1.

120 MINUTES

1.	Evalua A)	ate the Lague $1-2x$	erre's poly B)	nomial $I - x$	$L_1(x)$ is	s: C)	1 –	$2x^2$	D)	$2x^2$	+1
2.		amiltonian or $\frac{q}{2m}(p+qA)$		d particl							
	C)	$\frac{2}{qm}(p-q)$	$(qA)^2 + q\varphi$		D)	$\frac{1}{2m}(p$	o-qA	$(4)^2 + a$	ηφ		
3.	on μ-n in the	verage lifeting neson gives laboratory?	an average	lifetime	e of 6.9)× 10−6	s.Wh	nat is th	ne speed	of the 1	mesons
	A)	0.5928c	В)	9.0428	c	C)	0.94	28c	D)	0.09	428c
4.		ondition at w									
	A)	$v = \frac{c}{\sqrt{2}}$	B)	$v = \frac{c^2}{\sqrt{2}}$	2	C)	<i>v</i> =	$\frac{1}{\sqrt{2C}}$	D)	<i>v</i> =	$=\frac{\sqrt{C}}{2}$
5.		tial wave and $\frac{4\pi}{k^2} \sum (2l +$								ng is:	
	C)	$\frac{2\pi}{k^2}\sum (2l +$	$1)sin^2\delta_l$		D)	$\frac{\pi}{k^2}\sum_{k}(2k^2)$	2 <i>l</i> + 1	l)sin²	δ_l		
6.	exclus A)	atistics appli ion principle M-B statist B-E statist	e, such as tics	photons,	, phono B)		liquid atistic	heliur s		g Pauli [†]	's
7.		uclear proces		one or	more pa	articles	may l	liberate	ed when	the targ	get
	A)	s absorbs γ- Photo disir Compound	ntegration			Auger None					
8.	The re	elationship be $\frac{h}{\sqrt{3M_nE}}$	etween wa B)	velength $\frac{h}{\sqrt{2M_pE}}$		nergy fo C)	or neur $\frac{h}{\sqrt{M_1}}$		D)	$\frac{h}{\sqrt{2M}}$	$\frac{1}{I_n E}$
9.		Expression for $E_f = \frac{h^2}{8m} \left[\frac{3}{\pi} \right]$				given b $E_f = \frac{1}{2}$	-	$\left[\frac{N}{L^3}\right]^3$			
	C)	$E_f = \frac{h^2}{4m} \left[\frac{3}{\pi} \right]$	$\left[\frac{3N}{L^3}\right]^2$		D)	$E_f = \frac{1}{2}$	$\frac{h^2}{4m} \left[\frac{3}{\pi h} \right]$	$\left[\frac{N}{L^3}\right]^{2/3}$			

	A) C)	Metal Insulator		B) D)	Semiconductor Ceramics					
11.	transc	JET type BFW onductance are ance is:							c drain	
	A)		B)	205Kg	Ω	C)	$200 \mathrm{K}\Omega$	D)	$400 \mathrm{K}\Omega$	
12.	The to	otal energy of a						n is:	- 2	
	A)	$\frac{-e^2}{8\pi \in_0 r}$	B)	$\frac{-e^2}{4\pi \epsilon_0 r}$		C)	$\frac{-e^2}{8\pi^2 \in_0 r}$	D)	$\frac{-e^2}{16\pi \epsilon_0 r}$	
13.	n=1,	α line of X-ray 2,3 arises from	om the t		n:			uantum n	umbers	
	,	n = 4 to n = 2 n = 5 to n = 2			/	n = 3 $n = 3$	to $n = 2$ to $n = 1$			
14.	freque	plitting up of a encies, when ap orbital and sp Stark effect Cotton–Mou	oplied m in motio	agnetic n of the	field is electro B)	s stronge on is: Hall e	er than the in	ternal mag		
15.	Which A)	of the follows A_{21}	ing Eins B)	tein's co	oefficie	ent repre C)	sents sponta B_{12}	neous emi D)	ssion? B_{21}	
16.	In reg A) C)	ions where the Gauss's law Laplace's eq			B)	Fresn	el's law		reduces to:	
17.	The el	lectric potentia r	l due to B)	octopol r^4	e varie	s invers C)	ely with: r^2	D)	r^3	
18.		ndex of refracti	\ /	related	to the	electric	and magneti	c properti	es of the	
	A)	$n = \sqrt{\frac{1}{\epsilon_0 \mu_0}}$			B)	n =	$\frac{2\in\mu}{\in_0\mu_0}$			
	C)	$n=\sqrt{\frac{\mu}{2\epsilon_0\mu_0}}$			D)	n =	$\frac{\underline{\in \mu}}{\in_0 \mu_0}$			
19.	dimens	dimension of sional formula			uction	B is:	_	ated as M	I,L,T,Q, then	
	A)	$M L^2 T^{-1} Q^{-1}$			B)	M T	Q-1			
	C)	$L^2 T^{-2} Q$			D)	L-1 T	-1 Q			

