

23735 120 MINUTES

1. In Cephalochordata, what is the function of the myomeres?														
	A) C)	To aid in resp To filter feed		B) D)		ssist in repr								
2.	,	oinformatics BL Search for hor Analyze RNA Determine pro Identify mutan	AST searce mologous a structure otein funct	ch is used sequence	d to:	-	oduction							
3.		In which of the following snake third supra labial shield touches eye and nasal shield?												
	A)	Naja naja		B)	Vipe	ra russelli								
	C)	Bangaurs coe	ruleus	D)	Ptyas	s mucosus								
4.	Balee A) C)	en plates are fou Blue whale Whale sharks		B) D)	Dolp Ceph	hins alopods								
5.	DNA A)	replication occ	eurs in B) G2	phase.	C)	Synthetic	D)	Mitotic						
6.	Fluid A) B) C) D)	mosaic model of S. J. Singer an Robert Brown Camillo Golg George Emil	nd G. I. Nie 1 i		ne was	proposed by	7 :							
7.	Which A) C)	h of the followi Prostate gland Bulbourethral	l	is not co B) D)	Semi	ed a male ac nal vesicle nolin gland	cessory į	gland?						
8.	High	est concentratio	n of uraa i	s found i	n·									
0.	A)	Renal artery	ii oi uica i	B)		l vein								
	C)	Hepatic artery	/	D)		tic vein								
9.	has b	nding upon the	ogroups						mes					
	A)	6	B) 7		C)	10	D)	5						

10.	 Who among the following is known as the father of genetic engineering? A) Paul Berg B) Hamilton Smith C) Werner Arber D) Kary Mullis 									
11.	In hy A) B) C) D)	B-cells B- cells	technology: are fused wit are fused wi are fused wi f these	th mye	loma o					
12.	a. Pa b. Si	ublingual g	nd ular gland		2. Wi 3. Ste	patic d harton ensen c act of F	duct			
	A) C)	a-3, b-2 a-2, b-3	, c-4, d-1 , c-1, d-4		B) D)		o-3, c-1, d-2 o-2, c-1, d-4			
13.	Rabbit belongs to the order: A) Lagomorpha B) Rodentia C) Hyracoidea D) Procav									
14.	Which A)									
15.		rtion (A): on(R):	to the deve Exposure to	lopmer o suble	nt of re thal do	esistano oses of	for controlling ce in pest popu pesticides car that confer res	lations select	for	
	 A) Both A and R are true and R is the correct explanation of A B) Both A and R are true, but R is not the correct explanation of A C) A is true, but R is false D) A is false, but R is true 									
16.	The JA)	UniProt			ns info B) D)	ormatio PDB Pfam	on about prote	in struc	ctures:	
17.	cAM A) C)	P was dise Funk Robert l	covered by: Brown		B) D)		. Sutherland Lohmann			

18.	The p	ohysiologi 5.65	cal fuel va B)	lue of p	rotein is	s kc C)	eal/g. 9.45	D)	4.45					
19.	Asser	ction (A):						sed to pr	edict the three-					
	Reaso	dimensional structure of a protein. Reason(R): Homology modeling relies on the assumption that proteins with similar amino acid sequences have similar three-dimensional structures.												
	A) B) C) D)	Both A a		true, but false			ct explanati orrect expla		f A					
20.	In eul A) C)	RNA po	eterogeno lymerase l lymerase l	[ear RNA B) D)	RNA	nscribed by polymerase of these.							
21.		, ,		-	•		ive nervous	•						
	A) B) C) D)	Both A a		true but false			ect explanat orrect expla							
22.		le exhibit l effe Whitten			nterest w		er a new fe Haldane	male is in	ntroduced is Coolidge					
	11)	vv intten	D)	vande	nocigii	C)	Traidanc	D)	Coonage					
23.	Mina A)	mata disea Cadmiui		ed by Merc	-	oning. C)	Lead	D)	Fruits					
24.	Spoa A) C)	loptera ma Paddy Coconut		pest of	: B) D)	Stored Sugar	d grains cane							
25.		variant for led by diff Alloenz Co-enzy	erent allel yme			locus: Apoe	turally but nzyme netic group	not funct	ionally and					
26.	A)	h one of th Taenia	solium		B)	Fasci	coelomate? ola hepatic	а						

