22103

A 120 MINUTES

- 1. Which among the following statements about prions is WRONG?
 - A) They cause CJD, FFI and GSS in humans
 - B) Prion disease is a type of proteopathy
 - C) CD230 is the major prion protein in humans
 - D) Frozen conditions for extended periods of time will inactivate prions.
- 2. Which among the following is known as Manna Lichen?
 - A) Lecanora esculenta B) Peltigera canina
 - C) Cetraria islandica D) Cladonia sylvatica
- 3. Which among the following traits does not suit Cycadales?
 - A) The stomata are Syndetocheilic
 - B) Stem apex does not possess tunica layer
 - C) Plants are dioecious
 - D) Microsporangia are eusporangiate in development
- 4. Select the suitable pairs from the following
 - a.Copal1.Callitrisb.Sandarc2.Agathisc.Rosin3.Pinus
 - d. Oil of Hemlock 4. Tsuga

5. Abies

- A) a-2, b-1, c-3, d-4 B) a-3, b-4, c-2, d-5. C) a-1, b-2, c-3, d-4 D) a-5, b-4, c-1, d-3
- 5. Eccentric secondary wood was characteristic of
 - A) Bennettitales B) Pentoxylales
 - C) Pteridospermales D) Cordaitaceae
- 6. Which among the following is **not** a character of Gnetum?
 - A) The female gametophyte becomes completely cellular after fertilization
 - B) Occurrence of a distinct tent pole
 - C) The male gametophyte has a single male prothallus cell
 - D) Prothallial tubes are formed during fertilization
- 7. Given below are enzymes involved in the C4 photosynthetic pathway. Select the correct sequential order of enzymes in the pathway:
 - 1.Malic enzyme2.PEP Carboxylase
 - 3. Pyruvate phosphate dikinase 4. Malate dehydrogenase
 - A) 2, 4, 1, 3 B) 2, 1, 3, 4 C) 1, 3, 2, 4 D) 1, 2, 3, 4

- 8. Analyze the following data
 - 1. Any specimen cited in the protologue other than the holotype
 - 2. Any specimen cited by the author when there is no holotype
 - 3. A specimen or illustration designated from the original material as the nomenclatural type when no holotype was indicated at the time of publication
 - 4. A specimen or illustration selected to serve as an interpretative type when all original material associated with a validly published name is demonstrably ambiguous or cannot be critically identified for purposes of the precise application of the name to a taxon

Considering the above statements a lectotype refers to:

- A) 1 only B) 3 & 4 only C) 1 & 2 only D) 3 only
- 9. DELTA system is an integrated set of programmes which is a flexible and powerful method for recording taxonomic descriptions for computer processing was developed in:
 - A) Australia B) Japan C) USA D) Mexico
- 10. The oldest botanical garden in the world:
 - A) Palermo Botanic Garden of Italy
 - B) Leiden Botanic Garden of Netherlands
 - C) Padua Botanic Garden of Italy
 - D) Royal Botanic Garden of Scotland

11. The term ecotype was first proposed by:

A)

Turesson B) Odum C) Wagner D) Clement

12. Select the correct match from the following (Common name – binomial- family)

- A) Jute- Corchorus capsularis- Malvaceae
- B) Opium- Papaver somniferum- Piperaceae
- C) Green gram- Vigna unguiculata- Fabaceae
- D) Annatto- Bixa Orellana- Bixaceae
- 13. In eusporangiate ferns, the sporangial initials are superficial in position and periclinal divisions of these cells result in outer wall cells and inner primary sporogenous cells. Select the fern from the following which is not eusporangiate
 A) Psilotum B) Selaginella C) Isoetes D) Salvinia
- 14. An ovular structure that directs the growth of the pollen tube towards the micropyle is termed as:
 - A) Endostome B) Exostome C) Endothelium D) Obturator
- 15. An example for a tetra sporic embryosac :
 A) Allium Type B) Drusa Type
 C) Polygonum Type D) Oenothera Type

- 16. The diploid chromosome number of a plant species is 28. The chromosome numbers in various cells of that species is given below. Select the **wrong** one:
 - A) Nucellus = 28, Integument = 28, Funicle = 28, Micropyle = 28
 - B) Antipodals = 14, Synergids = 14, inetguments = 28, Nucellus = 28
 - C) Endosperm = 84, Egg = 14, Synergid = 14, Nucellus = 14
 - D) Egg = 14, Nucellus = 28, Antipodals = 14, Synergid = 14
- 17. Which among the following statement/s represent/s Diplospory?
 - 1. A nucellar cell becomes activated and develops into an embryosac
 - 2. Embryosac is formed from a megaspore mother cell without meiosis
 - 3. Embryo developing from an unfertilized egg
 - A) 1 & 2 only B) 2 & 3 only C) 2 only D) 1 only
- 18.The phytohormone that induces stomatal closure in plants is
A) IAAB) ABAC) GAD)