The material in which the Hall coefficient is found to be zero:

10.

20.		ne integral per field E is	unit ar	ea alon	g the b	ooundar	y of small	area aroui	nd a point in			
	A)	$gradig(ec{E}ig)$	B)	$ abla.ec{E}$		C)	$\nabla \times \vec{E}$	D)	$\oint \vec{E} \cdot \vec{dA}$			
21.	The res	sidue of cot x a	t x = 0									
		-1					π	,	$\frac{1}{4}\sinh(x)$			
22.	If 'u' is	s a complex var	riable an	nd f(u) =	$= 1 + \frac{1}{\sqrt{\iota}}$	=, then	n the function	n				
	A)	A) has a simple pole at u =0 B) Has a branch cut from u =0 to u = infinity										
	C) Is finite at all point inside the unit circle centered at $u = 0$											
	D) Has branch point at u=0											
23.		of the following					۲. مT		Γ. ο 7			
	A)	$\begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$	B)	0		C)	$\begin{bmatrix} i & 0 \\ 0 & \vdots \end{bmatrix}$	D)	$\begin{bmatrix} i & 0 \\ 0 & \vdots \end{bmatrix}$			
				<u> ı</u>	ΟJ		$\begin{bmatrix} 0 & i \end{bmatrix}$		$\begin{bmatrix} 0 & -i \end{bmatrix}$			
24.	The sea	ries $1 + \frac{1}{4} + \frac{1}{9}$	$+\frac{1}{16}+$	$\frac{1}{25}$ + .	∞	is:						
	A)	Convergent			B)		gent					
	C)	Oscillatory			D)	Mono	tonic increas	sing				
25.	For the	Bessel's equat	tion $x^2 \frac{\partial}{\partial x}$	$\frac{d^2y}{dx^2} + x$	$\frac{dy}{dx} + (x$	$(2-n^2)y$	$\dot{y}=0$					
	A)	x = 0 is a re	gular sir	ngularit	y and x	= ∞ i	s irregular si	ingularity				
	B)	x = 0 is a es		•	-		Č	ingularity				
	C) D)	Both $x = 0$ Both $x = 0$										
	,						•					
26.	The fur	nction $\phi_{(x,t)} =$	$=e^{-t^2+2x}$	repres	sents th	e genera	ating function	on for:				
	A) C)	Legendre poly Hermite poly	-		B) D)	_	erre function yshev Functi		kind			
	,	1 2			,			on or msi	KIIIQ			
27.	Trigono A)	ometric Fourie Sin terms and		-		unction	will have:					
	B)	Cos terms and			-							
	C) D)	Constant term Sin terms and	-	me only	W.							
• •								. 5				
28.	If P(A) A)	=2/3, $P(B) = 1/Mutually exc$		(AUB) =	= 5/6, tl B)		t A and even endent	it B are:				
	C)	Depends only			D)		nds only on l	В				

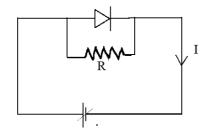
29. Two inclined frictionless track one steeper than the other meet at A as shown below. If two bodies of mass m1, and m2 initially at rest on the edge A are allowed to slide down without slipping, one on each side as shown in the figure-Which of the following statement is correct?

