

22703

120 MINUTES

- 1. Air Quality Index (AQI) keeps a tab on major air pollutants in the atmosphere such as:
 1. Sulphur Dioxide 2. Ammonia 3. Lead 4. Ground level ozone
 - A) 1, 3 & 4 only B) 1, 2 & 3 only C) 2, 3 & 4 only D) All the above
- 2. The highly persistent and toxic organic chemicals branded as the 12 dirty dozen. Identify the correct examples of the dirty dozen from the given options.
 - A) Benzene hexa chloride and endosulfan
 - B) Phorate & endosulfan
 - C) Heptachlor and polychlorinated biphenyls
 - D) Baygon and toxaphene
- 3. Select the correctly matched pairs in terms of Global Warming Potential (GWP) & Lifetime of Green House Gases

Gas	GWP (100-year)	Lifetime (years)
1.Methane	310	120
2.Nitrous oxide	21	12
3.Perfluorocarbons	6,500-9,200	800-50,000
4.Sulphur hexafluoride	23,900	3,200

- A) 1, 2 & 3 only B) 2, 3 & 4 only C) 1, 3 & 4 only D) 3 & 4 only
- 4. What is Kigali Amendment which is recently ratified by the Government of India?
 - A) On phasing down climate-damaging refrigerant Hydrofluorocarbons
 - B) Global conventions on carbon dioxide emission reduction/limitation
 - C) On noise pollution occupational hazards
 - D) Phase out heavy metal pollution & biocide residues
- 5. What is meant by Black Rain?
 - A) Debris and soot from the destroyed buildings in Hiroshima mixed with the radioactive fallout from the bomb, rose high into the atmosphere in the form of a mushroom cloud.
 - B) Soot and black carbon rose high into the atmosphere mixed with water vapour
 - C) Asiatic cloud formation due to the release of aerosols formed in the combustion of fossil fuels and biomass
 - D) Soot and black carbon deposits in glaciers reduce albedo effect

 Which among the following is / are consequences, when an aquatic ecosystem sa lake experiences an increase in nutrients? The Population of most species of fish will increase The Biological Oxygen Demand of the lake water would decrease The biomass of phytoplankton will increase 							ystem such as		
	A)	1 & 2 only	B)	2 only		C)	3 only	D)	1, 2 & 3
7.	 Cen Nat 	h of the following tral Pollution Conal Biodivers mal Welfare Bo	Control lating	Board (I	CPCB)	y/bodie	s?		
	A)	2 & 3 only	B)	1& 2 c	only	C)	1 & 3 only	D)	1, 2 & 3
8.	1. It is Cha 2. The 3. It al 4. It of	ve the following solution to largest national bode the endange cupies the junctional Bio-	te Interrat, in nor al park in gered srection of	national theast In n India now leop two Bio	border ndia. pards, c ogeogra	betwee louded	en India and	pandas a	and red fox
	A) B) C) D)	Mouling National Namdapha Na Khangchendz Pin Valley Na	ational I onga Na	Park ational I	Park				
9.	 Chi Era Para 	fy the pairs whi nnar Wildlife S vikulam Natior ambikulam Wil nduruny Wildl	anctuar al Park dlife Sa	y inctuary	- - -	Grizzl Nilgiri Gaurs	ed Giant Squi i Tahr travancorica	rrel	
	A)	1, 2, 3, 4	B)	1, 2 &	3 only	C)	1, 2 & 4 onl	y D)	2 only
10.		among the fol ayurjharna	_	is/are th meng			erves in India? ng-Patka		l. Singphan
	A)	2 & 4 only	B)	1, 3 &	4 only	C)	1, 2 & 4 onl	y D)	1, 2, 3 & 4
11.	Identif A) C)	fy the critically Red panda Blue whale	endang	ered spo	ecies pr B) D)		ar Civet	ven belo	W.
12.	Identi A) C)	fy the family w Podostemacea Solanaceae		ows pse	eudo-en B) D)	Astera			

13.	Nicks techn	s and irregular ique	rity fron	m the knife e	dge use	d in microtor	ne is ren	noved by		
	A)	Router bit	B)	Honing	C)	Laser	D)	Stropping		
14.		applications It melts in th Most of then	ly availa are stra e range n are m	able paraffin vight chains of of 36–37 °C.	vaxes co 20–40 c	with paraffin emmonly used arbon atoms (a plastic polym	for histol alkanes)	logical		
	A)	1 & 2 only	B)	1 & 3 only	C)	1 only	D)	1, 2 & 3		
15.		tribes give va h among the fo				-				
	1.	Ceropegia spir	alis	2. Androgra	phis pan	iculata 3.	Chasal	ia curviflora		
	A)	2 & 3 only	B)	1 & 3 only	C)	1 & 2 only	D)	1, 2 & 3		
16.	1. 2.	main trunk, giving a dome-shaped appearance 2. Decurrent: The branches arise from the main stem in acropetal succession and								
		the tree assu	mes a c	one like appea	irance					
	A) C)	1 only Both 1 & 2		B) D)	2 on Neitl	ly her 1 nor 2				
17.	-	matic detailed comic group sur Revision		genus or famil	_	_	account D)	of a specific Monograph		
18.		Which among the following is/are considered as demerits of the Engler and Prantl classificatory system?								
	 Monocotyledons were placed prior to dicotyledons. Treated achlamydeous flowers in a primitive manner, which could be a derived condition. More evidence exists to show that unisexual families are more advanced than bisexual families. Heloise, a primitive order, is sandwiched between two more advanced orders, Pandanales and Glumiflorae. Gymnosperms are placed among Dicotyledons 									
	A)	1 only	B)	2 & 3 only	C)	1 & 2 only	D)	1, 2 & 3		

