Converting volume integral into surface integral is done by using---. 1.

- Gradient theorem for line integrals
- B) Gauss's divergence theorem
- C) Green's theorem
- D) Stoke's theorem

2. If the velocity of light (c), the constant of gravitation (G) and Planck's constant (h) be chosen as the fundamental units, find the dimension of mass in this new system.

- A) $\left[c^{\frac{1}{2}}h^{\frac{1}{2}}G^{-\frac{1}{2}}\right]$ B) $\left[chG^{-1}\right]$ C) $\left[ch^{-1}G^{-\frac{3}{2}}\right]$ D) $\left[ch^{2}G^{-\frac{2}{3}}\right]$

Find the value of 'a' $\vec{A} = a\hat{\imath} + \hat{\jmath} + \sqrt{5\hat{k}}$ subtends an angle 60° with 3. $\vec{B} = 4\hat{\imath} - 5\hat{\jmath} + \sqrt{5\hat{k}}$

- A) $\sqrt{\frac{35}{3}}$ B) $\sqrt{\frac{26}{3}}$ C) $\sqrt{\frac{2}{3}}$ D) $\sqrt{\frac{46}{3}}$

Find the divergence of the product of a scalar (S) and a vector (A). 4.

- S div A+A . grad SA)
- $(\nabla S \nabla x \mathbf{A}) (\nabla \cdot \mathbf{A} \nabla S)$ B)

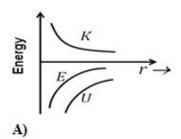
A. grad S C)

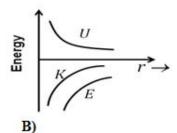
D) None of these

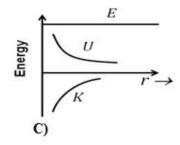
Find the Fourier cosine transform of e^{-ax} , a > 0: 5.

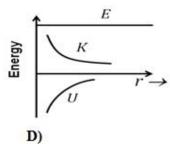
- A) $\left(\frac{a}{a^2+s^2}\right)$
- B) $\frac{\sqrt{2}}{\pi} \left(\frac{a}{a^2 + s^2} \right)$
- C) $\frac{\sqrt{2}}{\pi} \left(\frac{a}{1+c^2} \right)$

D) $\left(\frac{a}{a^2+1}\right)$


Which of the following is equivalent to the series, $x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$ 6.


- ln(1+x)A)
- B) Sin x
- C) e^x
- 1/(1 + x)D)


7. The Lagrange's equation of motion for an electrical circuit comprising of an inductance (L) and a capacitance (c). The capacitor is charged to 'q' Coulombs and the circuit current is 'i' Amperes is....?


- A) $L\ddot{c} + \frac{\ddot{q}}{c} = 0$ B) $L\ddot{q} + \frac{\dot{q}}{c} = 0$ C) $L\ddot{q} + \frac{q}{c} = 0$ D) None of these

- 8. Which of the following is **not** true regarding the Poisson- brackets?
 - $\dot{F}(q, p, t) = [F, H] + \frac{\partial F}{\partial t}$ A)
- $\left[q_i, q_j\right]_{q, p} = 0$ B)
- $\left[q_{i}, p_{j}\right]_{q, p} = \delta_{ij}$ C)
- D) If [F, H] = 0, then H is a constant of motion
- 9. A cricket ball of mass 150 g moving with a velocity of 12 m/s is hit by a bat so that the ball is turned back with a velocity of 20 m/s. The force of the blow lasts for 0.01 s. Calculate the average force on the ball exerted by the bat.
 - A) 240 N
- B) 120,000 N
- C) 480 N
- D) 120 N
- 10. Which of the following correctly depicts the variation of kinetic energy (K), potential energy (U) and total energy (E) of the circular (radius = r) planetary motion of a body?

- The generalized momenta for the Lagrangian $L = \frac{m}{2} (\dot{r}^2 + r^2 \dot{\theta}^2) \frac{v}{r}$ are----. A) $m\dot{r}^2$ and $mr^2\dot{\theta}$ B) $m\dot{r}^2$ and $mr^2\theta^2$ 11.
 - $m\dot{r}^2$ and $mr^2\dot{\theta}$ A)
- C) mr and mrθ
- $m\dot{r}$ and $mr^2\dot{\theta}$ D)
- 12. If Q = Aq + Bp, P = Cq + Dp is canonical, then,
 - AD BC = 1A)
- B) AD + BC = 0
- C) AD BC = -1
- AD BC = 0D)