- A) Both m1 and m2 reach the bottom at the same time, but not with same speed.
- B) Both m1 and m2 reach the bottom with same speed and m1 reaches earlier than m2.
- C) Both m1 and m2 reach the bottom with the same speed and m2 reaches earlier
- D) Both m1 and m2 reach the bottom at different time and with different speed.
- 30. The generating functions corresponding to the transformation

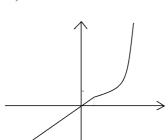
$$P = 2q^{1/2} \left(1 + q^{1/2} \cos p\right)$$
 and $Q = \log\left(1 + q^{1/2} \cos p\right)$ is:

A)
$$-(e^{\varrho}-1)^2 \tan p$$
 B)

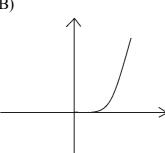
A)
$$-(e^{\varrho}-1)^2 \tan p$$
B)
$$(e^{\varrho}-1)^2 \cot p$$
C)
$$(e^{\varrho}-1)^2 \tan p$$
D)
$$-(e^{\varrho}-1)^2 \cot p$$

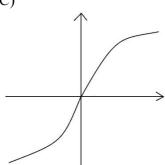

- For a particle moving under central force, which of the following statement is **incorrect**? 31.
 - Its angular momentum is conserved A)
 - B) Motion take place in a plane
 - It total energy is conserved C)
 - It angular velocity will remain constant D)
- 32. In which of the following case the constraint is non holonomic?
 - Motion of body on an inclined plane under gravity. A)
 - B) A bead on a circular wire.
 - C) Particle moving on an ellipsoid under the influence of gravity.
 - A pendulum with variable length. D)
- The Hamiltonian corresponding to the Lagrangian $L = a\dot{x}^2 + b\dot{y}^2$ is: 33.

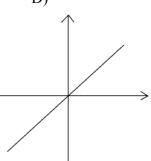
A)
$$\frac{p_x^2}{2a} + \frac{p_y^2}{2b}$$
 B) $\frac{p_x^2}{a} + \frac{p_y^2}{b}$ C) $\frac{p_x^2}{4a} + \frac{p_y^2}{4b}$ D) $\frac{p_x^2 + p_y^2}{4ab}$


34.		f the planet in	its orbit		maximum to minir						
	A)	$\frac{1+e^2}{1-e^2}$	B)	$\frac{1+e}{1-e}$	C)	$\left(\frac{1+e}{1-e}\right)^2$	D)	$\frac{1-e^2}{1+e^2}$			
35.	The spe		at whic	ch it gain a m	ass of 2	2m ₀ , where m ₀	is the r	est mass of			
	A)	$\frac{\sqrt{3}}{2}c$	B)	$\sqrt{\frac{3}{2}} c$	C)	$\frac{2\sqrt{2}}{3}c$	D)	$\frac{3}{4}c$			
36.	A)	on and angle v Force and ang Energy and ar	gle	B)	Angula	ar momentum a	and angle	2			
37.	The unc	ertainty in the	velocity	of an electron	orbiting	g around nucle	us of rad	ius' r' is:			
	A)	0	B)	$\frac{\hbar}{2\pi mr}$	C)	2hmr	D)	$\frac{h}{2\pi mr}$			
38.	 The Compton shift in wavelength is found to vary with the: A) Angle of scattering B) Wavelength of the X ray used C) Material used as the scatterer D) All the above. 										
39.	A) B) C)	Quantization of magnetic moment Energy quantization in atoms									
40.		The rate of cha	ange of c	le-broglie wav	elength	s accelerated by of this electron $\frac{-mh}{eEt^{2}}$	n at the t	ime 't' is:			
41.	energy t	the particle car	have is:	•	•	itial box is 3e		C			
	A)	4eV	,	6 eV	,		D)	12 eV			
42.		one of the following $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$				$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$	D)	$\begin{bmatrix} i & 1 \\ 1 & -i \end{bmatrix}$			
43.	Law of conservation of linear momentum is a consequence of: A) Rotational invariance of Hamiltonian B) Translational invariance of Hamiltonian C) Space inversion symmetry D) All the above										