	A)	In this type micropylar dyad cell participates in the formation of the embryo sac									
	B)					_	in a total of 16	nuclei v	which		
	C)						megaspore of t	the tetra	d and is four		
	D)		In this type chalazal dyad cell participates in the formation of the embryo sac								
20.	20. The binomial of Red Sandal Wood endemic to the Southern Eastern Ghats range of South India:								ats mountain		
	A) C)	Santalum alba Pterocarpus s	um		B) D)		arpus marsupi monosperma	um			
21.	Dammar designates a group of resins obtained from Indian or East-Asian trees. Binomial of White dammer is										
	A)	Vateria indica			B)	Shored	a robusta				
	C)	Canarium str	ictum		D)	Dipter	ocarpus indicu	ıs			
22.		nromic acid, os osomal fixativ		nd ace		d that m	akes an ideal o	cytoplas	mic and		
	A) C)	FAA Flemmings fl	uid		B) D)	Carnoy Clark	ys fluid fluid				
23.	Identify the correctly matched pair:										
	A)	Orthotropous ovule			-		podiaceae				
	B)	Campylotrop			-	Piperce					
	C) D)	Amphitropou Hemianatropo			-	Alisma Butom					
	2)	Trommuno p				Dutom	accuc				
24.	sequer	is a database these which match the ble from NCBI	ay be of v		-	-					
	A)	NONCODE	B) E	XPAS	SY	C)	Clusters	D)	UniVec		
25.	Chose the correct statement/s from the following: 1. Peripatric speciation is a mode of speciation in which there is no extrinsic barrier between the populations but, the large geographic range of the population causes the individuals to mate with the neighboring individuals than with the individuals in a different part of the geographical range. 2. Parapatric speciation is a mode of allopatric speciation which occurs when the size of the isolated subpopulation is small. Here, in addition to geographic separation, genetic drift acts more quickly in small populations 3. Sympatric speciation: the process of the formation of new species from an original population that is not geographically isolated										
	A)	2 & 3 only		& 3 c	•	C)	3 only	D)	1, 2 & 3		

What is Endymion type embryosac formation?

26.	 Choose the correct statements connected with Synthetic theory of Evolution: Synthetic theory of evolution of Huxley emphasizes that the populations as the units of evolution and the natural selection as the major mechanism of evolution Natural selection operates through non-differential reproduction and comparative reproductive success Due to sexual communication, there is free flow of genes so that the genetic variability which appears in some individuals, gradually spreads from one deme to another deme, from deme to population and then on neighbouring sister populations and culminates on most of the members of a species 									
	A)	1 & 2 only	B)	1 & 3	only	C)	2& 3 only	D)	1, 2 & 3	
27.	Which A) C)	h among the fol Stratification Both A & B	llowing	spatial p	battern B) D)	Zonat			re?	
28.		fy the most pronit area: Estuaries Continental s		e aquatio	B) D)	Lakes	& streams	t Prima	ry Production	1
29.	1. Cro	h among the fol op rotation em oil	llowing	is/are ex	2. Tra	p crop	tural measures	-	control?	
	A) C)	1, 3 & 4 only 1 & 2 only			B) D)	3 & 4 1, 2, 3	-			
30.	Third A) B) C) D)	generation biod Food sources Micro-organi Non-food cro Crops that are	like sug sms like ps or pe	gar, stard e algae ortions o	ch, veg	etable o	vil			
31.	1. It a co. 2. It is of 3. Ma giv	se the correct stadvocates mono mmunity towar is believed that any area was so my different typy yen area. Clima imals and other	o-clima d which climate olely a f pes of v xes are	x theory n all come was the function regetation controlle	of such munities determined of its contact of the c	ecession es are d mining i limate. imax co	n i.e., every re leveloping. factor for vege ommunities ma	egion hat tation a	as one climax and the climax ecognized in a	Κ
	A)	1 only	B)	1& 2 c	only	C)	2 & 3 only	D)	1, 2 & 3	
32.		h among the fo n as scaly bark? Neem		g plant s		discont C)	inuous bark o Betula	f unequ	al thickening All the abo	