19. Electron Transport System in mitochondrion consists of four multiprotein complexes localized in the inner mitochondrial membrane. Consider the reaction mentioned below and mention to which complex it belongs to Succinate + UQ
 Fumarate + UQH2

A) Complex I B) Complex II C) Complex III D) Complex IV

IBA

20. A plant response which is **not** influenced by blue light:

- A) Inhibition of stem elongation
- B) Stimulating stomatal opening
- C) Stimulating asymmetric growth and bending
- D) Inhibits proton pump at the guard cell plasma membrane
- 21. Cadastral genes are a class of genes involved in
 - A) Fruit maturation B) Floral development
 - C) Root initiation D) Pollen-Pistil interaction

22. Bowen ratio is related to:

- A) Solute translocation in sieve elements
- B) Growth of stem apex
- C) Regulation of leaf temperature
- D) Movement of phytohormones

23. Select the correct statemen/st connected with the features for Lamiaceae 1. Plants aromatic, Leaves exstipulate, Flowers zygomorphic, Fruits carcerulus

- 2. Plants aromatic, Leaves stipulate, Stamens didynamous, Fruits utricle
- 3. Stem angled, leaves stipulate, flowers actinomorphic, Flowers epigynous
- 4. Stem not angled, Leaves exstipulate, Flowers perigynous, Style gynobasic
- A) 1 only B) 2 only C) 3 only D) 4 only

- 24. Select the correct pair from the following:
 - 1. Abzymes..... Monoclonal antibody with catalytic activity
 - 2. Ribozymes.....Catalytic RNA
 - 3. Allosteric enzymes.....Biocatalysts do not exhibiting typical Michaelis-Menten Kinetic behaviour
 - 4. Isoenzymes......Enzymes differing in amino acid sequence yet catalyzing the same reaction

A)	1,2,3 & 4	B)	1,2 & 3 only
C)	1,2 & 4 only	D)	1 & 4 only

25. Which among the following statements is not true regarding Cherenkov radiation? 1. Cherenkov radiation is faster than light

- 2. Cherenkov radiation is mostly in the UV spectrum
- 3. Cherenkov radiation can be dangerous
- 4. Cherenkov radiation is always red

	A)	4 only	B)	1 only	C)	1 &4 only	D)	1 &3 only	
26.	Whic A)	ch among the f Alanine	ollowing B)	is a derived Valine	l amino ac C)	id? Glycine	D)	Cystine	
27.	RNA A)	As capable of si HnRNAs	llencing B)	the expressions in the si RNAs	on from the C)	eir own genes a guide RNA	tre calle D)	ed sn RNA	
28.	The	number of stru	ctural ge	nes in Tryp	tophan Ope	eron is			
	A)	5	B)	4	C)	3	D)	6	
29.	PRP nucle follo A)	P is the key mo eotides and its wing functions ADP	blecule ir synthesis s as a cor B)	the de nov s is catalyze npetitive inl AMP	o synthesis d by PRPP nibitor of P C)	of purine and synthetase. W RPP synthetase NAD	pyrimic hich am e? D)	line long the FAD	
30.	In eu	In eukaryotes, synthesis of mRNA in the nucleus is carried out by:							
	A)	RNA Polyn	nerase I	B) RNA	Polymerase II			
	C)	C) RNA Polymerase III D) RNA Polymerase II and III							
31.	Cons adjac	sidering chrom cent to the orig	osome d inal segr	uplications, nent, it is te	when the c rmed as	luplicated region	on is im	mediately	
	A)	Reverse du	plication	B)) Tand	em duplication			
	C)	Displaced d	uplicatio	on D) Simp	le duplication			
22	Com	idar a abrama	ana ari	ainally havi	na tha aaa	monta ADC DE	TECH		

32. Consider a chromosome originally having the segments ABC.DEFGH Which among the following represents pericentric inversion in this segment?