- 13. Find the angular momentum of a particle of mass m moving under the action of a central force whose potential V(r)=kmr³ (k>0)) such that its orbit will be a circle of radius a about the origin.
 - $ma^2\sqrt{3ka}$ A)
- B) ma²√ka
- ma√ka C)
- ma³√ka D)

14. Match the List I with that in List II

Li	st I	List II			
a	D' Alembert's principle	1	$\delta \int_{t_1}^{t_2} L dt = 0$		
b	Hamilton's characteristic function	2	$\sum_{j} p_{j} \dot{q}_{j} - L(q_{j} \dot{q}_{j})$		
С	Hamilton's principle	3	$\sum (F_i - \dot{p}_i).\delta r_i = 0$		
d	Hamiltonian	4	$\int \sum_j p_j \dot{q}_j dt$		

- A) a-3, b-4, c-2, d-1
- B) a-4, b-3, c-1, d-2
- a-3, b-4, c-1, d-2 C)
- a-4, b-3, c-2, d-1 D)
- 15. Assertion(A): The moment of inertia of a rigid body reduces to its minimum value, when the axis of rotation passes through its centre of gravity.

Reason(R): The weight of the body always acts through its centre of gravity.

- Both A and R are true and R is the correct explanation of A A)
- B) Both A and R are true but R is not the correct explanation of A
- C) A is true but R is false
- D) A is false but R is true
- 16. A particle moving on a very long frictionless wire which rotates with constant angular velocity about a horizontal axis is an example of:
 - Holonomic, conservative system
 - B) Rheonomic, Non-holonomic, Non-conservative system
 - C) Rheonomic, holonomic, conservative system
 - D) Conservative system
- 17. The expectation value of momentum is----.
 - A) $\int \psi^* \psi \left(\frac{\hbar}{i} \nabla \right) d\tau$
- B) $\int \psi^* i\hbar \nabla \psi \, d\tau$
- C) $\int \frac{\hbar}{i} \nabla (\psi^* \psi) d\tau$ D) $\int \psi^* \left(\frac{\hbar}{i} \nabla\right) \psi d\tau$

Normalize the wave function $\psi(x) = N \sin\left(\frac{4\pi x}{L}\right)$ for a quantum particle of mass 18. m confined to move in the domain $0 \le x \le L$. Also calculate the probability P(x) of finding the particle in the region from x = 0 to x = L/4.

A)
$$\psi(x) = \sqrt{\frac{3}{L}} \sin\left(\frac{8\pi x}{L}\right) \text{ and } P(x) = 15\%$$

B)
$$\psi(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{4\pi x}{L}\right) \text{ and } P(x) = 25\%$$

C)
$$\psi(x) = \sqrt{\frac{1}{L}} \sin h\left(\frac{4\pi x}{L}\right) \text{ and } P(x) = 40\%$$

Wavefunction is non-normalizable and hence cannot calculate the D) probability

19. Match the List I with that in List II, which includes terms from partial wave analysis of scattering theory.

	List I	List II				
a	Scattering amplitude $f(\theta)$	1	$\frac{4\pi}{k^2} \sum_{l=0}^{\infty} (2l+1) \sin^2 \delta_l$			
b	Total scattering cross section (σ)	2	$\frac{1}{k} \sum_{l=0}^{\infty} (2l+1) P_l(\cos \theta) e^{i\delta_l} \sin \delta_l$			
С	Phase shift ($\sin \delta_l$)	3	$\sigma = \frac{4\pi}{k} Im f(0)$			
d	Optical theorem	4	$-k\int_0^\infty U(r)r^2j_{l^2}(kr)dr$			

What is the degeneracy for the n=2 level of a three dimensional isotropic 20. oscillator?

- A) 2
- B)
- C) 6
- D) 3

21. Find the average potential energy of a one dimensional harmonic oscillator in its ground state. Given $\psi_0 = \left(\frac{\alpha}{\pi}\right)^{1/4} e^{\frac{-\alpha x^2}{2}}$ where $\alpha = (m \omega)/\hbar$.

A)
$$\frac{1}{2}\hbar\omega$$

- A) $\frac{1}{2}\hbar\omega$ B) $2\hbar\omega$ C) $\frac{3}{4}\hbar\omega$ D) $\frac{1}{4}\hbar\omega$

- 22. Find the value of $L_+L_- + L_-L_+$ when operates on ψ_{lm} in the state /l=1, m=1>. L_+ and L_- are angular momentum ladder operators.
 - A) $\frac{\hbar^2}{2}$
- B) $2\hbar^2$
 - $2\hbar^2$ C) \hbar^2
- D) 0
- 23. Assertion: Klein-Gordon equation is $\frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} \nabla^2 \psi + \left(\frac{mc}{\hbar}\right)^2 \psi = 0$ and it describes a relativistic particle.