33.		t the correctly below.	matche	d pair of R	oot Stem Transition type with correct example					
	Г	Туре			Example	S				
	ŀ	1. Fumaria			Phaseolu					
		2. Cucurbita			Mirabilis					
	}				Phoenix)				
		3. Lathyrus								
	L	4. Anemarrhe	Anemarrnena		Medicag	0				
	A)	4 only	B)	1 only	C)	2 only	D)	3 only		
34.	The property many carped A)	campylotropo ls is: Dipterocarpa	erized v ous ovul aceae	with tricarp es on basal B	ellary, sy placenta;) Port	ncarpous, supe styles 2-5; stig ulacaceae				
	C)	Brassicaceae	9	D) Poly	galaceae				
35.	Which 1. 3.	h among the fo Methylene b Crystal viole	lue	g are examp 2. 4.	Thic	tachromatic Donin aidine blue	yes?			
	A)	1 & 4 only	B)	2 & 3 on	ly C)	1 & 2 only	D)	All of these		
36.		h among the naavia?	followi	ing is/are	features c	f Anomalous	seconda	ry growth in		
	1. Anomalous secondary growth is characterized by the formation of successive cambial rings									
	2. Sec the int	condary xylen e inter fascicu	lar region region a	on on the in	nner side.	n and lignified Externally Sec the inter fasc	condary p	phloem in the		
	A)	1 only	B)	2 only	C)	Both 1 & 2	D)	Neither 1 nor 2		
37.	Select an exa		matche	d pair conn	ected with	root tubers w	ith the pl	ant species as		
	A)	Fasciculated	l tuberou	is roots	_	Portulaca				
	B)	Moniliform			_	Dahlia				
	C)	Annulated st			_	Psychrotia				
	D)	Nodulose sto	_		_	Tinospora				
38.	The s	specimen that	is chose	en to act as	• •	' material subs	-	-		
		they have been				C	J 1			
	A)	Isotype	B)	Lectotype		Holotype	D)	Neotype		
		- 1	,	71	,	2.1	,			

- 39. Biodiversity is evaluated by species richness, and species evenness. If so, Ecosystem A has 6 tigers, 8 deer and 9 rabbits. Ecosystem B has 3 tiger, 5 deer and 4 rabbits. Select the correct statement related with species richness and evenness in the ecosystem A & B from the given options.
 - A) Ecosystem A & B has the same richness, but Ecosystem A has more evenness than the sample forest B
 - B) Ecosystem A & B has the same evenness, but Ecosystem A has more richness than Ecosystem B
 - C) Ecosystem B has more evenness and richness than Ecosystem A
 - D) Ecosystem A has more richness and evenness than the Ecosystem B
- 40. Observe the statements connected with the family Urticaceae and select the salient characters
 - 1. Flowers small, usually unisexual, actinomorphic
 - 2. 5-merous, perianth persistent; accrescent, or non-accrescent; imbricate, or valvate.
 - 3. Stamens alternitepalous, filaments straight in bud
 - 4. Female flowers have two simple pistil with a superior or inferior ovary that contains one basal ovule in its solitary locule. The stigma is brushlike and fruit usually a dry achene
 - A) 2 & 3 only B) 1 & 2 only C) 1, 2 & 3 only D) 1, 2, 3 & 4
- 41. The goodness of fit test is a statistical hypothesis test to see how well sample data fit a distribution from a population with a normal distribution and is tested effectively by:
 - A) T-test B) F test C) Chi-square D) Z test
- 42. Observe the following statements connected with HPLC and FPLC. Identify the correct difference between the two instruments.
 - A). HPLC is considered a preparative technique while FPLC is an analytical technique
 - B) HPLC chromatography software controls the modules as well as integrating collection of the purified samples into the fraction collector FPLC software controls the instrumentation and analyzes the data
 - C) HPLC resins are made of silica beads with small particle sizes that can stand very high back pressures. FPLC uses agarose, polymer materials, or silica materials. The particle sizes for FPLC are larger and have large pore sizes
 - D) HPLC uses salt buffers for the mobile phase and FPLC uses solvents for the mobile phase
- 43. Which among the following is/are examples for Ligases?
 - 1. Glutamine synthetase 2. Succinate thiokinase
 - 3. Acetyl CoA carboxylase 4. Histidase
 - A) 2 & 3 only B) 2 only C) 1, 2 & 3 only D) 2, 3 & 4 only

44. Match the energy bonds with the amount of energy it liberates.

Bonds	Energy
a. 3rd acyl phosphate bond	1. liberates 49kj/mol bond of energy
b. 4th guanidine phosphate bond	2. liberates 43 kj/ mol bond
c. 1st phosphoanhydride bond	3. liberates 7.3 kcal/ mol bond of energy
d. 2nd enol phosphate bond	4. liberates 64kj / mol bond of energy

