Digboi Oil Field in Assam											
	C) Narimanam Oil Field in Cauvery delta											
	D) Ankleshwar Oil Field in Gujarat											
119.	Which of the following is the most favourable evidence that indicates stream rejuvenation?											
	A)	Natural Levees	B)	Entrench	ed Meand	lers						
	C)	Flood Plains	D)	Cuestas a	and Hogba	acks						
120.	The quality of a sensor that can record the number and dimension of wavelength bands of electromagnetic spectrum, employed in image acquisition: A) Spectral Resolution B) Radiometric Resolution											
	C)	Spatial Resolution	D)	Tempora	l Resoluti	on						