Reason: Klein-Gordon equation is valid for electron.

- A) Both A and R are true and R is the correct explanation of A
- B) Both A and R are true but R is not the correct explanation of A
- C) A is true but R is false
- D) A is false but R is true
- 24. Which of the following correctly gives the *TdS* equation?

A)
$$TdS = C_v dT + T \left(\frac{\partial V}{\partial T}\right)_P dP$$

B)
$$TdS = C_v dT - T \left(\frac{\partial P}{\partial T}\right)_V dP$$

C)
$$TdS = C_p dT - T \left(\frac{\partial V}{\partial T}\right)_p dP$$

D)
$$TdS = C_p dT + T \left(\frac{\partial P}{\partial T}\right)_V dV$$

- 25. In a canonical ensemble, when a system A of fixed volume comes in contact with a large reservoir B, then ----.
 - A) A can exchange only particles with B
 - B) A can exchange only energy with B
 - C) Nothing can be exchanged between A and B
 - D) Both particle and energy can be exchanged between A and B
- 26. Match the List I with that in List II

	List I	List II			
a	Stirling's approximation	1	$T_B < \frac{h^2}{2\pi m k_B} \left(\frac{N}{2.61 \ V}\right)^{2/3}$		
b	Bose Einstein condensation	2	Entropy and maximum probability		
С	Change in thermodynamic potentials	3	ln N! = N ln N - N		
d	Boltzmann relation	4	Chemical potential		

- A) a-2, b-4, c-3, d-1
- B) a-3, b-1, c-4, d-2
- C) a-2, b-3, c-1, d-4
- D) a-1, b-3, c-2, d-4

27.	At what temperature will the average speed of hydrogen molecule be the same as that of nitrogen molecule at 35°C?										
	A)	308°K	B)	33°K		C)	22°K	D)	152°K		
28.		All quantum All quantum Both A and I Only B is con	states states states	in half with E- with E>	particl $<$ E_{F0} , a	e having	g energy E pied				
29.	The re	elation $\left(\frac{\partial P}{\partial T}\right)_S$ (Ehrenfest Eq Maxwell's ec	uation	1	$\begin{pmatrix} \frac{\partial V}{\partial T} \end{pmatrix}_{S} :$ B) D)	TdS ed	called? quation –Helmholtz	z equatior	ı		
30.	Which space A) C)	h of the follow? Liouville The Landau Theo	eorem	ves mo	B) D)	Londo	mpressible n Theory theorem	fluid in p	hase		
31.		he ratio of ten num at wavele 7:5						emissions D)	s are 5:7		
32.	Which A) B) C) D)	h statistics wil Maxwell-Bo Bose-Einstei Fermi-Dirac Neyman-Pea	ltzman n statis statisti	n statis tics cs	tics						

Which of the following is Poisson equation ?
A) $\nabla^2 V = \frac{-\rho}{\epsilon_0} \pi r^2$ B) $\nabla^2 V = \frac{-\rho}{\pi \epsilon_0}$ 33.

A)
$$\nabla^2 V = \frac{-\rho}{\epsilon_0} \pi r^2$$

$$\mathbf{B}) \qquad \nabla^2 V = \frac{-\rho}{\pi \epsilon_0}$$

C)
$$\nabla^2 V = \frac{-\rho}{\epsilon_0}$$

D)
$$\nabla^2 V = 0$$

Identify the continuity equation: A) $\nabla \cdot \vec{\rho} + \frac{\partial J}{\partial t} = 0$ 34.