45.	The inhibitor does not combine with the free enzyme or affects its reaction with its
	normal substrate; however, it does combine with the enzyme-substrate complex. The
	kinetics Slope [Km/Vmax] is not changed, while Intercept on ordinate [1/Vmax] is
	changed is known as inhibition

A) Competitive

B) Uncompetitive

C) Noncompetitive

D) Allosteric

46. Identify the scientists who discovered the ribozymes.

- A) Richard J. Roberts & Phillip A. Sharp
- B) Thomas Cech & Sidney Altman
- C) R.Everett & R.Hen
- D) Khorana & Nirenberg

47. Dwarfing gene to improve lodging resistance in winter wheat is:

A) Atomita 1

B) pelita 2

C) Norin 10

D) pal 1

48. Match the following correctly.

a. William S. Gaud

1. Mutation breeding

b. Shull

2. Heterosis

c. Muller and Stadler

3. Natural hybridization

d.Cotton Mather

4. Green revolution

A) a-4,b-3,c-2,d-1

B) a-3,b-2,c-1,d-4

C) a-4,b-2,c-1,d-3

D) a-1,b-2,c-4,d-3

49. BLAST uses a ----- to find matching words, whereas FASTA identifies identical matching words using the -----.

- A) blocks, substitution matrix
- B) hashing procedure, substitution matrix
- C) substitution matrix, hashing procedure
- D) ktups, substitution matrix

50.	For the 10-residue DNA sequence example, there are possible starting sites for a									
	20-res A)	sidue-long site. 41	B)	51		C)	71	D)	81	
51.	Roten A)	one colorless, c insecticide	erystalli B)	ne isoflavo piscicide		sed as (C)	a: pesticide	D)	All the above	
52.		fy the species the vield, thick stem accharum sing Saccharum be Saccharum row Saccharum be Saccharum be	ns and a nense a arberi a bustum	ble to grov nd Saccha nd Saccha and Sacch	w in t rum rum harun	he sug officind robusti n offici	arcane belt of arum um inarum			
53.	Transcriptomic technique used by molecular biologists to produce a snapshot of the messenger RNA population in a sample of interest in the form of small tags that correspond to fragments of those transcripts									
	A)	SAGE	B)	SNP		C)	EXPASY	D)	MSA	
54.		n among the fol nt in plant tissue Silver nitrate	e culture						lization of the	
	A)	3 only	B)	1 & 3 on	ly	C)	2 & 3 only	D)	1, 2 & 3	
55.	What A) C)	is picloram? Synthetic aux Seed dormand		B ker D	/		r initiator ranspirant			
56.	Match the following									
	a. r I	NA technology	y		1.]	Kohler	and Milstein			
	b. Dì	NA polymerase	I		2. Arthur Kornberg					
		onoclonal antib			3. Arber					
	a. Re	estriction endon	uclease		4. (Cohen	and H. Boyer			
	A) C).	a-1, b-2, c-3, a-2, b-4, c-1,					-2, c-1, d-3 -2, c-3, d-1			
57.		rganism potent nents is:	ial for	application	n in j	paper i	ndustry for l	piopulping	g and residue	
	A)	Quebracho sp			3)	· •				
	C)	Streptomyces	griseus	Ľ))	Lentii	ıus edodes			
58.	to gen A)	IA Microarray a lerate lists of ex Ethidium broi	pressed mide	genes fro B	m a c	ell use Sybr	s the fluoresc green	-	-	
	C) Cyn 3 + Cyn 5 D) Propidium iodide									

59.	Online Mendelian Inheritance	e in Man (O	MIM) database w	ras initiated in the early
	1960s byA) Paulien HogewegC) Dr. Victor A. McKusic	B) ck D)	Dr. Walter Margaret Oakley	Dayhoff
60.	Protein concentration is estimated because Proteins show a strong A) Tyrosine and tryptopha C) Aspartic and glutamic	g peak at 280 an B)	nm due to absorbate Valine and meth	ance from ionine
61.	Identify the correctly matched	pairs of Allo	steric Regulators of	of Glycolysis:
	Enzyme 1.Phosphofructokinase-1 2.Pyruvate kinase A) 1 only		6-bisphosphate 6-bisphosphate 2 only	Inhibitor Citrate Acetate
	C) Both 1 & 2	D)	None of the above	ve .
62.	 Choose the correct statement(s Water potential is virtually Water potential is lowered to forces between water moleonegative pressure Water always moves from high water potential. 	positive in the by transpiration cules causing	ne xylem of all terr on from the leaves water to be under	estrial plants. assisted by the cohesive tension, i.e., under
	A) 1 & 3 only B)	2 & 3 only	C) 2 only	D) 1, 2, 3
63.	Identify the photoreceptors we circadian rhythms in plants? A) GLUT 4 family C) Zeitlupe family	which play a B) D)	critical role in da BLUF family Phototropins	y length perception and
64.	Choose the correct statements 1. Cryptochromes (CRYs) ar present in most kingdoms, 2. They are structurally similar repair ultraviolet—induced photoreactivation, using ph 3. They regulate plant light modormancy and germination reactions and stress response 4. CRY genes in plants are inv A) 1, 2 & 3 only B)	e globular flincluding are to light dep DNA damagnotons absorber prephogenesis, n, stomatal oses	avin-containing blachaea, bacteria, placendent DNA photoge by a mechanism ed from the blue en flowering time, ciopening and developments.	lue light photoreceptors, ants, animals and fungi olyases. Photolyases known as and of the light spectrum. ircadian clock, seed lopment, photosynthetic