- A) AGD.BCFEH B) ABC.DGFEH
- C) ABC.HGFED D) ABC. HGFED

33.	The ternomen	rm Lamp Brusł clature by:	n Chrom	nosomes (LB	C) was in	ntroduced in b	iological	
	A)	Ruckert	B)	Flemming	C)	Balbiani	D)	Walker
34.	Phagoo is stim	cyte mediated c ulated by:	lefense	against infec	tions, esp	becially with i	ntracellul	lar microbes
	A)	$T_{\rm H}1$ cells	B)	$T_{\rm H}2$ cells	C)	TILs	D)	TSTA
35.	Polycis A)	stronic RNA is Fungi	commo B)	n in: Plant cells	C)	Bacteria	D)	Green Algae
36.	Energy A)	for tRNA cha ATP	rging is B)	provided by: GTP	C)	GDP	D)	ADP
37.	Select A) B) C) D)	the wrong mat Gene desert Multigene Far Protein Doma Haplotype	ch from Dev nily ins -Haploid	the followin oid of protein repeated evol Self-stabilit d set of chron	g ution of zing show nosome	genes an ancestral g wing independ	ene lent foldi	ng
38.	A disea A) C)	ase which is no Leaf spot of m Coffee rust	ot caused nango	d by a fungus B) D)	s: Powd Red r	ery mildew of ust of tea	rubber	
39.	Quick A) C)	wilt of pepper Oidium Phytophthora	is cause	ed by species B) D)	of: Pestal Ustila	otiopsis go		
40.	Biosur proper	factants have a ties. Choose the	dvantag ose whie	tes over chen ch are applic 2 Effe	nical surf able to bi	actants. Giver iosurfactants	n below a	re few d pH
	3.	Biocompatibil	lity	4. Biod	legradabi	lity		• P
	A)	1 ,2 & 4 only	B)	1,2,3 & 4	C)	1 & 3 only	D)	2 &4 only
41.	Kieselą A)	ghur of comme Sargassum	rce is ol B)	btained from Laminaria	C)	Diatoms	D)	Fucus
42.	Synger A)	necious androe Polygalaceae	cium is B)	the character Malvaceae	istic feat C)	ure of: Asteraceae	D)	Rubiaceae
43.	Pycnoz A)	xylic wood is so Pinus	een in: B)	Cycas	C)	Zamia	D)	Macrozamia
44.	PAS st A) C)	aining method Lipids Carbohydrates	is used	to detect: B) D)	Protei Amin	ns o acids		

45.	Warbu A) B) C) D)	rg effect is defined as: The greater absorption in the Lesser absorption in the gree Inhibitory effect of O ₂ in Pho Masking of chlorophylls by O	blue sp n spectr tosynth Caroten	ectrum rum lesis oids			
46.	Richm A)	ond- Lang effect is related to: CK B) GA		C)	IAA	D)	ABA
47.	Select A) B) C) D)	the Elton pyramid which can Pyramid of energy Pyramid of number in a pond Pyramid of biomass in sea Pyramid of number in grass 1	never bo l ecosys and	e in the tem	pattern in any	ecosyste	em inverted:
48.	Tylose A) C)	s are associated with: Vessels of secondary xylem Sieve tubes	B) D)	Cork o Pareno	cells chyma of Seco	ndary pł	nloem
49.	Amphi A)	ivasal secondary vascular bun Bignonia B) Dracea	dles are ana	found : C)	in: Boerhavia	D)	Centella
50.	A cell A) C)	organelle common to both eul Ribosome Smooth ER	karyotes B) D)	s and pr Golgi Centri	okaryotes is apparatus ole		
51.	Which A) C)	among the following does no Dichloroacetone Ethylcarbamate	t find u B) D)	se as a o Ethyle Isoper	chemical muta ene Oxide ntenyl Pyro pho	gen? osphate	
52.	The ter A) C)	rm heterosis was coined by: Gregor Johann Mendel Kolreuter	B) D)	Georg Camer	e H Shull rarius		
53.	Which countr	of the following is associated ies?	with n	utrition	of the poor in	develop	ing
	A) C)	Biomagnification Biofortification	B) D)	Biorer Biotra	nediation Insformation		
54.	The di termed	stribution patterns around the l as:	high lat	itudes o	of the southern	hemispl	here is
	A) C)	Circumaustral Pantropic	B) D)	Circur Cosm	npolar Iopolitan		
55.	Select A) C)	the primary pollutant from the PAN Ground level Ozone	e follow B) D)	ing Acid r Carbo	ain n monoxide		