A)
$$\nabla \cdot \vec{\rho} + \frac{\partial J}{\partial t} = C$$

B)
$$\nabla . \vec{J} = -\frac{\partial \rho}{\partial t}$$

C)
$$\nabla \cdot \overrightarrow{D} + \frac{\partial E}{\partial t} = 0$$

D) None of these

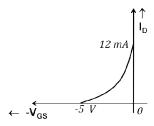
- 35. For two finite straight line charges λ at d distance apart, moving at constant speed v, calculate the value of v in order to balance the magnetic attraction and the electric repulsion.
 - $4.5 \times 10^6 \text{ m/s}$ A)
- B) $6.6 \times 10^8 \text{ m/s}$
- $9.3 \times 10^8 \, \text{m/s}$ C)
- D) $3 \times 10^8 \text{ m/s}$
- 36. Which of the following is the Lorentz gauge and Coulomb gauge respectively?
 - $\nabla \cdot \vec{A} \epsilon_0 \mu_0 \frac{\partial V}{\partial t} = 0, \quad \nabla \vec{A} = 0$
 - B) $\nabla \cdot \vec{A} + \epsilon_0 \mu_0 \frac{\partial V}{\partial t} = 0, \quad \nabla \cdot \vec{A} = 0$
 - C) $\nabla^2 \cdot \vec{A} \epsilon_0 \mu_0 \frac{\partial V}{\partial t} = 0$, $\nabla x \vec{A} = 0$
 - $\nabla^2 \cdot \vec{A} \epsilon_0 \mu_0 \frac{\partial V}{\partial t} = 0, \quad \nabla \cdot \vec{B} = 0$ D)
- Identify the Poynting theorem: 37.
 - A) $\frac{d^2W}{dt^2} = -\frac{\partial}{\partial t} \int \left(\frac{B^2}{2U_0} + \frac{\varepsilon_0 E^2}{2} \right) d\tau \int \left(\frac{\vec{E} \times \vec{B}}{U_0} \right) . dS = 0$
 - B) $\frac{dW}{dt} = -\frac{\partial}{\partial t} \int \left(\frac{B^2}{2U_0} + \frac{\varepsilon_0 E^2}{2} \right) dS \int \left(\frac{\vec{E} \times \vec{B}}{U_0} \right) . dS = 0$
 - C) $\frac{dW}{dt} = -\frac{\partial}{\partial t} \int \left(\frac{B^2}{2U_0} + \frac{\varepsilon_0 E^2}{2} \right) d\tau \int \left(\frac{\vec{E} \times \vec{B}}{U_0} \right) . dS = 0$
 - D) $\frac{dW}{dt} = -\frac{\partial}{\partial t} \int \left(\frac{B^2}{2U_0} + \frac{\varepsilon_0 E^2}{2} \right) d\tau \int \left(\frac{\vec{E} \times \vec{B}}{U_0 \varepsilon_0} \right) . dS = 0$
- 38. Calculate the inductance of a solenoid of 2000 turns wound uniformly over a length of 50 cm on a cylindrical paper tube 4 cm in diameter:
 - $80 \pi^2 H$ A)
- $80 \, \pi^2 \, \text{mH}$ C) B)
- $800 \pi^2 H$ D)
- Paraffin has the index of refraction 1.45. Calculate the relative permittivity of 39. Paraffin and velocity of electromagnetic radiation in Paraffin.
 - $2.1 \text{ and } 2.07 \times 10^8 \text{ m/s}$ A)
- B) $4.2 \text{ and } 3 \times 10^8 \text{ m/s}$
- 8.85×10^{-12} and 3×10^8 m/s D) Data inadequate C)
- $\sqrt{\frac{\mu}{\varepsilon}}$ has the dimension of ----? (where μ is permeability and ε is permittivity of the 40. medium)
 - A) Capacitance
- B) Refractive index
- Inductance C)
- D) Impedance

- 41. Choose the correct option:
 - A) Retarded potential is associated with nonstatic sources
 - B) Divergence of a solenoidal current is zero
 - C) Poynting vector gives the energy flux density transported by the fields
 - D) All of the above
- 42. Power radiated by a point charge is:
 - A) Inversely proportional to the square of its acceleration
 - B) Directly proportional to its acceleration
 - C) Directly proportional to the square of its acceleration
 - D) Inversely proportional to the cube of its acceleration
- 43. The Lande g-factor for the level ${}^{3}P_{1}$ is ----.
 - A) 3/2
- B) 2/3
- C) 1/2
- D) 5/2

44. Match the List I with that in List II

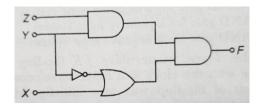
	List I	List II (wavelength range involved)			
a	Electron Spin Resonance	1	Visible-UV range		
b	Vibrational states transition	2	Micro wave		
c	Nuclear Magnetic Resonance	3	Radio waves		
d	Electronic level transition	4	Infrared		

