19224

A 120 MINUTES

1.	The total energy density of an electromagnetic wave is:								
	A)	$\frac{\varepsilon E_0^2}{2}$	B)	$\frac{B_0^2}{2\mu}$	C)	$\frac{B^2}{2\epsilon}$	D)	εE_0^2	
2.	The po A)	ptential at a poi r ⁻¹	nt due to B)	a linear quad r ⁻²	lrupole C)	varies with dista r ⁻³	ance 'r' D)	as: r ³	
3.	The Po A)	by the system of the system of $5\varepsilon_0$	of a cha B)	rge q moving $\frac{11}{2}\varepsilon_0$	with a C)	uniform velocity $\frac{\sqrt{11}}{2}\varepsilon_0$	y v is D)	$22\varepsilon_0$	
4.	The ar 600 nr A)	ngular frequenc n is 6.28x10 ¹⁴ 1 3x10 ⁸ m/s	y of electrad/s. T B)	etric field in a he velocity of 1.5×10^7 m/s	n electi `the wa C)	romagnetic wave ave is: 6x10 ⁷ m/s	e having D)	s wavelength 1.5x10 ⁸ m/s	
5.	The ve A)	ector potential $\vec{A} = \vec{B}X\vec{r}$	at the po	sition defined B)	by the $\vec{A} =$	vector \vec{r} in a un 3($\vec{r}X\vec{B}$)	iform n	nagnetic field is:	
	C)	$\vec{A} = \frac{1}{6} (\vec{B} X \vec{r})$		D)	$\vec{A} = \frac{1}{2}$	$\frac{1}{2}(\vec{B}X\vec{r})$			
6.	Diverg A)	gence of positio 0	n vector B)	r in three dime 1	ension C)	$(\vec{\nabla}.\vec{r})$ is 2	D)	3	
7.	The ra the dir A)	tio of amplitud nension of: Inductance	es of ma B)	agnetic and ele Conductance	ectric f	ields in an electro Resistance	omagne D)	etic wave has Capacitance	
8.	The ar	nplitudes of elegating through	ectric and	d magnetic fie is related by	elds in	an electromagne	tic wav	e	
	A)	$E_0B_0 = \frac{\omega}{k}$	B)	$E_0\omega = B_0k$	C)	$E_0 k = B_0 \omega$	D)	$\frac{B_0}{E_0} = c$	
9.	A char propor A)	ged particle motional to a^0	oves wit B)	h an accelerat	tion 'a'	. The power rad a^2	iated by	y it is	
10.	The di	fferential form	of Farac	day's law of e	lectron	nagnetic induction	on is		
	A) C)	$\nabla X \vec{H} = \epsilon_0 \frac{\partial E}{\partial t}$ $\nabla . \vec{B} = 0$		B) D)	Curl ⊽. <i>Ē</i>	$\vec{E} = -\mu_0 \frac{\partial \vec{H}}{\partial t} \\ = \frac{\rho}{\varepsilon_0}$			
11.	The warly	avelength of lig	ght emitt	ed by an atom	n whicl	n is excited to hig	gher sta	te by 4 eV is	
	A)	400 nm	B)	310 nm	C)	280 nm	D) -	460 nm	