56.	Kelps	belong to:							
	A)	Phaeophycea	e		B)	Rhodo	ophyceae		
	C)	Chlorophyce	ae		D)	Bacill	ariophyceae		
57.	The in	florescence in	Caesalp	oinia is:					
	A)	Umbel	B)	Coryn	nb	C)	Verticillaster	D)	Thyrsus
58.	Ovary	v is inferior in:							
	A)	Solanum	B)	Pisum		C)	Helianthus	D)	Mangifera
59.	The ra	nge of variable	e such a	s weight	t in firs	t quartil	e Q1 and third	quartile	e Q3 is
	assum	ed as 215.65 a	nd 226.3	31 gm re	espectiv	ely for	an ungrouped o	lata. W	hat will be
	the Qu	artile deviatio	n?					- `	
	A)	4.65	B)	5.33		C)	8.44	D)	2.66
60			** *1	•. • •			1 ***	1	···)
60.	A cros	s is made betw	veen Wł	nite Legi	horns (IICC) ai	nd White Wyar	dottes	(licc). When
	the FI	Whites (IICc)	were bi	red toget	ther, w	hite and	colored chicks	appear	ed. The
	F2ratio	o will be:	4 1		(12.2	D)	07	
	A) 3:1	В)	4:1		C)	13:3	D)	9:7	
61	Whon	more then one	anna ai	on hava	multin1	a affaat	a on the nhanat	una th	
01.	nhanoi	menon is calle	d.		munipi	e eneci	s on the phenot	ype, m	-
	Λ	Multiple alle	u. liem		B)	Enista	cic		
	(\mathbf{C})	Codominance	- -		D)	Pleiot	ronism		
	0)	Codominance	C		D)		lopisin		
62	Colchi	cine specifica	llv block	cs.					
•=•	A)	DNA synthes	sis		B)	Anapł	nasic movemen	t	
	C)	Chromosome	e conden	sation	D	Forma	tion of cell pla	te	
	,				,		1		
63.	The en	dosperm in G	ymnosp	erms is:					
	A)	Haploid	B)	Diplo	id	C)	Triploid	D)	Hexaploid
64.	The G	S-GOGAT pat	thway is	energet	ically 1	nore co	stly than GDH	pathwa	y. The
	numbe	er of ATPs con	isumed i	in GS-G	OGAT	pathwa	y:		
	A)	2	B)	3		C)	1	D)	6
- -			_						
65.	A tech	nique used to	detect a	nd meas	ure th	e physic	cal and chemica	al chara	cteristics of
	a popu	ilation of cells			D)				
	A)	Flow cytome	try		B)	HPLC	,		
	C)	HPTLC			D)	FPLC			
66		nd 7 forms or	a thraa f	orma of		Analyz	the following	statom	onto and find
00.	A, D a	are correct rec	ording '		DNA.	Analyze	e the following	stateme	
		NA is loft hon	dad	L DNA.					
	1.2D	NA is icit fian	ucu m in Hu	mana					
	2. Z D 3 7 D	NA has 10 has	se naire	ner turn					
	J. L D	1 11 1 11 11 10 Uas	pe pans						
	A)	1 2 & 3	B)	1&2	only	C)	1 & 4 only	D)	1 only

67.	Assertion (A) : Sympatric speciation is the process of evolution of new species from a surviving ancestral species while both continue to inhabit the same geographical region						
	Reason ((R): They evolve i	in such a way	that they	y could interbre	ed freel	У
	A) E C) C	Both A and R are con Only R is correct	rrect B) D)	A is c Both	correct and R is A and R are wr	wrong rong	
68.	DMSO i A) (C) (s commonly used as dehydrating agent cryoprotectant	a: B) D)	vital pesti	stain cide		
69.	Followin 1. It is us 2. Nucleo 3. It is be 4. The pr	ng are few statement sed for searching sin otides or amino acid etter for similarity se rogram follows a her	s for FASTA. nilarities betw ls re represent earching in les uristic method	Select t yeen sequ ed as sir ss simila l	he correct resp uences of DNA ngle letter codes r sequences	onse and Pros	otein
	A) 1	, 2 & 3 only B)	1 & 2 only	C)	1, 2, 3 & 4	D)	2, 3 & 4 only
70.	The func A) C C) S	ctional elements alor Genome annotation Sequence alignment	ng the sequence B) D)	ce of a g Chron DNA	enome is identi mosome mappi Proof reading	fied by ng	
71.	Chloropl A) V C) C	hyll a is absent in: Volvox Gelidium	B) D)	Fucus Photo	s osynthetic bacte	eria	
72.	Select fro and a the A) P	om the following – a ermostable Polymera PCR B)	a reaction that ase: LCR	requires	s two different RAPD	enzyme D)	s like ligase SSR
73.	In Kerala A) T C) T	a, ICAR-NBPGR Re Thiruvananthapuram Thrissur	egional Station B) D)	n is situa Kasaı Kozh	ited at: ragod ikode	,	
74.	 Given below are few statements related to phloem translocation in plants. Select the wrong statement: A) Apoplastic loading of sucrose into the sieve tubes is an active transport process B) Short distance pathway is always symplastic C) SUT1 and SUT2 are the major sucrose transporters in phloem loading D) Species exhibiting symplastic loading exclusively translocates sucrose 						
75.	A mixtu distilled A) F C) F	are of Chromium tr water form the ingre AA Flemming's Fluid	rioxide, Osmi edients of the B) D)	um tetro fixative Carno PAS	oxide and Gla	cial As	cetic Acid in