- A) a-4, b-2, c-1, d-3
- B) a-1, b-3, c-2, d-4
- C) a-3, b-1, c-2, d-4
- D) a-2, b-4, c-3, d-1
- 45. Coherence length of laser is:
 - A) Directly proportional to width of spectral line
 - B) Directly proportional to length of active medium
 - C) Inversely proportional to width of spectral line
 - D) Inversely proportional to length of active medium
- 46. Which of the following is true?
 - A) All three fundamental vibrational modes of H₂O are Raman active
 - B) H₂ can give IR or microwave spectra
 - C) Symmetric stretching mode of CO₂ is Infrared active
 - D) Both B and C
- 47. Identify the force constant of the bond in a diatomic molecule behaving as an harmonic oscillator.
 - A) $k = 4\pi \mu^2 \bar{\nu}_e^2$
- B) $k = 4\pi^2 c^2 \mu \overline{\nu}_e^2$
- C) $k = 4\pi^2 \mu^2 \bar{\nu}_e^2$
- D) $k = 2\pi^2 \mu^2 \bar{\nu}_e^2$


48.	Which of the following relation connects rotation constant and centrifugal distortion constant?									
	A)	$\overline{\omega}^2 = \frac{2B^2}{D}$	B)	$B = \frac{1}{3}$	h 8π²ID	C)	$\overline{\omega}^2 = \frac{^4B^3}{^D}$	D)	$\overline{\omega}^2 = \frac{D}{4B^3}$	
49.	Spon A) C)	Phosphoresc			B)					
50.	grour		803, 7	.4828 a		of an excited state measured from the 878 respectively. Find the spectral term				
	A)	$^{3}D_{2}$, $^{3}D_{1}$, $^{3}D_{0}$			B)	$^{2}P_{3/2}$,	${}^{2}P_{1/2,}{}^{2}P_{0}$			
	C)	${}^{3}S_{2}, {}^{3}S_{1}, {}^{3}S_{0}$			D)	${}^{3}P_{2}$, 3	$P_{1,}{}^{3}P_{0}$			
51. Find the ratio of frequencies of the first line of Lyman series and second line Balmer series:							cond line of			
	A)	27:5	B)	4:1		C)	1:4	D)	5:27	
52.		ılate the Zeem Γ. The unmod				eeman e	effect under a	magne	tic field of	
	A)	$0.42~\mathrm{\AA}$	B)	4.2 Å		C)	$0.042~\mathrm{\AA}$	D)	None of these	
53.	The c	condition for tl	ne max	imum i	ntensit	y of sp	ectral line is -			
	A)	$\Delta L = 1, \Delta J =$	-1		B)	$\Delta L=-$	-1 , $\Delta J = -1$			
	C)	$\Delta L = 1$, $\Delta J =$	0		D)	$\Delta L = -$	-1 , $\Delta J = 1$			
54.	Whic	h nucleus hav	e maxi	mum b	inding	energy	per nucleon?			
	A)	Fe ⁵⁶	B)	U^{235}	C	C)	Mo ⁹⁷	D)	Ba ¹³⁸	
55.	Whic A)	h is a baryon? neutron	B)	pi-me	eson	C)	mu-meson	D)	electron	
56.	Whic	h of the follow	ving pa	ir of qu	antitie	s is no t	t conserved in	nuclea	r reactions?	
	 Which of the following pair of quantities is not conserved in nuclear reactions? A) spin, isotopic spin B) linear momentum, angular momentum C) magnetic dipole moment, electric quadrupole moment D) charge, parity 									

57.	Whic A)	th of the below $4p + 2\beta^-$		ions re	semble	es carbo	on-nitrogen c	ycle?			
	B)	$3p \rightarrow He^4 +$	⊦ β ⁺								
	C)	$4p \rightarrow He^4 +$	+ 2β ⁺	+ 2γ ra	ıys + 2	υ					
	D)	$N_3^{14} + C_3^{13}$ -	+ O ¹⁵ -	→ He ⁴	+ 2γ r	ays					
58.	The g	ground state of	f deute	ron is -							
	A)	3_1S state									
	B)	$_{2}^{3}P$ state									
	C)	Mixture of ${}_{1}^{3}S$ and ${}_{1}^{3}P$ states									
	D)	Mixture of	3S an	$d_{1}^{3}D$ s	tates						
59.	Whic	ch of the follow Actinium	wing di B)	isintegr Uran		eries w	rill give Bi ²⁰⁹ Thorium	as the end D)	nd product? Neptunium		
60.	1 and	lioactive source 12 respectively lly in the radio (3q).	y. Calc	ulate tl	ne tota	l numbe	er of radioact	ive nucl	ei present		
	A)	$108x\ 10^5$	B)	32 x	10^{5}	C)	76x 10 ⁵	D)	$108x\ 10^7$		
61.	Whic	Which of the following pairs are correctly matched? A) Nuclear fusion → Atom Bomb									
	B)	Breeder reac	tor	\rightarrow	Pu^2	39					
	C)	Nuclear force	e	\rightarrow	Spin	indepe	ndent				
	D)	None of thes	e								
62.		ulate the thresh $n \to {}^{19}_{8}O + p$						for the re	eaction		
	A)	4.1 MeV	B)	-4.1	MeV	C)	3.7 MeV	D)	2.9 MeV		
63.	Choo	se the correct	option	for the	e corre	ct matc	h of the follo	wing pa	irs		
	A)	Alpha decay	→ Gai	mow's	theory						
	B)	Beta decay	→ Ferm	ni's the	ory						
	C)	Neutrino hyp	othesi	s > Pa	uli						
	D)	All of these									