44.	Eigen v A)	value correspon +1 only	ding to B)	particle 1 onl		ige oper C)	ator is: ±1	D)	zero	
45.	All the A) C)	velocity dependent Corriolis force Mendelevian	e	ces whi	ch do n B) D)	Gyroso	ume power are copic force emberts force.	e known	as:	
46.		k body at T K body becomes	4T K, th	ne new p	-		_	ne tempe	erature of the	
	A)	$\frac{\lambda}{4}$	B)	$\frac{\lambda}{16}$		C)	16 λ	D)	64 λ	
47.	distribu Einstein	MB, N _{BE} , N _{FD} ited in two en Statistics and	ergy sta Fermi	ates aco -Dirac S	cording Statistic	to Mass. Then	xwell-Boltzma N _{MB} : N _{BE} : N _I	ann stat _{FD} is:	istics, Bose-	
	A)	1: 3: 4	B)	1: 4: 4	1	C)	4: 3: 1	D)	4: 3: 3	
48.		modynamics, Cature and S is n will:								
	A) C)	Be a non zero Vary linearly	constar	ıt.	B) D)	Be zero Vary e	o xponentially			
49.	In a micro canonical ensemble a system A of fixed volume is in contact with a large reservoir B. Then A can exchange: A) Both energy and particle with B B) Neither energy and nor particle with B C) Only energy with B D) Only particles with B									
50.	that for	C _v are specific Hydrogen gas, a=14b	C_p - C_v =	a and	for Nitro	ogen gas	$s C_p - C_v = b$. The	en:		
51.	Oxyger	nperature at what at 47°C is:		-	l of Hyd					
	A)	-20K	B)	0K		C)	20K	D)	3K	
52.		ot engine operared by 62K, its 372K and 310 330K and 260	efficien K		ome 1/3	. Then 7 372K a		ciency 1	/6. When T ₂	
53.		of the following $\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial S}{\partial V}\right)_T$	_				=			
	C)	$\left(\frac{\partial V}{\partial P}\right)_{S} = -$	$\left(\frac{\partial T}{\partial S}\right)_{V}$		D)	$\left(\frac{\partial T}{\partial P}\right)$	$\int_{S} = \left(\frac{\partial V}{\partial S}\right)_{P}$			


- 54. The area enclosed by T-S diagram for a Carnot cycle represents
 - A) Heat absorbed form source per cycle
 - B) Heat rejected to sink per cycle
 - C) Net heat converted to work per cycle
 - D) Net energy lost per cycle.
- 55. The slope of P-T phase diagram $\frac{dP}{dT} = \frac{L}{T\Delta V}$, represented in terms of Latent Heat(L), absolute temperature (T) and specific volume change(ΔV), is known as:
 - A) Joule-Kelvin equation
- B) Clausius Clapeyron equation
- C) Gibbs Helmholtz equation
- D) Mayer's Relation
- 56. The graph that represents the pd across resistor against the current drawn from the cell shown in following diagram is:


A)


B)

C)

D)

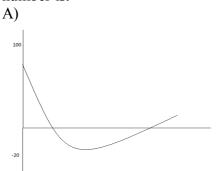
- 57. A cube is uniformly charged so that the charge density is same everywhere inside the cube. Then the ratio of electrical potential at the center of cube to that at one of the corner of the cube is:
 - A)
- 1:1
- B) 1:2
- C)