- 76. Choose the correct characteristic feature/s of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) from those given below
 - 1. The COVID-19 belongs to genera Betacoronavirus, order Nidovirales
 - 2. Single-stranded RNA associated with a nucleoprotein within a capsid comprised of matrix protein
 - 3. The virus uses ACE2 as the entry receptor-like SARS-CoV
 - 4. The envelope bears club-shaped glycoprotein projections
 - A) 1 only B) 1 & 3 only C) 1,2 & 3 only D) 1, 2, 3 & 4
- 77. Select the mismatch pair from the following
 - A) *Oedogonium aquaticum* haplontic life cycle
 - B) *Cladophora glomerata* diplontic life cycle
 - C) *Ulva lactuca*-heteromorphic diplohaplontic life cycle
 - D) *Polysiphonia fucoides* Diplobiontic life cycle
- 78. Select the statement/s which is/are incorrect
 - 1. Three distinct phases i. e. haplophase, dikaryophase and diplophase occur in the life cycle of *Puccinia*
 - 2. In *Ustilago*, first of all smut spores are produced which germinate to produce basidia and basidiospores
 - 3. Deuteromycetes reproduce by producing a variety of asexual spores such as conidia, chlamydospores, arthrospores, oidia etc.
 - 4. A saucer shaped asexual body composed of a group of small conidiophores bearing conidia arising from a stromatic mass of hyphae is termed pycnidium
 - A)
 1 only
 B)
 2 only
 C)
 2 & 3 only
 D)
 4 only

79. Select the correctly matched pair/s of fungal disease/s and the causative organism/s

- 1.Loose smut of wheat-Ustilago maydis2.Panama disease of banana-Fusarium oxysporum3.Downy mildew of grapevine-Uncinula nector
- 4. Late blight of potato *Alternaria solani*
- A) 1 & 2 only B) 1 only C) 2 & 3 only D) 1, 2, 3, & 4

80. Many enzymes are produced by fungi, which find their application in many industries. Match the enzymes and fungi producing them

a.	Cellulase	1. Aspergillus oryzae				
b.	α -Amylase	2. Trichoderma reesi				
c.	Invertase	3. Aspergillus niger				
d.	Lactase	4. Saccharomyces cerevisia	ıe			
A)	a-3, b-1, c-4, d-2	B) a-2, b-1, c-4, d-3				
C)	a-2, b-1, c-3, d-4	D) a-3, b-2, c-4, d-1				