65.	 Ethylene biosynthesis has been a subject of intensive study in plant hormone physiology. Analyze the following statements and Select the correct ones: 1. Ethylene is produced from flowers, fruits, tubers and seeds only 2. Met adenosyltransferase enzyme determines the rate of ethylene production, therefore regulation of this enzyme is key for the ethylene biosynthesis 3. Pathway for ethylene biosynthesis is known as Zhang cycle after Lin Z, Zhang who made key contributions to elucidating this pathway 							
	A)	1 only	B)	1 & 2 only	C)	2 only	D)	1, 2 & 3
66.	speci 1. Si ir 2. Co 3. Qu	ch among the fores? mple sugars (from sitols) complex sugars (paternary ammonoline betaine) a	uctose a trehalos	nd glucose), s se, raffinose ar ompounds (pr	ugar alcodering and fructation of the second	ohols (glycerol ans), polyols lycine betaine,	and me	ethylated
	A)	2 only	B)	3 only	C)	2 & 3 only	D)	1, 2 & 3
67.	A researcher identified a lead molecule specifically target the receptors for retinoic acid in order to block stem cell differentiation. After <i>in vitro</i> experimentation, the researcher noticed that the cells carry differentiation and the molecule displayed inefficacy. Observe the given reasons by the Researcher 1. The molecule was small in size but hydrophobic in nature 2. The size of the molecule exceeded the size of molecules that could cross the membrane 3. The molecule did not bind to its receptors Which of the above may be the plausible reason for the ineffectiveness of the molecule?							
	A)	3 only	B)	2 & 3 only	C)	2 only	D)	All the above
68.	1. Th po 2. So de	se the correct stee endosymbiotic pularized by Lyme of the disease afness (DAD), tochondria and	c relationynn Mar Ises cau Leber's Chlorop	onship of mitoo gulis sed by defecti hereditary opt last follow ma	ve mito ic neuro iternal in	chondria are: I pathy and Leig nheritance.	Diabetes 3h syndr	s mellitus and come
69.	Magr	nesium is a crit What is the ro Cofactor for It binds nucle Cofactor for	ical eler le of ma DNA po cotides i DNA po	ment of DNA agnesium in Dolymerase II n the cytosol ablymerase III	polyme NA poly	rization, but it	is not a section?	noticed in the

70. Identify the event interferes in sequence based phyloger											
	A)	Adaptive mut	ations		B)		se transcription				
	C)	DNA repair			D)	Horizo	ontal gene trans	sfer			
71.	 Observe the following main features of the existing plant quarantine regulations in India and select the correct ones. 1. No consignment of seeds/planting materials shall be imported into India without a valid 'Import Permit', which is to be issued by a competent authority, to be notified by the Central Government from time to time in the Official Gazette. 2. Consignment of seeds/planting materials shall be imported into India without accompained 'Phytosanitary Certificate', issued by the official Plant Quarantine Service of the source country. 										
	A)	1 only	B)	2 only		C)	Both 1 & 2	D)	Neither 1 nor 2		
72.		Smut of padd ag bodies and is Phakospora Ustilaginoide	due to	the ric	e grain B) D)	get tra Ustilag Sporis	go	o a mas	ss of yellow		
73.	Which A) C)	of the following Paecilomyces Pisolithus tine	lilacinu		ol agent B) D)	Gliocla	matodal disease adium virens omonas cepacia				
74.	Identi A) C)	fy the antifunga Subtilin Sodium benze		l as ant	ibiotic a B) D)	ngent fro Pimaro Nisin		ng.			
75.	Intern A)	ational Society China	for Hor B)	ticulture India	e Scienc	ce (ISH) C)	S) is located at Belgium	 D)	France		
76.	into a	mbinant insuling plasmid by leads to produce β - galactoside antibiotic resident.	the side ation of rase generation	e of recombi		which sulin.		mation	into a host		
77.	Identi 1.	fy the hormone Cytokinins	s that ca 2.		e the se sic acid	nesceno	ce in plants: Ethylene	4.	Salicylic acid		
	A)	2 & 3 only	B)	2 & 4	only	C)	1, 2 & 3 only	D)	2, 3 & 4 only		
78.	 Difte the The cat 	fy the correct s fusion of proto liquid water e net results is tions like sodium vas discovered	ons throu the fast m/potass	ngh the movem sium erman	network	k of hy	drogen bonded in water than		ner dissolved		
	A)	1 & 2 only	B)	1 & 3	only	C)	1 only	D)	All the above		