12.	The binding of an electron in the ground state of an atom is 24.6 eV. The total energy required to remove both the electrons from the atom is										
	A)	49.2 eV	B)	98.4 e	V	C)	79 eV		D)	246 eV	7
13.	The m resolve	agnetic field re e spectral lines	equired t separat	to obser ed by 0.	ve norn 45 Å at	nal Ze 4500	eman Eff Å is	ect if a	spectr	ometer	can
	A)	3.61 T	B)	4.28 T		C)	1.26 T		D)	2.45 T	
14.	The fr magne	requency at whether the two the second seco	nich an	electron	n with o	orbita	l magnet	ic mom	ent μ	precesse	es in a
	A)	$\frac{e}{2m}\vec{\mu}$	B)	$\frac{2m}{e}\vec{\mu}$		C)	$\vec{\mu}.\vec{B}$		D)	$\frac{e}{2m}\vec{B}$	
15.	The minimum voltage that is to be applied to X-ray tube to produce X-ray photons of wavelength 1 Å is								ons of		
	A)	125 MV	B)	125 kV	V	C)	66 kV		D)	25 MV	
16.	The su nucleu	urface term in the solution of the second se	he semi- ts mass	-empiric number	cal mass A as	s form	ula for th	e bindii	ng ene	rgy of	
	A)	A	B)	$A^{2/3}$		C)	$A^{-1/3}$		D)	A^{-1}	
17.	If the series	wavelength of a spectrum of the spectrum of th	first line pectrum	e of Lyn is	nan seri	es is 1	215 Å, tl	nen the	series	limit of	Lyman
	A)	1215 Å	B)	911 Å		C)	1025 /	Å	D)	3820	Å
18.	Which A)	one of- the fol Electron	llowing B)	particle Proton	s canno	t be a C)	ccelerateo α - par	d by cyc ticle	clotror D)	n? Deuto	eron
19.	The co A)	o-ordination nu	mber of B)	f a face of 6	centered	d cubio C)	c structur 4	e is	D)	12	
20	Ifthat	rimitivo collo	ontoina	natama	than t	- ,	nhar of o	nticalh	ronoh	a in the	nhanan
20.	disper	sion relation is	ontains	p atoms	s, then t	ne nur	nder of o	plical b	ranche	es in the	phonon
	A)	3p-1		B)	3p-2		C)	3p-3		D)	3p
21.	The sp A)	becific heat cap $C_v \propto T^2$	acity of	a mater B) C	rial at vertex $v_v \propto T$	ery lov	$\begin{array}{l} \text{w temper} \\ \text{C}) \mathcal{C}_{v} \circ \end{array}$	ature va < T ³	aries w	rith temp D)	perature T as: $C_v \propto T^4$
22.	If K an	nd σ are the the	rmal an	d electr	ical con	ductiv	vities of a	metal a	at temp	perature	T, then
	A)	$\frac{T}{K\sigma}$		B)	$\frac{K}{T\sigma}$		C)	$\frac{KT}{\sigma}$		D)	σΚΤ
23.	The m A) C)	The magnetic state of a superconductor is:A)ParamagneticB)DiamagneticC)FerromagneticD)Antiferromagnetic									
24.	The cr 10 K a	itical magnetic and 0 K respect	fields o ively. T	of a supe Then, th	ercondu e critica	ctor n 1 tem	naterial an perature o	re 1x10 ⁴ of the m	⁵ A/m aterial	and 2x1 l is	0^5 A/m at
	A)	10.31 K	B)	10 K		C)	14.14	K	D)	7.07	K