27.	Which following honey bee is known as rock bee?											
	A)	Apis dors	ata		B)	Apis	indica					
	C)	Apis mell			D)	•	florae					
28.		en a single goer of specie	-	-	into se	veral go	ene pool and	leads to	increasing			
	A)	Cladoger	nesis		B)	Anag	genesis					
	C)	Sibling s			Ď)	_	tic species.					
29.	Orga	nisms that c	can tolera	te wide	range	of tem	perature:					
	A)	Stenothe	rmal		B)	Ecto	therms					
	C)	Endothern	mal		D)	Eury	thermal					
30.		ronmental p			-	ed in:						
	A)	1988	B)	1986		C)	1984	D)	1977			
31.		ch one of the		ng egg								
	A)	Zona pel			B)		na radiata					
	C)	Theca into	erna		D)	Thec	a externA					
32.		tify the wro		_	air:							
	A)	Poison d				-	Variance i					
	B)	Binomial				-			an variance			
	C)	Normal d				-			mode are equ	al		
	D)	Standard	normal di	istribut	ion	-	Mean zero	and var	iance 1			
33.	The mean of absolute deviations from an average is called:											
	A)	Range			B)		dard deviation	on				
	C)	Quartile d	leviation		D)	Mea	n deviation					
34.		ch one of the		_								
	A)	Sycon	B)	Aste	rias	C)	Limulus	D)	Ascaris			
35.							in's theory	of evolut	ion:			
	A)	Struggle f			B)	Varia						
	C)	Survival	of the fitte	est	D)	Salta	tion					
36.	Asse		andom m quilibriun		s essen	tial for	maintaining	Hardy-V	Weinberg			
	Reas	on (R): R	andom m	ating k	eeps th	ne cons	tant allelic f	requency	7.			
	A)						ect explanati					
	B)				R is no	ot the c	correct expla	nation of	f A			
	C)	A is true a										
	D)	A is false	and R is	true.								

37.	Alph	na diversity refers to:		
	A)	Overall diversity of a reg	ion	
	B)	Diversity within a commu	unity	
	C)	Geographical diversity		
	D)	None of these		
38.	ACT	H is secreted by:		
	A)	Adrenal gland	B)	Thyroid gland
	C)	Pituitary gland	D)	Hypothalamus
39.	The	behavior of young ducks fol	llowing	g their mother is:
	A)	Habituation	B)	Imprinting
	C)	Classical conditioning	D)	None of these
40.	Biolo	ogical species concept was a	given b	y:
	A)	Simpson	B)	Mayr
	C)	Charles Darwin	D)	Lamarck
41.	-	phenomenon by which a har		species has evolved to imitate the
	A)	Batesian mimicry	B)	Mullerian mimicry
	Ć)	Aggressive mimicry	Ď)	None of these
42.	Whic	ch of the following statemen	nts is tr	ue about linkage?
	A)	Linked genes are located		
	B)	Linked genes segregate in		
	C)	Linked genes are always chromosome	located	close to each other on the same
	D)		sing o	ver between homologous chromosomes
43.	Whe calle	<u> </u>	es the	expression of a non-allelic gene, it is
	A)	Epistasis	B)	Pleiotropy
	C)	Incomplete dominance	D)	Co-dominance
44.	Whic	ch of the following is an exa	ample o	of a single stranded DNA (ssDNA) virus?
	A)	Herpes simplex virus	B)	Influenza virus
	C)	Human papilloma virus	D)	Hepatitis-B virus.
45.	Wha	t is diastema?		
	A)	The space between inciso	rs and	canines
	B)	The space between inciso	rs and	premolars
	C)	A type of skin cancer		
	D)	A type of heart condition		

46.	Asser	tion (A):	Meiosis is a type of cell division that results in the production of haploid cells from diploid cells.										
	Reaso	on(R):	Meiosis in separation	volves of hon	two ro nologo	ounds o us chro	f cell divis	during fi		ng in the division and			
	A) B) C) D)	Both A a	and R are trand R are trand R are trand R is fare and R is to	ue but alse.			-			A			
47.	Which of the following is not a product of Krebs cycle?												
	A)	cAMP			B)	NAD	Н						
	C)	FADH2			D)	Acety	yl- CoA						
48.	The to	emperate	grass lands	found i	in Sout	h Ame	rica:						
	A)	Steppes	B)	Prairi	e	C)	Pampas	D)		Ecotone			
49.	Biopi A) B) C) D)	The una indigenous The use	gal hunting uthorized u ous commun of genetica it of intellec	se of bi nities o lly mod	iologic r count dified c	al resor ries. organis	urces or kn	owledge ulture	e fre	om			
50.	Which A) B) C)	Evolution time Evolution changes	onary chang	ge occur	rs gradi rs rapid	ually an	nd continue	ously ov	er] env	ibrium? long period of vironmental short periods			
	D)		nary chang	ge occui	rs throu	igh the	inheritanc	e of acqu	uire	ed traits			
51.	Which A) B) C) D)	Australo Homo es	ropus boise	farensis		l specie	es?						
52.	The to A) C)	A. G. Ta	stem was c ansley d Lindema		by: B) D)	_	ne Odum of these						