79.	Selec	et the correct sta	atement	related with th	ne essent	tial element por	tassium	in plants:						
	A)	A) Potassium in plants is typically 0.1 % on a dry weight basis, but can range from 0.05 to 0.5 % depending on the plant species												
	B)	Potassium is			- r · · ·	- F								
	Ć)	C) Potassium deficiencies appear along the outer margins of older leaves as streaks or spots of yellow (mild deficiencies) or brown (severe deficiencies).												
	D)	-	ost oft	en appear on th		ing tip of the p		,						
80.	What	t do you mean b	y Anno	merism?										
	A)			figuration with on atom in keto		to the first ca	rbon ato	om in aldoses						
	B)	B) 1 st carbon of the glucose condenses with the -OH group of the 5 th carbon to form a ring structure												
	C)	<u> </u>												
	Ď)													
81.	1. M	ify the correctly onounsaturated lyunsaturated f	fats= S	unflower, corn	, soybea	in, and flaxseed		ut, and canola oil	S					
	A)	1 only	B)	2 only	C)	Both 1 & 2	D)	none of these						
82.	resol	nic-force micro ution. The res oscopy.				'								
	A)	107	B)	106	C)	104	D)	103						
83.	In adany of quest	iz consists of 9 ldition, assume one of the questions and gettin nal places).	that (T stions. V	T) and (F) are What is the pro	equally obability	likely outcomy of guessing of	es when	n guessing on of the 9 quiz						
	A)	0.998	B)	0.018	C)	0.020	D)	0.980						
84.		t are scaffolding												
	A) B)	and/or bind with multiple members of a signalling pathway, facilitates signal												
	C)	· · · · · · · · · · · · · · · · · · ·												
	D)	complexing Microtubular cell membrar	-	-	llow lipi	id-soluble horn	nones to	get from the						
85.		ify the scientifi												
	A)	Psilotum	B)	Botrypus	C)	Dryopteris	D)	Marattia						
				43										

- 86. Observe the features of Gymnosperms and select the correct ones.
 - 1. Gymnosperms diversified in the late Paleozoic, after suffering widespread extinctions at the close of the Permian, gymnosperms re-radiated in the Triassic and dominated the global floras until the mid-Cretaceous, after which they were progressively supplanted by angiosperms.
 - 2. Gymnosperm pollination is invariably anemophilous (primary); only recently evolved genera as Ephedra and Welwitschia are pollinated by insects
 - 3. Coulter and Chamerlain (1917) divided the gymnosperms directly into eight orders viz. Pteridospermophytals, Cycadofilicals, Bennettitales, Cycadales, Cordaitales, Ginkoalea. Coniferales and Gnetales
 - 4. Gymnosperm archegonia have a short or long neck made up of 2, 4, and 8 cells, in Cycas, Taxus and Biota respectively. This develops into megaspore mother cell which further undergoes free nuclear divisions, followed by cell wall formation and become a cellular structure
 - A) 1, 3 & 4 only B) 2, 3 & 4 only C) 1, 2 & 3 only D) 1, 2 & 4 only
- 87. Cell to cell communication is significant in organism's development. The cell potentiality to respond to a specific inductive signal is known as:
 - A) Juxtracrine signaling
- B) Regional specificity of induction
- C) Competence
- D) Instructive interaction
- 88. Which of the following is **not** a typical incident connected with cell signaling?
 - A) G-proteins activation by exchanging GTP for GDP
 - B) Synthesis of the secondary messengers cAMP and IP3
 - C) Induction of protein kinases & discharge of calcium ions from cell membranes
 - D) Stimulation of apoptosis
- 89. Invented a new plant species about which you know only two features
 - 1. it is small sized species (<10 cm)
 - 2. short lived species (<20 days).

Which of the strategies given below is seems to be true connected with this species?