25.	. Which of the following is not a set of valid quantum numbers (n, l, ml, ms)										
	A) 1, 1, 0, $\frac{1}{2}$ B) 1, 0, 0, $\frac{1}{2}$ C) 3, 1, -1, $\frac{1}{2}$ D) 2, 1, 0, $-\frac{1}{2}$										
26.	The energy of an electron in the energy level (121) in a cubical potential box of side 1 Å is										
	A) 1.13 eV B) 2.25 eV C) 226 eV D) 11.2 eV										
27.	 Colour of a Light Emitting Diode (LED) depends on A) Applied biasing voltage B) Nature of the material used C) Recombination rate of charge carriers D) All the above 										
28.	The momentum of a phonon isA) $\hbar k$ B) $\hbar \omega$ C) ZeroD) hk										
29.	The frequency of electromagnetic wave radiated by a Josephson junction when a DC										
	voltage of 6.63 μV is applied across the junction is A) 1.6 MHz B) 3.2 GHz C) 6.63 GHz D) 1.6 GHz										
30.	 The dominant mechanism for the motion of charge carriers in forward and reverse biased silicon p-n junction are A) drift in forward bias and diffusion in reverse bias B) diffusion in forward bias and drift in reverse bias C) diffusion in both D) drift in both 										
31.	 The relative permeability of a material X is slightly less than unity and that of a material Y is very much larger than unity. Then, A) X is paramagnetic and Y is diamagnetic B) X is ferromagnetic and Y is paramagnetic C) X is diamagnetic and Y is ferromagnetic D) X is diamagnetic and Y is paramagnetic 										
32.	A magnetic needle of moment 5×10^4 Am ² is suspended in a horizontal magnetic field of 4×10^{-5} T. The work done to rotate it through 60^0 from the direction of the field is: A) 2.0 J B) 1 J C) 1.2 J D) 0.2 J										
33.	The phase difference between electric and magnetic fields in a plane electromagnetic wave Is: A) 180^{0} B) 90^{0} C) 0^{0} D) 45^{0}										
34.	The earth's magnetic field at a point is 0.314×10^{-4} T. This field is to be cancelled by magnetic field at the centre of a circular loop of radius 1 cm. The required current through the loop is: A) 0.4 A B) 0.5 A C) 0.6 A D) 0.628 A										
35.	Two wires of same length are shaped into a circle and square. If both of them carry same current I, then the ratio of their magnetic moments is $A_{i} = -\frac{1}{2}i \frac{1}{2} = -\frac{1}{2}i \frac{1}{2} = -\frac{1}{2}i \frac{1}{2} = -\frac{1}{2}i \frac{1}{2} = -\frac{1}{2}i \frac{1}{2}i \frac{1}{2} = -\frac{1}{2}i \frac{1}{2}i $										
	A) 2.1 D) π .4 C) 4. π D) π .2										

36.	5. If E and B represent electric and magnetic fields of an electromagnetic wave respective then which of the following is dimensionless?								
	A)	$\frac{E}{\varepsilon_0} X \frac{\mu_0}{B}$	B)	$\sqrt{\epsilon_0 \mu_0} \left(\frac{E}{B}\right)$	C)	$\left(\epsilon_0\mu_0\right)\left(\frac{B}{E}\right)^2$	D)	$\epsilon_0 \mu_0 \left(\frac{E}{B} \right)$	
37.	The di A)	imension of rati LT ⁻¹	io of ma B)	Ignetic flux to $L^{-1}TA^{-1}$	electric C)	flux is L ⁻¹ T	D)	LTA ⁻²	
38.	The ra	diation pressur	e exerte	d by an electro	magnet	ic wave of inte	nsity 30	0 mW/m^2	
	on a n A)	on-reflecting su $9x10^{10}$ N/m ²	Irface Ir B)	1 vacuum 1s $1 \times 10^{-9} \text{ N/m}^2$	C)	9x10 ⁻¹⁰ N/m ²	D)	$4x10^9 \text{ N/m}^2$	
39.	If a hy atom c	drogen atom at of mass m is:	rest en	nits a photon of	fwavele	ength $λ$, then the	e recoil	velocity the	
	A)	mhλ	B)	mh/λ	C)	h/ mλ	D)	mλ/h	
40.	If the 145° , th	horizontal component the total interest of total interest	ponent of ensity of	of earth's magn f magnetic fiel	netic field d at that	ld at a place is a place is a place is	B_0 and t	he dip angle is	
	A)	B_0	B)	$2B_0$	C)	$\sqrt{2} B_0$	D)	$\sqrt{2}B_0^2$	
41.	The nu	uclear radius of	47Ag ²⁰⁷	is about					
	A)	8.1 fm	B)	6.2 fm	C)	3.1 fm	D)	3 fm	
42.	The nu	ucleus ${}_{6}C^{12}$ abso	orbs a no	eutron and emi	ts a beta	a particle. The r	esulting	g nucleus is	
	A)	$_{7}N^{14}$	B)	7N ¹³	C)	6C ¹³	D)	${}_{6}C^{14}$	
43.	The vo	olume of an ato	mic nuc	cleus is proport	tional to	x th power of to	otal num	ber of	
	nucleo A)	ons A. Then the $1/3$	B)	of x 1s 2/3	C)	-1/3	D)	1	
44.	Which A) C)	 Which of the following is not a property of nuclear force? A) Short range B) Charge independent C) Spin independent D) Saturation property 							
45.	Which A)	n of the followin 20	ng is no B)	t a magic numb 50	ber base C)	d on nuclear sh 80	nell mod D)	el? 82	
46.	The ra	ndii of nuclei of of A and B. resp	the eler	ments 88 A and	¹¹ B are	related as, when	re R _A ar	ad R_B are the	
	A)	$R_A = 2R_B$	B)	$R_A = 8R_B$	C)	$R_A = \frac{1}{2} R_B$	D)	$R_A = \frac{1}{8}R_B$	
47.	Which	n of the followin	ng is no	t conserved du	ring a n	uclear reaction	?		
	C)	Spin		D)	Magne	etic dipole mon	nent		