53.	The vA)	vitamin require Vitamin A			_	C)	Vitamin K	D)	Vitamin B`12
54.	How A)	many pairs of	f somite B)	es are so	een in 2	24 hour C)	chick embry	o? D)	8
55.	ZW-Z A) C)	ZZ type sex do Birds Grass hoppe		ation is	found B) D)	in: Moth Droso			
56.	Extin A)	act mammal lil Synapsida				ed in th C)	e subclass: Parapsida	D)	Anapsida
57.	Matc a. Ti b. In c. Vi d. Ro								
	A) C)	a- 2, b-3,c-1 a- 2, b-3,c-4			B) D)	,	o-3,c-2,d-4 o-2, c-3, d-4		
58.	Find A)	the median of	the fol	lowing 6	data se	et {8, 9	9, 7, 3, 3, 6, 1 4.5	} D)	5
59.	The a A) C)	amino acids w Proline and Proline and	methio		by a s B) D)	Trypt	odon: ophan and mo ionine and se		ne
60.	Horse A) C)	e belongs to the Perissodacy Cetacea		r:	B) D)	Artio Chiro	dactyla ptera		
61.	Which A)	ch of the follow Sphenodon Crocodillus	wing be	elongs t	o the C B) D)		dactylus	lia?	
62.	Which A) C)	ch of the follow cAMP Ca++	wing is	not a s	econda B) D)	•	senger? ol triphospha	te	
63.	Polyt A) B) C) D)	ene chromoso Liver cells Salivary gla Primary ooc None of the	nd of E	Orosoph	ila				

64.	Germplasm theory was proposed by:											
	A)	Charles Dary			B)	_	de Vries					
	C)	August Weis	smann		D)	K. A.	Fisher					
65.	A) B) C)	lue paradox re Total RNA c Total DNA c Total DNA c	content content content	of hapl	oid gen	ome	L-1411					
	D)	Sum of DNA	ana K	INA COI	mem o	a napi	ioid ceii					
66.	Which A) B) C) D)	Common col Common col Common col AIDS and Ty Cholera and	ld and (ld and a yphoid	Cholera AIDS		disease	??					
67.	The p	ermissible noi 75 dB	se leve B)	l for co 70 dB		ial zon C)	e in day time 100 dB	in Indi	a: 50 dB			
68.	The so A) C)	exual reproduc Liver cells of Intestine of r	f man		odium B) D)	RBC	occurs in: of man ary gland of n	nosquite).			
69.		requency of a equency of her						n is 0.6	. Calculate			
	A)	0.48	B)	0.16		C)	0.24	D)	0.36			
70.		atch of 15 stud 76, 49, 52, 61, 55										
71.	The n A) B) C) D)	ational park w Jim Corbett l Gir national Kazinranga r Ranthambor	Nationa park nationa	al park l park		o is fo	und:					
72.	Which A) C)	n of the follow Monosaturat Saturated fat	ed fatty		go beta B) D)		aturated fatty	acid				
73.	tRNA A) B) C) D)	was discover Paul Zamech George E Pa Sydney Bren Jim Watson	ik lade	d Franc	ois Jac	ob						