- A). Early breeding and only once in life and produces large number of small sized progenies
- B) Late breeding and only once in life and produces large number of small sized progenies
- C) Early breeding and only once in life and produces small number of large sized progenies
- D) Early breeding and more than once in life and produces large number of small sized progenies

90.	 Select the correct statement connected with types of signaling: A) Autocrine signals bind to receptors and induce nearby cells B) Signaling by cell contact similar to paracrine signaling but there is a special structure known as the synapse between the cell originating and the cell receiving the signal. Synaptic signaling only occurs between cells with the synapse. 											
	 Paracrine signals bind to receptors on cells that secrete them Exocrine signaling occurs when cells secrete signaling molecules into the blood 											
91.	 Apoptosis occurs on a cell-by-cell basis. Which among the following statement is/are correct with regulation of apoptosis? 1. Caspase proteolytic enzymes, contributes to both regulation by the BCL-2 family and execution of apoptosis after the death decision is confirmed 2. Bax and Bak protein family, which provides the framework for controlling apoptosis, takes its name from a type of cancer called B-cell lymphoma 											
	A)	1only	B) 2	only	C)	Both 1 & 2	D)	Neither 1 nor 2				
92.	Major to M	r control switch	hes for the	cell cycle, o	causing 1	the cell to mov	ve from	G1 to S or G2				
	A) C)	cyclin depen p27 protein	ndent kinase	B) D)		orotein le above						
93.		h among the fice abnormalitie Down Syndr Patau Syndre Edward Syn All the abov	es? come - triso ome - trisor drome - tris	my of chron	mosome nosome	21. 13.	human	beings due to				
94.	jasmo 1. 12- ox 2. Ac in 3. Ac 4. Fir	onic acid in platoxo-phytodication. tion of lipoxystoperoxisome. etion of allene hal production h one of the fo	ents given be noic acid go genase, alle oxide synth of jasmoniallowing con	elow. et reduced ne oxide sy ase and alle c acid takes nbination o	and ther onthase a ene oxid splace in of above	n converted to and allene oxice e cyclase take n chloroplast.	jasmon de cycla s place i correct?	se takes place n chloroplast.				
95.	detern the re carrie	cats of the V mining skin co cessive pheno s the recessive? (Assume co	lor. The do type is repr ve allele,	minant phe esented by what perce	notype i a grey s	s represented kin colour. If	by a bla half of t	ck skin, while the population				
	A)	25%	B) 5	0%	C)	75%	D)	90%				
				15								

96.	Choose the correct statement from the following: A) The conductance of biological membranes is high, the reason is that there are all kinds of ion channels and other pores penetrating the membrane and allowing additional currents to flow. It is these currents that make cells behave												
	B)	, ·											
	C)	phospholipid alterations Cell membrane associated diseases are Alzheimer's, Hyaline Membrane Disease and Cystic fibrosis											
	D)	All the above	. ,										
97.	All the	Two white flowered plants are crossed. White flowers arise due to recessive mutation. All the resulted F1 progenies have red flowers. Subsequently, the F1plants are selfed, both red and white flowered progeny are observed. What will be the ratio of red and white-flowered plants occur?											
	A)	3:1	B)	15:1		C)	9	:7		D)	1:1	I	
98.		h among the fol etraria islandica	_			es for ec			ally im	nportant Everni			
	A)	1 & 2 only	B)	2 & 3	only	C)	1	& 3	only	D)	Al	l of these	
99.		nushroom know tricately constru Armillaria me Wolfiporia ex	ucted is: ellea	-	ushroor B) D)	Clavi	icep	s pu	ack and erpurea ellipso		ole sh	oestrings	
100.													
	A) C)	2, 3 & 4 only 2 & 3 only			B) D)	1, 2 & All th		-					
101.	sporo	ify the algae d phytic phases (l		-	ndicate	its trip	has	ic na	ature:	ametop	hytic	and two	
	A) C)	Polysiphonia Nemalion			B) D)	Batra Cutla		spei	rmum				
102.	Agar is used in instant pie fillings, canned meats or fish, and bakery icings and for clarifying beer and wine and is extracted from the species of red algae such as: A) Gelidium B) Gracilaria												
	C)	Pterocladia			D)	All th	ne al	bove	e				
					16								

103.	Identi 1.	fy the following Halimeda	g algae	to their 2.	respect Codiu	_	al groups:	Botr	yococcus			
	A) B) C) D)	1-Brown alga 1 & 2 -Green 1-Brown alga 1, 2 & 3 Gree	algae, 3 ne 2- Gre	8- Diato	ms		e					
104.		nnection with t asma membran M and S rings S and P rings	e, comp s			apparat P and		ermost rir	ngs located on			
105.	What bacter A) B) C) D)	Anchors the or Proteins that hydrophilic n	outer me form po nolecule eptor fo gation	embrane ores or es r some	e to pep channe viruses	tidoglyd Is throu and b	can (murein) ugh outer me	sheet embrane i stabilizes	for passage of s mating cells			
106.		disease was co ransmitted to ch Priones			e diseas			Eastern l	Highlands and Virusoids			
107.	low b	mite is relativel ulk density. It o minum and iron	consists	approx								
	A)	90 %	B)	50 %		C)	60 %	D)	80 %			
108.	Which A) C)	, ,					es for opportunistic fungi? Candida albicans All the above					
109.	The s	fy the correct P tem in majorit llated protostel terosporous. The	y forms e, most	is long of the	g, articı membe	ılated a	and ribbed volumes	with solid s but som	protostele or			
	A)	Filicophyta	B)	Psilop	hyta	C)	Sphenoph	yta D)	Lycophyta			
110.	-	ohenomenon of first observed in	_	e was fi	irst repo	orted by	y Bateson a	nd Punne	t in 1906 and			
	A) C)	Pisum sativui Datura stramo			B) D)	-	rus odoratus pilus ialapa	3				