64.	 In a synchrotron, the magnetic field must be changed to compensate for A) Increase in radius of the circular path B) Air resistance C) Relativistic increase in mass D) None of these 									
65.	The A) B) C) D)	Pauli's ex The CPT	n-Nishiji clusion p theorem	ma formula		uced to sa	atisfy			
66.	Cho A) B)	· ·				±				
67.	A lattice plane cuts intercepts of 2a, are primitive vectors of the unit cell, A) 1/2:1/3:1/6 B) 1:2:3					_	indices of	•		o, c
68.	At le	ower temper	ature, the	lattice spec	ific h	eat varies	as			
	A)	T^3	B)	$\exp(T^2)$	C	T^{-3}		D)	T^{-1}	
69.	Ma	tch the List 1	I with that	t in List II						
]	List I		List II					
	a					Brillouin	Zone			
		Reflection f	Reflection from an (hkl) plane Wiedemann-Franz law			2 Quantum tunneling				
	b		n-Franz lav	W	2	Quantun	n tunneling	g		
				W	3	Quantum Lorentz		g S		
	b	Wiedemann	effect			Lorentz			tor	
	b c d	Josephson e Forbidden e a-4, b-3, c	effect energy ban c-1, d-2	nd	3 4	Geometr	number ical struct		tor	
70.	b c d A) C) Calceelect	Josephson e Forbidden e a-4, b-3, c	effect energy ban c-1, d-2 c-4, d-3 lectrical c 300 Vm ⁻¹ c	B) D) conductivity causes a drif	3 4 a-a-of a	Geometr -3, b-4, c4, b-3, c- n n-type	number ical struct 2, d-1 2, d-1 semicond	ure fac	wherein ar	
70.	b c d A) C) Calceelect	Wiedemann Josephson e Forbidden e a-4, b-3, e a-1, b-2, e culate the el tric field of 3	effect energy ban c-1, d-2 c-4, d-3 dectrical contraction is 32	B) D) conductivity causes a drif	a a of a t velo	Geometr -3, b-4, c4, b-3, c- n n-type city of 10	number ical struct 2, d-1 2, d-1 semicond 0 ms ⁻¹ for	ure fac	wherein ar	e


- 72. Which of the below represents the unit cell characteristics given as $a \neq b \neq c$ and $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$
 - Triclinic A)

- Monoclinic B)
- C) Orthorhombic
- **Trigonal** D)
- 73. Calculate the Hall voltage produced in a sample of Silicon of thickness 200 µm when dopped with 10²³ phosphorous atoms/m³ and subjected to a magnetic field of 1.6 T and a current of 1mA is passed through it.
 - A) $0.5 \mu V$
- B) 0.5 mV
- C) 6.25 mV
- D) 1.5 mV
- 74. Which of the following relates polarizability of a dielectric material?
 - **Ehrenfests Equations** A)
 - Curie-Weiss law B)
 - Clausius-Mossotti relation C)
 - D) Debye-Scherre formula
- 75. The equation of drain current (in mA) for the transfer characteristics of a JFET shown in figure is ---.

- A) $I_D = 12 \left[1 + \frac{v_{GS}}{5} \right]$ B) $I_D = 12 \left[1 \frac{v_{GS}}{5} \right]^2$ C) $I_D = 12 \left[1 \frac{v_{GS} (off)}{5} \right]^2$ D) $I_D = 12 \left[1 + \frac{v_{GS}}{5} \right]^2$
- Calculate the reverse current through a photodiode when exposed to an illumination 76. of 4 mW/cm². Given the sensitivity of a photodiode is 40 μA/mW/cm².
 - A) 13.3 mA
- B) 10 μA
- C) 160 μΑ
- D) $1.6 \mu A$
- Calculate the series resistance required when three 10-Watt, 10-Volt, 1000mA 77. zener diodes are connected in series to obtain 30V regulated output from a 45 V dc supply.
 - A) 35Ω
- B) 15Ω
- C) 45Ω
- D) 30Ω