74.	Centr	Centrolecithal eggs are found in:												
	A)	Rat	B)	Frog		C)	Amphioxus	D)	Drosophila					
75.	Polys	permy is foun	d in:											
	A)	Birds			B)		laginous fishe	S						
	C)	Reptiles			D)	All o	f these.							
76.	What	is the differer	nce bety	ween bo	ottlene	ck effe	ct and founder	effect	:?					
	A)					•	astrophic even ls establishing							
	B)						se in genetic d netic diversity	iversity	y, while the					
	C)	The bottlene	ck effe	ct leads	s to a d	lecreas	e in genetic di enetic diversity	-	, while the					
	D)					_	t are the same							
77.			_				rue about Sph		ı ?					
				iider oi	the of	uer Kii	ynchocephalia	1						
	2. It has a parietal eye3. It is only found in New Zealand													
		4. It shows cosmopolitan distribution												
		•				4	1							
	A) C)	2 & 4 only 1, 2, 3 and 4			B) D)	4 on	and 3 only							
	C)	1, 2, 3 and 4	•		D)	1, 2 0	ind 5 only							
78.	Lateral ventricles are connected to third ventricle by:													
	A)	Foramen of	Monro		B)	,								
	C)	Iter			D)	Cent	ral canal							
79.		h of the follow	wing are	e sedim	•	•								
		ilphur cycle				-	rus cycle							
	3. IN	itrogen cycle			4. C	arbon c	cycle							
	A)	1 only	B)	1& 2	only	C)	2 & 3 only	D)	1, 2, 3 & 4					
80.	The i	nternational a	greeme	nt whic	h aims	s to pro	tect the ozone	layer	by phasing out					
	the p			nption o			leting substanc	es:						
	A)	Paris Agreer				•	o protocol							
	C)	Montreal pro	otocol		D)	Rio d	leclaration							
81.	The i		rganiza	tion wh	nich we	orks to	protect and re	store tl	he world's					
	A)		life Fur	nd (WW	JF)									
	A) World Wildlife Fund (WWF)B) International Union for Conservation of Nature (IUCN)													
	C) Ramsar Convention Secretariat													
	D)			,										

82.		th type of learning in and error or explicit r		udden problem solving without prior experience							
	A)	-	B)		nitive learnir	ισ					
	C)	Latent learning	,	_	rumental con	•	σ_{\cdot}				
	C)	Latent learning	D)	inst	ramental col	iditioning	6.				
83.	Matc	h the following:									
		ıplectella	1. Portug	uese man	of war						
		nysalia	2. Venus								
	c. M	eandrina	3. Sea and	3. Sea anemone							
	d. A	damsia	4. Brain o	coral							
				_							
		a-4, b-2, c-3, d-1			b-1, c-4, d-3						
	C)	a-2, b-4, c-3, d-1	D)	a-1,	b-2, c-4, d-3						
84.	The s	statistical tool used to les?	compare the	he means	s of three or 1	more inde	ependent				
	A) 1		B)	Stud	lent's t- test						
	Ć)	•			ression analy	vsis					
85.		ch of the following ac			•						
	A)		,			okaryote	S				
	C)	28S rRNA in Euka	ryotes D)	Both	A and B						
86.	Durir A)	ng meiosis, reduction Anaphase I B)									
97	Thor	nost sommonly muts	stad tumor a	nan road	r cana in hu	mon.					
87.	A)	nost commonly muta p53 B)	BRCA2		•	man: D)	BRCA1				
	A)	p55 b)	DRCAZ	C)	AIC	D)	DRCAI				
88.	Whic	ch of the following is	an autoson	nal domir	nant disorder	·?					
00.	A)	Cystic fibrosis			nylketonuria	•					
	C)	Sickle cell anaemia	,		sthenia grav	is					
	,		ŕ	•	· ·						
89.	Whic	ch of the following ac	ets as the be		-	on in stre	eams?				
	A)	Nekton	B)								
	C)	Plankton	D)	Subi	merged plant	ts					
00	A 222	ution (A). Drumounid	. f	.1	مام نسمید						
90.				lost as he	aprignt eat when it ti	ravels fro	om one				
	A >	Do4h A 5::-1 D - 4	on 1 D '	a 41 a a		: A					
	 A) Both A and R are true and R is the correct explanation of A B) Both A and R are true but R is not the correct explanation of A 										
	B)			s not the (correct expla	mauon oi	1 A				
	C) A is true and R is false. D) A is false and R is true.										