48.	The en produc	ergy released p ed by comple	oer fissio ete fissio	on of Uranium on of 1 kg of u	is about	t200 MeV, ther in KWh is	ergy				
	A)	22600000	B)	5130000	C)	3600000	D)	1600000			
49.	Which	of the followir	ng partio	cle decay is not	allowe	d?					
	A)	$\Lambda^0 \to n + \gamma$	B)	$\Lambda^0 \to p + \pi^-$	C)	$\pi^0 \rightarrow \gamma + \gamma$	D)	$\pi^+ \rightarrow e^+ + v_e$			
50.	The difference between electron and positron is in their										
	A)	Mass	B)	Spin	C)	Charge	D)	All the above			
51.	The pa	rticles exchang	ged duri	ng strong intera	action is	5					
	A)	Photons	B)	Bosons	C)	Mesons	D)	Gravitons			
52.	The strangeness number and hypercharge of a nucleon are										
	A)	0 and 0	B)	1 and 0	C)	-1 and 0	D)	0 and 1			
53.	A meso	on is made up o	of								
	A)	Quark and ant	iquark	B)	Two q	Two quarks					
	C)	Two antiquark	KS	D)	Two q	uarks and one a	antiquark				
54.	The ha	lf-life of a radi	oactive	element X is 4	days. A	fter 12 days, th	ne mass	of X got			
	reduce	d to 4 mg. Dete	ermine t	the initial mass	of X if C	its half-life is 4	days.	32 mg			
	A)	4 mg	Б)	8 mg	C)	10 mg	D)	52 mg			
55.	The en	ergy released d	luring a	proton-proton	cycle in	MeV is nearly	D)	2/7			
	A)	2.67	В)	26.7	C)	0.267	D)	267			
56.	Electro	onic polarizabil	ity (α_e)	of an atom is re	lated to	its radius (r) as	5				
	A)	$\alpha_e = 4\pi\varepsilon_0 r$	B)	$\alpha_e = 4\pi\varepsilon_0 r^2$	C)	$\alpha_e = 4\pi\varepsilon_0 r^3$	D)	$\alpha_e = 2\pi\varepsilon_0 r^3$			
57.	The un	known particle	e X in th	ne nuclear react	ion in ${}^{13}C_6 + X \rightarrow {}^{13}N_7 + e^-$						
	A)	V _e	B)	$\overline{m{v}}_{\mu}$	C)	e^+	D)	<i>e</i> ⁻			
58.	When	a nucleus emits	s beta pa	article							
	A)	its charge char	nges by	one unit	B)	B) its charge remains same					
	C)	its mass chang	ges by o	ne unit	D)	its mass changes by four units					
59.	Nuclei called	with same mas	ss numb	er but proton a	nd neut	ron number int	erchang	ed are			
	A)	isotopes	B)	isobars	C)	mirror nuclei	D)	isotones			
60.	Accord	ling to the nucl	lear shel	ll model, groun	d state s	spin and parity	of ¹⁷ O r	nucleus is			
	A)	<u>1</u> ⁺	B)	1	C)	<u>5</u> ⁺	D)	<u>5</u> ⁻			
	,	2	,	2	,	2	,	2			