	A)	perg equilibrium A group of a												
	~ `	areas with of			-	-	ndoı	m ma	ating an	d does n	ot migrate to			
	areas with other crow populations B) A population of over 50,000 rabbits routinely travels from the southern region of India to a more control region to deal with seesanal food supply fluctuations.													
	C)	of India to a more central region to deal with seasonal food supply fluctuations A population of about 100,000 tiger mates randomly and stays in the same area. Their mutation rate is negligible and their environment contains no factors that select for specific traits												
	D)	•												
112.	Match	n List I with Li	st II			.								
	a. DN	List I a. DNA pol I					List II Main enzyme that add nucleotides in the 5'-3' direction							
	b. DN		2.	Removes RNA primer and replaces it with newly synthesized DNA										
	c. Si	c. Single-Strand Binding proteins					Synthesizes RNA primers needed to start replication							
	d. Pr	(SSB) imase		4.	Binds to single-stranded DNA to preven DNA from rewinding back									
	A) C)	a-1, b-2, c-3, a-1, b-2, c-4,			B) D)				1, d-3 3, d-4					
113.	Division Mastigomycota possesses 2 sub divisions. In which Haplomastigomycotina includes 3 classes. Identify the correctly match class/es with their characteristic features													
	1. Ch	1. Chytridiomycetes- Fungi producing zoospores with a single whiplash flagellum												
	2. Hy	inserted at the posterior end. 2. Hyphochytridiomycetes Parasitic fungi Motile cells with a single tinsel flagellum.												
	at the anterior end.3. Plasmodiophoromycetes producing biflagellate whiplash type inserted at the anterior end.													
	A)	2 only	B)	2 & 3	only	C)		1 &	3 only	D)	1 only			
114.	Identi A) C)	fy the bryophy Marchantia & Orthotrichun	& Lunul	aria	mae: B) D)	Ric		dia & abov	Lopho ve	zia				
115.	Identi	fy the correctly	y matche	ed pair/p	airs:									
	1.	Indusiate –				rsilea								
	2. 3.	Non-Indusiat Pseudo indus		_		ichenia antum								
	A)	1 only	B)	1 & 2	only	C)		1 &	3 only	D)	1, 2 & 3			

- 116. Observe & identify the correctly matched species and its soral arrangement:
 - A) A linear arrangement of sporangia along veins, avoiding the leaf area between the veins-Pteris
 - B) A line of sporangia along the leaf edge, protected usually by a rolled-over and modified laminar margin- Pityrogramma
 - C) An arrangement of large sori that usually expand over the entire undersurface of the blade or pinna Polypodium
 - D) A linear or oblong sorus along a vein covered from one side by a narrow indusium- Asplenium
- 117. The male gametophyte development appears to be quite uniform within coniferales. Identify the correct statement connected with male gametophytes among coniferales.
 - A) In Pinaceae, two senescent primary prothallial cells are produced from the embryonal cell of the microspore. This embryonal cell functions as an antheridial initial and results in the formation of a peripheral tube cell and a generative cell. A periclinal division in the generative cell gives rise to an outer spermatogenous cell and an inner sterile cell.
 - B) In Taxaceae, Taxodiaceae, Cupressaceae and Cephalotaxaceae there is one prothallial cell, and the function of the antheridial initial is performed directly by the embryonal cell.
 - C) In Araucariaceae and Podocarpaceae, the prothallial cells show secondary proliferation. In Araucariaceae and Podocarpaceae the generative cell divides penclinally and not anticlinally.
 - D) All statements are correct
- 118. Identify the earth tongue fungi have club-shaped fruiting bodies and produce ascospores in sacs:
 - A) Crucibulum vulgare
- B) Tremella mesenterica
- C) Ophiostoma ulmi
- D) Geoglossum fallax
- 119. There are phycobionts in the lichen associations contain species of:
 - 1.Trebouxia
- 2. Calothrix
- 3. Gloeocapsa
- 4. Nostoc.

- A) 1, 2 & 4 only
- B) 2, 3 & 4 only
- C) 1, 3 & 4 only
- D) All the above
- 120. Choose the correct statement in connection with amplified-fragment length polymorphism (AFLP)?
 - A) PCR using a combination of random and gene-specific primers
 - B) PCR amplification followed by digestion with restriction enzymes
 - C) Digestion of DNA with restriction enzymes followed by one PCR step
 - D) Digestion of DNA with restriction enzymes followed by two PCR steps