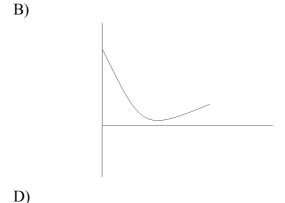
2:1

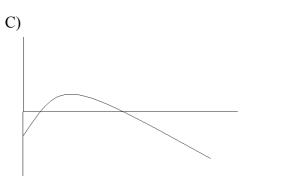
D)

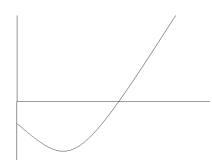
 $\sqrt{2}:1$

58.	Suppose a magnetic monopole is detected in an experimental setup. Then which one of the following Maxwells relation has to be modified:												
	A)	$\nabla .E = \frac{\rho}{\varepsilon_{o}}$		B)	$\nabla .B =$	= 0							
	C)	$\nabla .E = \frac{\rho}{\varepsilon_o}$ $\nabla \times E = \frac{-\partial}{\partial \varepsilon_o}$	$\frac{\partial B}{t}$	D)	$\nabla \times E$	$B = \frac{1}{c^2} \frac{\partial E}{\partial t} + \mu$	$\iota_{_o} J$						
59.		ane electromag				z direction							
	Then the	hen the value of Poynting vector will be:											
	A)	$\frac{1}{\mu_o} a^2 \sin (2\omega z) \sin (2\omega ct)$											
	B)	4											
	C)	$a^2 \sin (2\omega z) \sin (2\omega ct)$											
	D)	$-\frac{1}{4\mu_o}a^2\sin$	$(2\omega z)$	$\sin (2\omega ct)$									
60.	through	another Polard	oid B wh	ich is oriented	so that	ed through a F tits principal participal participation							
	A)	$\frac{I_o}{8}$	D)	I_{o}	C	I_o	D)	I_o					
	A)	8	В)	I_o	C)	2	D)	4					
61.		ctric flux pass: ric field E with	-	-	-	rical surface of	f radius	R placed in					
	A)	0		$2\pi R^2 E$	C)	$\pi R^2 E$	D)	$3\pi R^2 E$					
62.	The ration A)	o of electric fic impedance	eld vecto B)	or E and magne inductance	etizing f C)	ield Vector H l capacitance	has the o	dimension of: admittance					
63.			h of X-ra			ce planes in a d by this crystal 24A ⁰							
64.	In HeNe A)	e laser the mos 1:4		ole ratio of He 7:1	to Ne fo	or achieving las 9:1	sing acti D)	ion is: 1:9					
65.	(Giver	n: reduced ma	ss of CC) is 11/384 x 1	$0^{-27} \text{kg})$	em ⁻¹ . Its bond le							
	A)	$0.11A^{0}$	B)	$1.13A^0$	C)	$2.11A^{0}$	D)	$2.13A^{0}$					


	A)B)C)	$\Delta M_J = 1$, $\Delta M_J = 0$, $\Delta M_J = 0$, $\Delta M_J = 0$,	-1	<i>M</i> =	: 0 ↔	M = 0	$0 \ if \ \Lambda J = 0$						
	D)	$\Delta M_J = 1 , \pm$											
67.	The dot A) B) C) D)	Screening of Spin orbit int Presence of i All the above	K-elect teraction sotopes	ron n of elec		ue to:							
68.	For an	atom in the sta	ate $^2D_{5/2}$, the la	ande g f	actor sh	ould be:						
	A)	2	B)	1.75		C)	1.20	D)	1.33				
69.	Oxyge A)	n has nuclear s	spin of 5 B)	5/2. NM 3	R of ox	ygen giv C)	ves lines.	D)	6				
70.	Pure v A) B) C) D)	B) It has a permanent dipole moment C) It has no magnetic moment											
71.	The co	continuous X-ray spectrum is the result of Photo electric effect B) Inverse photo electric effect Compton effect D) Auger effect											
72.	E=BJ(re rotational lo J+1), where E nal constant. T 2B	is ener	gy of rest rotat	otationa ional en	l level ergy ga _l	with quantur p in rotationa	n numbe l Raman	er J and B is spectrum is:				
73.		microwave sal lines is record. 2.3 x 10 ⁻³⁶ k	ded to b		13 cm ⁻¹ ,	momen							
	C)	$7.8 \times 10^{-42} \text{ k}$	gm ²		D)	7.8 x 1	10^{-46} kgm^2						
74.		y level betwee tional to J+1 Frank-Condo Fine structure	to the la n rule	arger of		J values	s. This rule is interval rule		-				
75.		leus rupture in f nuclear radii		_		ll be:							
	A)	2:1	B)	8:1		C)	1: $2^{\frac{1}{3}}$ D)	$2^{\frac{1}{3}}:1$	1				