61.	Which of the following describe an n type semiconductor?											
	A)	Neutral			B)	positiv	ely charged					
	C)	negatively cl	narged		D)	has many holes						
62.	What c	causes depletio	on layer?)								
	A)	doping			B)	recom	bination					
	C)	barrier potent	tial		D)	ions						
63.	In a co	mmon base an	nplifier	the phas	se differ	ence be	etween the inpu	ıt signal	voltage and			
	A)	0	B)	$\pi/4$		C)	$\pi/2$	D)	π			
	,		,			,		,				
64.	To reduce the distortion of an amplified signal we can increase the											
	A)	collector resis	stance		B)	emitter	r feedback resi	stance				
	C)	generator resi	istance		D)	load re	esistance					
65.	Which of the following is true related with a JFET?											
	A)	voltage contro	olled de	vice	B)	curren	t controlled de	vice				
	Ć)	has low input	resistan	ice	D)	has ver	ry large voltag	e gain				
	m 1 ·											
66.	The pr	nching voltage	e of JFE	I has th	le same	magniti	ide as the					
	A) C)	gate voltage	a 14 a a a		B)	drain s	source voltage	140.00				
	C)	gate source v	onage		D)	gate sc	Surce cut off vo	Snage				
67.	If the peak output voltage of full wave bridge rectifier is $V_{m,n}$, its no-load output dc voltage is:											
	A)	$\underline{V_m}$	B)	$2V_m$		C)	V_m	D)	$3V_m$			
)	π	_,	π		-)	2π	_ /	π			
68	An On	-Amp can amr	olify									
001	A)	ac signal	,		B)	dc sigr	nal					
	C)	both ac and d	c signals	5	D)	neither	r ac nor dc sigr	nals				
(0)	-) M	1 (-) • 14			···				
69.	Λ	um number of	R)	$\frac{1}{4}$	quirea to	C	uct an AND G_{2}	ate is	6			
	A)	5	D)	4		C)	2	D)	0			
70.	Which of the following is not true about LED?											
	A)	spontaneous of	emissior	ı	B)	incohe	erent light					
	C)	low current d	ensity		D)	high m	nodulation band	dwidth				
71	The ef	ficiency of a p	hoto det	ector is	directly	v propor	tional to					
	A)	photocurrent			B)	incide	nt optical powe	er				
	C)	charge genera	ated		D)	none o	of these					
70	T1. 1 ·		1	- 11 :								
12.	1 ne b1	asing state of a	a solar co	ell 18	D)							
	A) C)	undiased	4		в) D)	torward blased						
	C)	reverse blase	u		D)	enner						
73.	The nu	mber of flip-f	lops requ	uired to	design	a mode	-6 counter is					
	A)	5	B)	6	-	C)	2	D)	3			