- 78. An emitter follower is also known as:
 - A) Grounded base circuit
 - B) Grounded emitter circuit
 - C) Grounded collector circuit
 - D) None of these
- 79. The data sheet of an E-MOSFET gives $I_{D~(on)}$ =384 mA at V_{GS} =10V and $V_{GS(th)}$ =2V. Calculate approximate drain current for V_{GS} =5.5V.
 - A) 98.7 mA
- B) 73.5 mA
- C) 384 mA
- D) 9.87 mA
- 80. Identify the function F generated by the logic network shown:

- A) $F = Z + Y + \overline{Y}X$
- B) $F = \overline{ZY} + Y\overline{X}$

C) F = XYZ

- D) F = Z(X + Y)
- 81. Match the List I with that in List II

Lis	et I	List	List II			
a	Wien bridge oscillator	1	$\frac{1}{2\pi RC\sqrt{6}}$			
b	Phase shift oscillator	2	$\frac{1}{2\pi\sqrt{L_TC}}$			
С	Hartley Oscillator	3	$\frac{1}{2\pi\sqrt{R_1C_1R_2C_2}}$			
d	Colpitts Oscillator	4	$rac{1}{2\pi\sqrt{LC_T}}$			

- A) a-3, b-1, c-4, d-2
- B) a-2, b-3, c-1, d-4
- C) a-3, b-2, c-4, d-1
- D) a-3, b-1, c-2, d-4
- If the resolution of a D/A converter is approximately 0.4% of its full scale range, then it is :
 - A) a 16-bit converter
- B) a 10-bit converter
- C) a 12-bit converter
- D) a 8-bit converter

83.	Choose A) B) C) D)	When errors	red qua are ran	dom an	d indep	penden	subtracted, err t, they add in l or divided, r	quadra	ture
84.		nass ratio of ea of U ²³⁵ is alwa			on pro	ducts p	produced by a	single	fission
	A)	3:2	B)	3:1		C)	2:1	D)	1:1
85.	The b A) B) C) D)	Condensation Surface tensi Latent heat o None of these	i on f vapor		analog	gous to	of a liqu	id.	
86.		ioisotope deca llf-life of the is	-	_	to 15 g	g over a	a period of 72	hours.	What is
	A)	24 hours	B)	36 hou	irs	C)	12 hours	D)	60 hours
87.	The p	arity of $\Psi(x)$ =	$=\cos kx$	is					
	A)	Odd	B)	0		C)	Undefined	D)	Even
88.	The st A)	trong interaction Gauge	ons bet B)	ween u Charge		quarks C)	is mediated b Isospin	ys D)	•
89.	The ro	eciprocal lattic BCC lattice					 FCC lattice	D)	None of these
90.	Drude A) C)	e model for con Semiconduct Metals			pplicab B) D)	Multiv	valent metals A and B		
91.	and 6.	ectron beam endox 10^3 N/C, reset the crossed	spectiv	ely. Wł	nat mu				ields of 2.0 mT on beam to
	A)	$3x10^6$ m/s	B)	6×10^3	m/s	C)	12 m/s	D)	10 m/s
92.		rding to Bloch lic potential ta square wave spherical way	ke the	form of		modula	ated by a perion		
93.	Frenk A)	el defect is an Line	examp B)	le of Surfac		ect. C)	Volume	D)	Dislocation