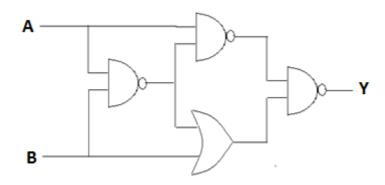

Selection rule for Zeeman splitting is:


66.


- 76. A neutron of mass m, moving at a speed undergoes a head on collision with an atomic nuclei of mass M which is at rest. Then the fraction of decrease in Kinetic energy of neutron is:
 - $\frac{2 m^2 M}{(m+M)^2}$ B) $\frac{4 m^2 M^2}{(m+M)^2}$ C) $\frac{2 m M}{(m+M)^2}$ D) $\frac{4 m M}{(m+M)^2}$ A)
- The quark structure of Δ^{++} 77. D) ddd
- $^{60}Co_{27}$ is a radioactive nucleus of half life $2\ln(2\times10^8)$ s. The activity of 10g of $^{60}Co_{27}$ 78. in disintegration per second is:
 - A) $\frac{1}{5} \times 10^{-10}$ B) 5×10^{-10} C) $\frac{1}{5} \times 10^{-14}$ D) 5×10^{-14}
- 79. Which of the following statement is incorrect?
 - Strangeness is conserved in both strong and electromagnetic interactions. A)
 - B) Isospin is conserved only in strong interactions
 - C) Parity is not conserved in weak interactions
 - D) Strangeness is conserved only in weak interactions.
- 80. Which of the following is an example for spallation reaction?
 - $_{92}U^{235} + _{0}\bar{n^{1}} \rightarrow _{40}Zr^{98} + _{52}Te^{136} + _{20}n^{1}$
 - ${}^{52}_{12}Mg^{26} + {}^{1}_{1}H^{1} \rightarrow {}^{13}_{13}Al^{27} + \gamma$ $N^{14} + Pb^{207} \rightarrow N^{13} + Pb^{208}$

 - $_{1}H^{2} + \gamma \rightarrow _{1}H^{1} + _{0}n^{1}$ D)
- The graph which show the variation of packing fraction of a nucleus against its mass 81. number is:

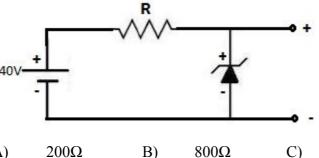
- 82. Read the following three statements related to atomic nucleus.
 - Nuclear density is almost a constant for all nucleus
 - 2. Total binding energy of a nucleus is proportional to their mass.
 - 3. Nucleus with either atomic number or neutron number equal to 2, 8, 20, 28, 82 and 126 are relatively much more stable than other nuclei.

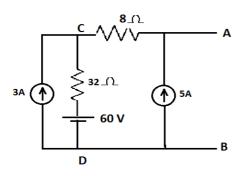

Liquid drop model of nucleus is based on:

- 1 and 2 only A)
- 1 only

1, 2 and 3 C)