74.	The re A)	solution of an 3	ADC is B)	3, then the num 2	nber of C)	possible states 6	is D)	8				
75.	The register that stores the address of the instructions to be executed in a microprocessor is											
	A)	IP	B)	SP	C)	IR	D)	SR				
76.	Two resistances (60±2) Ω and (120±4) Ω are in series, then the percentage error in the combination is											
	A)	3.3	B)	6	C)	2	D)	8				
77.	Fermi A) B) C) D)	ni level of an intrinsic semiconductor is near conduction band minimum near valence band maximum at center of forbidden energy gap none of the above										
78.	A com 100 kg	mon source FE	ET amplation fac	ifier has a load etor 24, then its	resistar voltage	nce of 500 k Ω , e gain is	ac drain	resistance of				
	A)	10	B)	20	C)	30	D)	40				
79.	A shift A) C)	t register that h universal shift shift register o	as both t registe counter	serial and para r B) D)	llel inpu bidired none c	ut and output is ctional shift reg of the above	gister					
80.	For a t 100 µ/ A)	ransistor in CE A, R _c is 1 kΩ a 0.12	configu and V _{ce} i B)	uration V_{cc} is 1 is 9 V. Then the 12	8 V, V _b e base c C)	b is 6 V, current current in mA is 1.2	t gain is D)	75, I _{co} is 120				
81.	If the 1	matrix $A = \begin{pmatrix} \alpha \\ 2 \end{pmatrix}$	$\begin{pmatrix} 1\\ \alpha \end{pmatrix}$ a	nd $ A^2 = 49$, 1	then the	value of α is						
	A)	0	B)	±1	C)	±2	D)	±3				
82.	The ei A) C)	gen values of a Zero Real	skew –	Hermitian mat B) D)	trix are Imagii Both A	nary A and B						
83.	For La	aguerre polynor	mials, \int_0^{∞}	$\int_{0}^{\infty} f(t) L_n(t) L_n(t)$	$_{n}(t)dt =$	$= \delta_{nm}$, where f	(t)=					
	A)	1	B)	exp(-t)	C)	t	D)	$\exp(-t^2/2)$				
84.	Value	of $\int_0^{\pi} \frac{d\theta}{2 - \cos\theta}$ is										
	A)	$\frac{\pi i}{2\sqrt{5}}$	B)	$\frac{\pi}{\sqrt{3}}$	C)	$\frac{\pi i}{\sqrt{2}}$	D)	$\frac{\pi}{\sqrt{5}}$				
85.	Laplac	e transform of	sinh at	for $s > 0$ is								
	A)	$\frac{a}{s^2 - a^2}$	B)	$\frac{s}{s^2-a^2}$	C)	$\frac{s}{s^2 + a^2}$	D)	$\frac{a}{s^2 + a^2}$				

- 86. Let P be a (n x n) diagonalizable matrix. Given P is idempotent with Trace (P) = n-1. Then det(P)=
 - A) 1 B) 0 C) n D) n^2
- 87. The spin and charge of Up quark is

A)
$$\frac{1}{2}$$
 and $+\frac{2}{3}e$ B) $\frac{3}{2}$ and $+\frac{1}{3}e$ C) $\frac{1}{2}$ and $-\frac{1}{2}e$ D) $\frac{3}{2}$ and $+\frac{2}{3}e$

- 88. As sample size increases, the sampling distribution must approaches to normal distribution is termed as
 - A) Limited approximation theorem
 - B) Secondary limit theorem
 - C) Primary limit theorem
 - D) Central limit theorem

89. A possible unit tangent vector to the plane $x^2+y^2+z^2 = 4$ at (3,2,1) is

A)
$$\left(-\frac{i}{\sqrt{5}} + \frac{2j}{\sqrt{5}}\right)$$
 B) $\left(\frac{i}{\sqrt{5}} + \frac{2j}{\sqrt{5}}\right)$ C) $\left(\frac{i}{\sqrt{2}} - \frac{j}{\sqrt{2}}\right)$ D) $\left(-\frac{2i}{\sqrt{13}} + \frac{3j}{\sqrt{13}}\right)$

90. Bessel function
$$J_{1/2}(x)$$
 varies as
A) $\frac{\sin(x)}{x}$ B) $\frac{\cos(x)}{x^2}$ C) $\frac{\sin(x)}{\sqrt{x}}$ D) $\frac{x^2}{\sin(x)}$

91. The Lagrangian of a mechanical system with two degree of freedom x and y is $L = \dot{x}^2 + \dot{y}^2$. The Hamiltonian of the system is

A)
$$\frac{1}{4}(p_x^2 + p_y^2)$$

B) $\frac{1}{4}(\dot{q_x}^2 + \dot{q_y}^2)$
C) $\frac{1}{2}(p_x^2 + p_y^2)$
D) $\frac{1}{2}(\dot{q_x}^2 + \dot{q_y}^2)$

92. 2 bodies of masses m and 2m are connected by a massless spring of constant k. If ω is the angular frequency of oscillations, then $\omega^2 =$

A)
$$\frac{3k}{m}$$
 B) $\frac{k}{2m}$ C) $\frac{3k}{2m}$ D) $\frac{k}{3m}$

- 93.XRD pattern from a Body Centred Cubic (BCC) crystal does not contain the plane
A) (310)B) (111)C) (110)D) (220)
- 94. A particle of mass m is in a potential $V(x) = \frac{ax^2}{2} + \frac{bx^4}{4}$, where x be the displacement from the origin. The angular frequency of small oscillations will be