91.	Extinction of key stone species in a community will results in:													
	A)	Decline in s	pecies	diversit	y									
	B)	Increased se	conda	ry produ	ctivity									
	C)	Increased nu												
	D)	Decrease in	primai	ry produ	ctivity	•								
92.	In S	In SDS- PAGE, protein sample is treated with SDS for:												
	A)	Denaturing	protein	1										
	B)	Making the	proteir	negativ	vely ch	arged								
	C)	Making prot	tein po	sitively	charge	d								
	D)	None of the	se.											
93.	'Car	bonic anhydras	se' is p	resent ii	n:									
	A)	Plasma	B)	RBC		C)	Platelets	D)	WBC					
94.	Men	maid's purse is	found	in:										
	1. G	Fround shark	2. S	kates	3. Cl	nimae	eras 4.	Cybium						
	A)	1 & 4 only	B) 2	& 4 on	ly	C)	1,2 & 3 or	nly D)	1, 2, 3 & 4					
95.		egg white con	itains a	protein	called	avidi	n, which may	y block tl	ne					
	A)	Biotin	B)	Asc	orbic acid									
	C)		min		D)		ocalciferol							
96.	Cyar	nide is a non-co	ompeti	tive inh	ibitor c	of the	enzyme:							
	A)	Cytochrome	C oxi	dase	B)	Hex	okinase							
	C)	Topoisomer	ase		D)	Isoc	itrate dehyro	genase.						
97.	Hum	nan placenta be	longs	to:										
	1.	Epitheliocho			2.		mochorial							
	3.	Metadiscoid	lal		4.	Syn	desmochoria	1						
	A)	1 & 2 only	B)	2 & 3	3 only	C)	1,2 & 3 only	y D)	4 only					
98.	The	pore in gastrul	a is kn	own as:										
	A)	Blastopore			B)		tropore							
	C)	Gonopore			D)	Non	e of these							
99.		ch of the follow	_		s cause	ed due	e to chromos	omal abe	rration?					
	 Congenital night blindness Cri-du-chat syndrome CML Duchenne's muscular dystrophy 													
	3. C	2ML 4.	Ducne	ime s m	uscuiai	uyst	горпу							
	A)	1 & 2 only	B)	2 & 3	only	\mathbf{C}	2 & 4 only	v D)	3 only					

100.	The phase of meiosis in which homologous chromosomes exchange genetic information:											
	A)	Prophase I	B)	Metap	hase I	C)	Anaphase I	D)	Prophase II			
101.	Protei A)	n rich regions C-banding	of chro			be high	•	D)	R-banding			
102.	Extino A)	ction of dinosa Cretaceous	aurs wa B)	s durin Triass	•	period. C)	Jurassic	D)	Permian			
103.	is self	nt is heterozyg crossed and 3 zygous for the 75	300 seed	ds were	obtair	ned. Ho						
104.	The c	odon known a UAA	s 'Opal B)	l': UGA		C)	UAG	D)	AUG			
105.	The p A)	rosthetic grou NADP	p of NA B)	ADH de FAD	ehydro	genase: C)	FMN	D)	NADH			
106.	An es A) C)	sential fatty ac Linolenic acid Palmitic acid	id		B) D)		eic acid A and B					
107.	Cyclo A)	morphosis is o Daphnia	exhibite B)	ed by: Param	ecium	C)	Planaria	D)	None of these			
108.	Radul A)	a is seen in: Mollusca	B)	Arthro	poda	C)	Annelida	D)	None of these			
109.	Alpha A) C)	Adipose in s Muscle tissu	kin	d main	ly occı B) D)	ars in: Liver Brain						
110.	Neuro A)	ogenic heart is Mollusc	found:		aceans	C)	Rodents	D)	Both A and B			
111.	Which A) C)	h part of the bar Broca's area Hippocampu		nslates	though B) D)	nt into s Amyg Brain	dala					
112.	Antib A) C)	odies are: Glycoproteir Lipoproteins			B) D)	Steroie None	ds of these					

113.	An evolutionary change of a single lineage where one taxon is replaced by another without ranching:							
	A)	Anagenesis		B)	Clac	logenesis		
	C)	Allopatric s	peciation		Clac	•		
114.								
	A)	Arachidonio	c acid	B)		nitic acid		
	C)	Lecithin		D)	Eico	sapentaenoic a	.c1d	
115.	to liver cells?							
	A)	HDL		B)	LDI	_		
	C)	VLDL		D)	Chy	lomicorns		
116.								
	A)	Mitochondr		,		lear DNA		
	C)	Chloroplast	DNA	D)	Ribo	osomal DNA		
117.	Allozyme polymorphism is most useful for studying:							
	A)							
	B)	,						
	C)							
	D)	D) Proteins with low molecular weight.						
118.	In DNA barcoding, the term "cryptic species" refers to species that							
	A)	Are only found in very specific geographic locations						
	B)	·						
	C)	· · · · · · · · · · · · · · · · · · ·						
	D) Are difficult to identify based on their morphological characters.							
119.	Purse seine nets are typically used to catch:							
	A)	Shellfish						
	B)							
	C)	,						
	D) Squids and other Cephalopods.							
120.	Which of the following BLAST programs is used to compare a nucleotide query							
	sequence to a protein database?							
	A)	BLASTN	B)	BLASTP	C)	TBLASTN	D)	TBLASTX