- 1 and 3 only D)
- 83. The quadrupole moment of a nucleus is basically:
 - A) scalar
- B) vector
- Tensor C)
- D) Phasor
- 84. Hypercharge(Y) is related to Baryon number (B) and Strangness(S) by the equation:
 - Y = B S
- B) Y = B + S
- C) $Y = B \times S$
- D) Y = B/S
- Half life $T_{1/2}$ and the mean life τ of a radioactive element is related as: 85.
 - $T_{1/2} = \ln(2)\tau$
- B) $T_{\frac{1}{2}} = \frac{\tau}{\ln(2)}$ D) $T_{\frac{1}{2}} = \frac{1}{2}\tau$
- $T_{y_2} = \tau$
- The specific charge of β ray is found to be less than that of cathode rays because ----86. by virtue of large speed.
 - Charge decreases A)
- Charge increases B)
- C) Mass increases
- D) Mass decreases
- If the nuclear radius of ^{27}Al is 3.6 fermi, then the nuclear radius of ^{64}Cu in fermi 87. unit is:
 - 2.4 A)
- B) 3.6
- C) 4.8
- 6.0 D)


88. The output of given logic circuit is:


- $\overline{A}B$ A)
- $A\overline{B}$ B)
- C)
- $\overline{AB} + AB$ D) $\overline{A}B + A\overline{B}$

89.	A solid which is transparent to visible light and whose conductivity increases with temperature is formed by bonding.										
	A) 1	Metallic	B)	Ionic	υ	C)	Covalent	D)	Vanderwalls		
90.	In the A)	e middle of dep Electric field Potential is r	l is zero		revers B) D)	Electr	pn junction to ic field is ma tial is zero				
91.	A mid A)	croprocessor w 1024	rith 12 ac B)	ddress li 2048	nes is	capable (C)	of addressing 4096	(loc D)	ations. 64k		
92.	Numl A)	ber of Flip Flop 10	os requir B)	red to bu 24	iild a b	inary co C)	unter to coun 12	t from 0 D)	to 1023 are:		
93.		anche photodions because of: Speed of operations Larger bando	eration	e prefer	red ov B) D)	Highe	diodes in our sensitivity r power hand	-			
94.	A n- (A) C)	channel D-MO Depletion me Cut off		rith a po	sitive V B) D)	-	ncement mod	e			
95.	Negar A) B) C) D)	Increases in Increases in Increases in Decreases of Decreases in	put and out impe utput im	output in dance an pedance	mpedaind band and ba	dwidth andwidtl					
96.	Feedb A) C)	oack element u Resistor Zener diode	sed in ar	n integra	ator circ B) D)	cuit is: Capac Induc					
97.	follov	nanium and sili wing diagram ges by:									
	12V-		Ge	 		\	V。 5K				
	A)	0.4V	B)	0.2V		C)	0.6V	D)	0.8V		

- 98. Piezo electric transducer works under the variation of:
 - Intensity of light A)
- B) Mechanical pressure
- Temperature variation C)
- D) All of these
- 99. The Boolean expression $Y = \overline{AB + BC + CA}$ is equivalent to:
 - $\overline{AB} + \overline{BC} + \overline{CA}$ A)
- B) $\overline{A}B + \overline{B}C + C\overline{A}$
- C)
- $\overline{A} \ \overline{B} + \overline{B} \ \overline{C} + \overline{A} \ \overline{C}$ D) $ABC + A\overline{B}C + AB\overline{C} + \overline{A}BC$
- 100. The minimum value of resistor 'R' required in the following circuit if the maximum zener current is 50mA. Given zener voltage=10V and maximum dc voltage applied at the input is 40V.

- A)
- 600Ω
- D) $1k\Omega$
- 101. The Thevenin equivalent voltage across A and B for the given network is:

- A) 60V
- B) 316V
- C) 356V
- D) 450V
- 102. The physical size of transmitter and receiver antenna in a communication system are:
 - Inversely proportional to modulation frequency A)
 - B) Proportional to carrier frequency
 - Independent of both carrier frequency and modulation frequency C)
 - Inversely proportional to carrier frequency D)
- Programming language that make use of Mnemonic codes is: 103.
 - High level language A)
- Assembly language B)
- C) Machine language
- D) None of the above