94.	-	k inverse vo isthe tr	_				he center tapp al voltage.	ped full	wave
	A) E	qual	B)	Half		C)	times	D)	Twice
95.	A junction base is c		, whose	e base	signal	is gener	rated by illum	ination	of the
	,	hotodiode ED			B) D)	Solar of Photo-	Cell transistor		
96.	A) Si	f the follow ilicon fallium nitri	_	n indir	B)	Galliu	semiconducto m arsenide sulphide	r?	
~ ~	,				,		•		
97.		imon mode ifinity	_		-	rational C)	l amplifier is Zero	D)	Unity
98.			ecorded	as 75.	5 + 0.5	. What	is the relative	uncer	tainty in the
	measure: A) 0.		B)	0.5%		C)	5 %	D)	7 %
99.		$\operatorname{curl} \operatorname{of} \vec{F}(x,$							
	A) 2	\vec{j} – $3\vec{k}$	B)	\vec{j} +3	\vec{k}	C)	$2\vec{j}+3\vec{k}$	D)	\vec{j} – $3\vec{k}$
100.	Compute	the Laplace	transfor	m of {	cos(2t)	+ 7 sin(2	2t)}:		
	A) $\frac{s}{s}$	$\frac{x+14}{x^2+4}$	B)	$\frac{s-1}{s^2}$	$\frac{4}{4}$	C)	$\frac{s+2}{s^2+4}$	D)	$\frac{s-2}{s^2+4}$
101.	For $f(z)$	$=\frac{e^z}{z^3}$ the resi	due at tl	ne pole	is:				
						C)	0	D)	(1/2)
102.	electron A) 10		. The re			tainty i	curacy of 10^{-6} n momentum m.cm/s		
103.		al angular m 2 h /2 π	omentur B)	n of an 0	electro	on in the C)	2s orbital is: $2 \times h/(2\pi)$	D)	$h/(2\pi)$
104.	the spin of A) 1	l be the total quantum num or 0 only or 0 or ½ on	bers are				•	articles	for which

105.		r the action of a central forc		
	A) C)	Angular momentum Torque	B) D)	Mechanical Energy All of the above
106	Inan	•	ha agaf	fficient of restitution equals
106.	тар А)	1	B)	fficient of restitution equals 0
	C)	-1	D)	greater than 1
107.	The ra	ank of inertia tensor is:		
	A)	1 B) 3		C) 2 D) None of these
108.		has a constant correspondin e Lagrangian.	g mom	nentum for the Hamiltonian as well as
	A) C)		B) D)	phase space cyclic coordinate
109.	Loren	utz transformations can be u	sed to f	find solutions on problems related to:
10).	A)	Length contraction	B)	<u>-</u>
	C)	Relative mass	D)	
110.	numb	er of the given species is:		ased due to a change of the particle
	A) C)	Internal energy Entropy	B) D)	Chemical potential Thermodynamic potential
111.	A fun A) B) C) D)	Thermodynamic potential Internal Energy Chemical potential Gibb's free energy	y and e	entropy into a single value is:
112.		limit of low frequencies Pl		
	A) C)	Wien approximation Stephan's law	B) D)	Rayleigh–Jeans law Maxwell–Boltzmann distribution
113.	that the cu	he space is surrounded by a ube and the electric field go of the cube. If the electric is	Gaussi enerate field at	has positively charged particles. Imaging sian surface of the same dimension as that ded by the charges is normal to the Gaussia teach surface has a magnitude 760 N/C find. (Take charge $q = 9.1 \times 10^{-8}$ C)
	A)	$2.7 \times 10^{-8} \text{ C/m}^3$	B)	$4.1 \times 10^{-7} \text{ C/m}^3$
	C)	$2.7 \times 10^{-7} \text{ C/m}^3$	D)	$4.1 \times 10^{-8} \text{ C/m}^3$

114.	Determine the field due to the coil at a distance of 2m from it Take $\mu_0 = 4\pi \times 10^{-7} \text{Wb/A-m}$.								
	A) $314.16 \times 10^{-7} \text{ T}$		B)		$314.16 \times 10^{-5} \mathrm{T}$				
	C)	314.16×10^{-6}	D)	314.1	$314.16 \times 10^4 \mathrm{T}$				
115.	The dimension of magnetic vector potential is:								
115.	A)	MLT ⁻¹ Q ⁻¹				MLT^1Q^{-1}	D)	$MLT^{-1}Q^1$	
	11)	WEI Q	D)	MLI Q	C)	WEI Q	D)	WEI Q	
116.	provides a powerful tool for studying the geometry of objects that are too small to be viewed directly.								
	A)	Polarization	B)	Diffraction	C)	Interference	D)	Reflection	
117.	A waveguide cannot support a:								
117.	A)	TE wave	В)	TM wave	C)	TEM wave	D)	None of these	
118.	ESR cannot be observed inmaterials.								
	A) Paramagnetic			B)		Ferromagnetic			
	C)	Diamagnetic	D)	All o	All of the listed				
119.	The polarizability ellipsoid of H ₂ O is expected to when the bonds undergo								
,	a symmetric stretch.								
	A) Increase			B)	Decre	Decrease			
	C)	Remain unaf	D)	Disap	Disappear				
120									
120.	The fine structure of hydrogen spectrum is explained by:								
	A) Orbital angular momentum								
	B) Finite size of nucleus								
	C) Spin angular momentum of electrons								
	D) The presence of neutrons in the nucleus								