A)
$$\sqrt{\frac{a}{2m}}$$
 B) $\sqrt{\frac{2a}{m}}$ C) $\sqrt{\frac{b}{2m}}$ D) $\sqrt{\frac{b}{2am}}$

95. If a body moves under a potential $V(r) = -\frac{\alpha}{r}$, where α is a constant and r be the distance from origin, its path will be parabolic if total energy (E) is A) Positive B) Negative C) Zero D) Negative but $E < -2\alpha$ 96. Let $q = \{q_1, q_2\}$ and $p = \{p_1, p_2\}$ be the sets of generalised coordinate and momenta. Given $A = q_1^2 + q_2^2$ and $B=2p_1+p_2$, then Poisson bracket [A, B]=

A)
$$2(2q_1+q_2)$$
 B) q_1+q_2 C) $q_1p_1 + 2p_2q_2$ (D) $3(q_1-2q_2)$

97. Rutherford elastic scattering cross section varies with center of mass energy (E) as

A)
$$\frac{1}{E}$$
 B) $\frac{1}{E^2}$ C) E D) E^2

- 98. Choose the correct statement from the following about Moment of Inertia tensorA) It depends on angular velocity
 - B) It will be symmetric only in principal axis system
 - C) Its components will not change with respect to change in axes system
 - D) In a general axis system, angular momentum will not be parallel to angular velocity
- 99. A satellite moves around a planet in a circular orbit at a distance R from its centre. The time period of revolution of the satellite is T. If the same satellite is taken to an orbit of radius 4R around the same planet, the time period would be
 - A) T/8 B) T/4 C) 8T D) 4T
- 100. If the kinetic energy of a relativistic particle of rest mass m is equal to half of its rest energy, then the velocity of the particle is (in terms of velocity of light in vacuum, c)

A)
$$\frac{\sqrt{5}}{3}c$$
 B) $\frac{\sqrt{2}}{3}c$ C) $\frac{3}{\sqrt{2}}c$ D) $\frac{1}{2}c$

- 101. A carnot engine works between two temperatures $27^{0}C$ and $127^{0}C$. Its efficiency will be
 - A) 50% B) 25% C) 17% D) $\left(\frac{100}{127}\right)$ %
- 102. Which thermodynamic potential remains constant in Joule-Thomson process?
 - A) TemperatureB) VolumeC) EnthalpyD) Internal Energy
- 103. Entropy in rolling a 6-faced dice will be (k_B is the Boltzman constant)
 - A) $k_B ln(10)$ B) $k_B ln(6!)$ C) $k_B ln(6)$ D) $k_B ln(2^6)$
- 104. Total energy U varies with number of particles N in fermi system as temperature $T \rightarrow 0K$
 - A) $N^{2/3}$ B) $N^{3/2}$ C) $N^{5/3}$ D) $N^{1/3}$
- 105.The frequency of a microwave radiation of wavelength 15 mm isA)20 GHzB)30 GHzC)15 GHzD)10 GHz

106. Number of molecules of oxygen at S.T.P is N_A and number of photons in an enclosure of volume 22.4 cm^3 at 273 K is N_{ph} . Then

A) $N_{ph} > N_A$ B) $N_{ph} < N_A$ C) $N_{ph} = N_A$ D) None of these

- 107. Problem of Ultraviolet catastrophe is a consequence of
 - A) Maxwell Boltzman LawB) Rayleigh Jeans LawC) Plank's LawD) Fermi's Golden Rule
- 108. According to Maxwell Boltzmann Distribution, average velocity of molecule at temperature T K is (m is the mass of one molecule)

A)
$$\sqrt{\frac{2k_BT}{m}}$$
 B) $\sqrt{\frac{k_BT}{m}}$ C) $\sqrt{\frac{3k_BT}{m}}$ D) $\sqrt{\frac{8k_BT}{\pi m}}$