104.	Phase A) C)	shift oscillator Audio freque Microwave fi	ncy rang	ges	B)	UHF							
105.	Schot A) B) C) D)	tky defect in cr Unequal no. of Equal no. of o An ion leaves The crystal is	of cation cations a s its nor	ns and a and anic mal site	nions and oc	re miss missing cupies	g from th an inters	e lattice titial site	e				
106.	Recip A) B) C) D)	fcc lattice bcc lattice Body centere											
107.	Classi A)	cally molar ele 0.5R	ectronic B)	specific 1.5R	heat ca	apacity: C)	3R		D)	4.5R			
108.	For a	diamond struct	ure pacl	king fra	ction is	given l	by:						
	A)	$\pi \frac{\sqrt{3}}{8}$	B)	$\pi \frac{\sqrt{3}}{4}$	3	C)	$\pi \frac{\sqrt{3}}{2}$	-	D)	$\pi \frac{\sqrt{3}}{16}$			
109.	Ice is A) C)	an example of- Triclinic Orthorhombic		tem.	B) D)		gonal oclinic						
110.	Coord A)	lination number	r for a fo	cc crysta	al is:	C)	8		D)	12			
111.	Which A) C)	n types of cryst Covalent crys Metallic		generall	y good B) D)	Ionic	reflector crystals f them	rs?					
112.	Semic termed A) C)	conductors wit d: Isotopic Amphoteric	h equa	l conce	entration B) D)	Isomo	cceptor orphic pensated		onor	impurities	are		
113.	BCS t A) B) C) D)	heory is valid f Weak couplir Strong coupli Both weak an Metallic cond	ng super ing supe nd strong	er condu g coupli	ctors ng supe	er cond	uctors						
114.	The re	elation $\frac{k}{\sigma}$ \infty	T is:										
	A) C)	Lorentz Drud Kronig Penni			B) D)			Wiedemann–Franz Curie Weiss relation					

- 115. Fermi energy level E_F is the highest energy state:
 - Below which all energy states are completely filled A)
 - Below which all energy states are completely empty B)
 - C) Above which all energy states are completely filled
 - Above which all energy states are partially filled and below which all the D) energy states are completely empty
- 116. According to Kronig-Penni model, in the energy spectrum of electrons in solid there
 - A) Regular region of only the allowed energy
 - B) Alternate regions of allowed and forbidden energy
 - C) Only the regular region of forbidden energy
 - D) None of the above
- 117. Electron concentration in a non degenerate semiconductor is:
 - $n = N_c \exp\left(\frac{E_F E_C}{kT}\right)$ B) $n = N_c \exp\left(\frac{E_C E_F}{kT}\right)$
 - C) $n = N_c \exp\left(\frac{E_c + E_F}{kT}\right)$ D) $n = N_c \exp\left(\frac{kT}{E_c E_F}\right)$
- 118. Einstein's expression for specific heat capacity at constant volume is:
 - A) $C_V = 3R \left(\frac{\theta_E}{T}\right)^2 \left(e^{\frac{\theta_E}{T}} 1\right)^{-2}$
 - B) $C_V = 3R \left(\frac{\theta_E}{T}\right)^2 \left(1 e^{\frac{-\theta_E}{T}}\right)^{-2} e^{\frac{-\theta_E}{T}}$
 - C) $C_V = 3R \left(\frac{\theta_E}{T}\right)^3 e^{\frac{\theta_E}{T}}$
 - D) $C_V = 3R \left(\frac{\theta_E}{T}\right)^3 e^{\frac{-\theta_E}{T}}$
- If \vec{g} is a reciprocal lattice vector the Braggs law can be written as: 119.
 - A) $\vec{k} + \vec{g} = 0$
- $\vec{k} + \vec{g} = 0$ B) $2 \vec{k} \cdot \vec{g} + g^2 = 0$ D) $\vec{k} \cdot \vec{g} = 0$
- 120. In non dispersive medium angular frequency ω and wave vector k are related to wave velocity v as:
 - A) $v = \frac{\omega}{k}$ B) $v = \frac{k}{\omega}$ C) $v = \frac{\omega^2}{k}$ D) $v = \omega^2 k$