81.	Identif A)	fy the Bryophyt <i>Riccia</i>	te which B)	has ela March	aters in <i>antia</i>	n the caps C)	ule <i>Funaria</i>	D)	Polytrichum
82.	Which A) C)	of the followin Dryopteris an Equisetum and	ng are he d <i>Pterid</i> d <i>Lycope</i>	eterosp ium odium	orous B) D)	pteridoph Selagin Lycopo	ytes? <i>nella</i> and <i>Salvi</i> odium and <i>Sal</i> vi	inia vinia	
83.	Choos 1. 2. 3. 4.	e the correct sta Lepidodendro Their bark wa They reprodu- Lepidodendro	atements on is an e as covere ced with on exister	extinct ed with a cone d durin	Lycop diamo e like s g the l	ood tree ond-shape structure Permian p	d leaf scars period		
	A)	1 & 2 only	B)	1 & 3	only	C)	1, 2 & 3 only	D)	1, 2 & 4 only
84.	Identif familia A) B) C) D)	Ty the DNA ph al levels in which Henning syst Hutchinson sy Bessey's Phyl APG system	ylogeny ch group em ystem logenetic	-based os are a e syster	angios lways n	sperm cla monophy	ssification sys detic	tem at t	the order and
85.	Select A) C)	the incorrectly Brassicaceae - Asteraceae -	matcheo tetradyna polyandi	d pair v amous cous	vith re B) D)	espect to a Rubiac Lamiae	rrangement of eae - epipetal ceae – didynar	f stame lous nous	ns
86.	Match a. b. c. d.	the morpholog Myristica fragr Vigna unguicu Corchorus cap Ferula asafoeta	gy of the rans lata osularis ida	useful	part v 1. C 2. F 3. C 4. P	vith the pl Cotyledons leshy aril Dleo-gum-r hloem fibr	ant esin es		
	A) C)	a-3, b-1, c-4, a-2, b-1, c-4,	d-2 d-3		B) D)	a-2, b- a-4, b-	3, c-1, d-4 2, c-1, d-3		
87.	The r localiz A) C)	nost common ation of carbol Sudan black Coomassie b	ly used nydrates prilliant b	staini olue	ng pr B) D)	The pe Aniling	in the histo riodic acid-Sc e blue black	logy la hiff (P/	aboratory for AS)
88.	Accord 1. 2. 3.	ding to transpir a negative pre The cohesive xylem water remains vessels	ration pu essure (te property s as a con	ll theor ension) of wat ntinuou	that d that d ter req s colu	ascent of levelops in juired for imn due to	water through n mesophyll co sustaining wa o the adhesive	xylem ells in t ter colu proper	is due to he leaf umn in the ty of xylem
	A) C)	1 only 2 & 3 only			B) D)	1 & 2 1,2 & 3	only 3		

- 89. Which of the following is an example for an electrogenic pump?
 - A) H^+K^+ ATPase in animal cells
 - B) H^+ and Ca2⁺ pumps in plant plasma membrane
 - C) Na^+K^+ ATPase
 - D) None of the above
- 90. An electron transport chain consisting of one FAD molecule, one heme of cyt b type (cyt b557) and one cofactor containing Mo called molybdenum cofactor (MoCo) is a characteristic feature of the enzyme
 - A) Nitrogenase B) Nitrate reductase
 - C) Nitrite reductase D) Glutamate dehydrogenase
- 91. Which of the following statement regarding cyanide insensitive respiration is **not** correct?
 - A) It is an alternative pathway that transfers electrons directly from the ubiquinone pool to oxygen, bypassing complex III and cytochrome c oxidase
 - B) The cyanide-resistant respiration is conferred by a protein, the alternative oxidase (AOX), sensitive to salicylhydroxamic acid (SHAM)
 - C) The pathway occurs only when the mitochondrial UQ pool is highly reduced
 - D) AOX is inactivated by a high concentration of pyruvate

92. Match the class of floral organ identity genes in *Arabidopsis* in with the corresponding genes

- a. Class A genes that control whorls 1 and 2
- b. Class B genes that control whorls 2 and 3
- c. Class C genes that control whorls 3 and 4.
- d. Class D genes that specify identity of ovule
- A) a-3, b-1, c-4, d-2 C) a-2, b-1, c-3, d-4 B) a-2, b-1, c-4, d-3 D) a-3, b-2, c-1, d-4
- 93. Select the correct statements with respect to circadian rhythms :
 - 1. The rhythm has an endogenous free running period that lasts~ 24h
 - 2. The rhythms are entrainable ie the rhythm can be reset by exposure to external stimuli such as light and heat a process called entrainment.
 - 3. The external stimulus used to entrain the rhythm is called zeitgeber or time giver
 - 4. The rhythm exhibits temperature compensation
 - A) 1 only B) 1 & 3 only C) 1, 2 & 3 only D) 1, 2, 3 & 4
- 94. The seed stock handled to maintain specific identity and genetic purity, which may be designated or distributed and produced under careful supervision of an agricultural experiment station is known as
 - A) Breeder seed B) Foundation seed
 - C) Registered seed D) Certified seed

- 1. Apetala 3 and Pistillata
- 2. Seedstick and Shatterproof
- 3. Apetala 1 and Apetala 2
- 4. Agamous

- 95. Choose the correct statements regarding Pentose phosphate pathway (PPP)
 - 1. The respiratory substrate is glucose 6-phosphate
 - 2. The pathway consists of 2 phases: a preparative phase and a payoff phase
 - 3. The two most important products from this process are the ribose-5-phosphate sugar used to make DNA and RNA, and the NADPH molecules which help with building other molecules
 - 4. No energy in the form of ATPis produced or used up in this pathway
 - A) 1 only B) 1 & 3 only C) 1, 2 & 3 only D) 1, 3 & 4 only

96. According to the principle underlying the formation of Ramachandran plot which are the more likely conformation/s for a polypeptide chain to adopt?