109. Bose-Einstein Distribution law is obeyed by,

- A) Neutral PionB) Positive MuonC) Tau-neutrinoD) Down Quark
- 110. If Z is a canonical partition function and E be the energy, then

A)
$$\langle E^2 \rangle = \frac{1}{z} \frac{\partial^2 z}{\partial \beta^2}$$
 B) $\langle E^2 \rangle = -\frac{1}{\beta z} \frac{\partial z}{\partial \beta}$

C)
$$\langle E^2 \rangle = \frac{1}{\beta} \sqrt{\frac{1}{z} \frac{\partial^2 Z}{\partial \beta^2}}$$
 D) $\langle E^2 \rangle = \frac{1}{z^2} \frac{\partial^2 Z}{\partial \beta^2}$

111. A beam of electrons of energy 25 MeV is incident at a potential step of 16 MeV. Fraction of beam that would be reflected is

112. Intrinsic carrier concentration in a pure semiconductor is proportional to

A)
$$\exp\left(-\frac{E_g}{k_BT}\right)$$

B) $\exp\left(-\frac{2E_g}{k_BT}\right)$
C) $\exp\left(-\frac{E_g}{2k_BT}\right)$
D) $\exp\left(-\frac{E_g}{4k_BT}\right)$

113. Hermitian conjugate of operator $\frac{\partial}{\partial x}$ will be

A)
$$i\frac{\partial}{\partial x}$$
 B) $\frac{\partial}{\partial x}$ C) $-\frac{\partial}{\partial x}$ D) $-i\frac{\partial}{\partial x}$

114. If
$$r = |\vec{r}|$$
, then $\frac{1}{r} \frac{\partial^2}{\partial r^2} r =$
A) Zero B) $\frac{1}{r^2} \frac{\partial}{\partial r}$ C) $\frac{\partial^2}{\partial r^2} + \frac{1}{r^2} \frac{\partial}{\partial r}$ D) $\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r}$

- 115. Let *a*, a^{\dagger} be annihilation and creation operators in one dimensional harmonic oscillator state represented by $|n\rangle$, then , $(a + a^{\dagger})^2 |3\rangle =$
 - A) Zero B) $\sqrt{5} |2\rangle$ C) $7 |3\rangle$ D) $3 |4\rangle$
- 116. First Born approximation, in case of scattering of particles by a potential, is valid forA) Small incident energies and strong scattering potentials
 - A) Small incident energies and strong scattering potentialsB) Large incident energies and strong scattering potentials
 - C) Small incident energies and weak scattering potentials
 - D) Large incident energies and weak scattering potentials
- 117. 3 non interacting electrons with spin states $|\chi_1\rangle = |\chi_2\rangle = |\chi_3\rangle$ are inside a one dimensional infinite potential well with V(x) = 0 for 0 < x < L. Second excited state energy of system will be
 - A) $\frac{9\pi^2\hbar^2}{2mL^2}$ B) $\frac{13\pi^2\hbar^2}{mL^2}$ C) $\frac{7\pi^2\hbar^2}{mL^2}$ D) $\frac{15\pi^2\hbar^2}{2mL^2}$
- 118. If two spins s_1 and s_2 are coupled, then the total number of final spin states will be
 - A) $(2s_1 + 1)(2s_2 + 1)$ C) $(s_1 - s_2)$ B) $(s_1 + s_2)$ D) $(2(s_1 + s_2) + 1)$
- 119. In a low energy scattering of unpolarised electrons, singlet and triplet scattering cross sections are 2 mb and 4 mb respectively. Differential cross section is
 - A) 2 mb B) 6 mb C) 3.5 mb D) $\sqrt{8}$ mb
- 120. If \hat{p} and \hat{L} are the linear and angular momentum operators, $\hat{p} \times \hat{L} =$
 - A) $-\hat{L} \times \hat{p}$ B)ZeroC) $-\hat{L} \times \hat{p} i\hbar \hat{p}$ D) $-\hat{L} \times \hat{p} + 2i\hbar \hat{p}$