- A) Alpha helices B) Beta strands
- C) Turns D) All of these

97. Cell cycle checkpoints ensure that each of the various events that make up the cell cycle occurs accurately and in the proper order. Checkpoints are surveillance mechanisms that halt the progress of the cell cycle if

- A) chromosomal DNA is damaged
- B) DNA replication during S phase has not been properly completed.
- C) chromosome alignment during M phase is not complete
- D) All the above

98. Philadelphia chromosome detected in the malignant cells of chronic myelogenous leukemia (CML) patients is the result of translocation between chromosome numbers
A) 22 and 9 B) 22 and 5 C) 9 and 5 D) 12 and 18

- 99. Which of the following is an error prone repair system?
 - A) Base excision repair (BER)
 - B) Nucleotide excision repair (NER)
 - C) SOS repair
 - D) Mismatch repair (MMR)

100. Match the following:

a. Negative regulation	1.	a repressor protein binds to an operator to prevent a gene from being expressed.
b. Positive regulation	2.	a transcription factor is required to bind at the promoter to enable RNA polymerase to initiate transcription.
c. Inducible regulation	3.	the gene is regulated by the presence of its substrate.
d. Repressible regulation	4.	the gene is regulated by the product of its enzyme
		pathway.
A) a- 2, b- 1, c- 3, d- 4		B) a- 1, b- 2, c- 4, d- 3

C) a-4, b-3, c-2, d-1 D) a-1, b-2, c-3, d-4

101.	CpG sites, that is 5'— <i>C</i> — <i>phosphate</i> — <i>G</i> —3' sites and CpG islands are considered very important in epigenetics because they are important in controlling gene expression through					
	A)	Methylation of cytosine	B)	Acetv	lation of cytosine	
	C)	Acetylation of guanine	D)	Methy	value of guanine	
100	N f . 4 . 1				- 4	
102.	Match	Deminent enisteria	ons with			
	а. ь	Dominant epistasis		1. 2	9.7	
	D.	Duplicate dominant gange		2. 2	9.5.4	
	С. А	Duplicate dominant genes		3. 4	13.1	
	a.	Duplicate recessive genes		4.	12. 5. 1	
	A)	a- 4, b- 3, c- 2, d- 1	B)	a- 2, t	o- 4, c- 3, d- 1	
	C)	a- 4, b- 2, c- 3, d- 1	D)	a- 3, t	p- 2, c- 4, d- 1	
103.	Match inheri a	the following classical examp tance with their corresponding Dextral and sinistral shell co	oles of i organi	materna sms 1	l effects and cytoplasmic	
	h.	Killer Trait		2	Paramecium aurelia	
	о. С	Poky trait		2.	Limnaea nereora	
	d.	Iojap trait		<i>4</i> .	Zea mays	
		5 1			,	
	A)	a- 3, b- 2, c- 1, d- 4	B)	a- 3, t	p- 1, c- 2, d- 4	
	C)	a- 2, b-3, c-1, d-4	D)	a- 4, t	o- 2, c- 1, d- 3	
104.	In a li genes of the	nkage mapping study it was for b and c are 6 map units apart map is 18 map units. Determi	ound that and a and ne the g	at genes nd c 12 gene sec	a and b are 18 map units apart, map units apart. The total length juence in the map.	
	A)	a- b- c	B)	b- a- c	2	
	C)	a-c-b	D)	the da	ta is insufficient	
105.	Whicl Equili	h of the following is not a fact ibrium?	or affec	ting and	d changing Hardy-Weinberg	
	A)	Mutation	B)	Migra	tion	
	C)	Random mating	D)	Select	tion against a recessive lethal	
106.	Which A) B) C)	h of the following describes the Innate immunity Adaptive, natural and active Adaptive, artificial and active	e immu immun e immu	nity obt ity inity	tained from vaccinations?	
	Ď			•, 5		

D) Adaptive natural and passive immunity

- 107. Which of the following statements about monoclonal and polyclonal antibodies is **incorrect** ?
 - A) Monoclonal antibodies are produced by a single clone of plasma B cells against a single antigen.
 - B) Polyclonal antibodies are produced by different clones of plasma B cells against different antigens.
 - C) Polyclonal antibodies are produced by different clones of plasma B cells against a particular antigen.
 - D) Monoclonal antibody production requires hybridoma cell lines while Polyclonal antibody production does not require it.
- 108. Which of the following statements about ecosystem productivity is **incorrect**?
 - A) Gross primary production (GPP) refers to the total rate of organic carbon production by autotrophs
 - B) Net primary production (NPP) is GPP minus the autotrophs' own rate of respiration.
 - C) Secondary production (SP) typically refers to the growth rate of heterotrophic biomass.
 - D) Net ecosystem production (NEP) is GPP minus the respiration by all organisms in the ecosystem except decomposers.
- 109. There is an overall tendency for the density of a population under the influence of intraspecific competition to settle at K (carrying capacity). In this context find the correct statement/statements from the following.
 - A) over a sufficiently large density range, as density increases, competition between individuals generally reduces the per capita birth rate and increases the death rate.
 - B) At densities below *K*, births exceed deaths and the population increases.
 - C) At densities above *K*, deaths exceed births and the population decreases.
 - D) All the above.
- 110. How ships pollute oceans and waterways?
 - A) Through oil spills
 - B) Discharge of cargo residues from bulk carriers
 - C) Transport of invasive species through ballast water
 - D) All the above

111. Match the international treaties with their targeted environmental threat

- a. Montreal protocol- 1987 1. Against Persistent organic pollutants
- b. Paris agreement- 2015 2. To set emission targets for developed countries
- c. Kyoto Protocol 3. To protect Ozone laver
- d. Stockholm Convention 4). For action against climate change
- A) a- 3, b- 4, c- 2, d- 1 B) a- 1, b- 4, c- 2, d- 3
- C) a- 4, b- 3, c- 2, d- 1 D) a- 2, b- 4, c- 3, d- 1

- 112. The international organization involved as the single agency or as a major partner in all of the following initiatives:
 - 1. Convention on International Trade in Endangered Species of Wild Fauna and Flora
 - 2. The Convention on Wetlands
 - 3. Publication of 'Caring for the Earth'
 - 4. Business and Biodiversity Programme
 - 5. Publication of the list of world's most threatened species
 - A) IUCN B) UNEP
 - C) UNESCO D) World Wide Fund for Nature
- 113. According to present astrophysical, geological, archaeological and biological notions which one of the following is grossly **wrong**?
 - A) Present Universe started with a Big-bang some 13.5 billion years before present
 - B) Earth formed about 4.5 billion years before present
 - C) Life on earth originated about 3.5 billion years before present
 - D) Blue-green algae originated about 1 billion years before present
- 114. Select the correct statements about Molecular evolution and molecular clock
 - 1. The rate of molecular evolution is usually defined as the number of nucleotide (or amino acid) substitution per site per year.
 - 2. There is a Universal molecular clock ticking at the same rate in all organisms.
 - 3. The rates of morphological and molecular evolution are perfectly matching.
 - 4. Molecular clock in a group of closely related organisms (e.g. mice, rats and hamsters) is called a local clock.

A)	1 and 2 only	B)	2 and 3 only
C)	3 and 4 only	D)	1 and 4 only

- 115. Select the forms of tissue cultures best suited for secondary metabolite production in bioreactors?
 - A) Callus cultures and cell suspension cultures
 - B) Cell suspension cultures and hairy root cultures
 - C) Callus cultures multiple shoot cultures
 - D) All the above

116. Allopheny is:

- A) The phenomenon of concurrent display of two or more allelic cellular phenotypes in a single organism.
- B) Display of different phenotypes by a single allele in different organisms
- C) Display of same allelic cellular phenotype by different alleles.
- D) All the above
- 117. Which of the following is a secondary database?
 - A) GenBank B) DDBJ C) Ensembl D) PDB

- 118. The technique for visualizing biochemical processes by allowing an investigator to determine the location of radioactively labelled materials within a cell
 - A) Phase-contrast microscopy B)
 - 3) Autoradiography
 - C) Fluorescent microscopy D) Magnetic resonance Imaging
- 119. The type of distribution which deals with multiple levels of events having different degrees of freedom
 - A) Chi-squared distribution B) Normal distribution
 - C) F distribution D) t distribution
- 120. Match the vegetative propagation methods with the plants to which they are most suited.

a.	Cutting	1.	Rose
b.	Air-layering	2.	Mango
c.	Grafting	3.	Tapioca
d.	Budding	4.	Guava
A)	a- 2, b- 1, c-3, d- 4	B)	a- 1, b- 2, c-3, d- 4
C)	a- 3, b- 4, c-2, d- 1	D)	a- 4, b- 2, c-3, d- 1