19731

1.	Which a) b)	ch of the following statement is/are true? Lebesgue measure of any line of finite length in R^k is zero Lebesgue measure of any line of infinite length in R^k is zero							
	A) C)	(a) only Both (a) and ((b)		B) D)	(b) on Neithe	ly er (a) nor (b)		
2.	If f an A) f	d g are measura + g	able fun B)	ctions tl fg	hen whi	ch of th C)	the following is $f - g$	s not mea D)	asurable? None of these
3.	A and A)	B be p x p mat trace (A^2B^2)	rices. W B)	/hich of <i>trace</i> (the fol (AB^2A)	lowing C)	equals trace (trace $((BA)^2)$	(<i>AB</i>) ²)) D)	$(trace(AB))^2$
4.	Let A A) C)	is an m x n mat $AA^- = I$ A^- is unique	trix. If A	l^- is the	genera B) D)	lized in AA ⁻ A rank (A	verse of A, th = A A^{-}) < rank (A	en)	
5.	Let <i>T</i> If { <i>b</i> ₁ , A) B) C) D)	Let $T: V \to W$ be a linear transformation with $dim(V) = dim(W)$. If $\{b_1, b_2,, b_n\}$ is a basis for V then: A) $T(b_1), T(b_2),, T(b_n)$ is a basis for W. B) $T(b_1), T(b_2),, T(b_n)$ are linearly independent. C) $T(b_1), T(b_2),, T(b_n)$ form a basis for W if and only if T is one to one. D) None of the above							
6.	If A and B are two matrices, thenA)rank $(AB) = \max(\operatorname{rank}(A), \operatorname{rank}(B))$ B)rank $(AB) \ge \max(\operatorname{rank}(A), \operatorname{rank}(B))$ C)rank $(AB) \ge \min(\operatorname{rank}(A), \operatorname{rank}(B))$ D)rank $(AB) \le \min(\operatorname{rank}(A), \operatorname{rank}(B))$								
7.	Let U and W be finite dimensional subspaces of a vector space V. Then A) $dim(U+W) = dim(U)+dim(W)$ B) $dim(U+W) > dim(U)+dim(W)$ C) $dim(U+W) = min(dim(U),dim(W))$ D) $dim(U+W) < dim(U)+dim(W)$								
8.	If <i>f</i> is (a) (b)	continuous fro f is continu \sqrt{f} is continu	m <i>R</i> to <i>I</i> lous. ous	R, then v	which o	of the fo	llowing is/are	correct?	?
	A)	(a) alone			B)	(b) alo	ne		

C) Both (a) and (b) D) Neither (a) nor (b)

9. If f(x) = |x|, then f is:

- A) *f* is continuous but not differentiable.
- B) f is neither continuous nor differentiable
- C) *f* is continuous and differentiable.
- D) *f* is not continuous but differentiable.

10. The
$$\lim_{x\to 0} \frac{\cos(x)-1}{x}$$
 is
A) 0 B) 1 C) -1 D) Does not exist

11. If A and B be two events, then which of the following is true? A) $P(A \cap B) = P(A)P(B)$ B) $P(A \cap B) \ge 1 - P(A^c) - P(B^c)$ C) $P(A \cup B) > P(A) + P(B)$ D) $P(A \cap B) \le P(A) + P(B) - 1$

12. Let A and B be two independent events. If $P(A) = \frac{1}{4}$ and $P(B) = \frac{1}{3}$, then $P(A^c/B^c)$ is A) $\frac{1}{4}$ B) $\frac{9}{8}$ C) $\frac{1}{12}$ D) $\frac{3}{4}$

13. Suppose you have a coin with probability $\frac{1}{4}$ of getting a head. If you toss the coin twice independently, then what is the probability of getting at least one head? A) $\frac{1}{4}$ B) $\frac{7}{16}$ C) $\frac{3}{16}$ D) $\frac{3}{8}$

14. A biased coin is tossed until a head appears for the first time. Let p be the possibility of a head, 0 . The probability that the number of tosses required is odd is:

A)
$$\left(\frac{1}{2}\right)^p$$

$$\frac{P}{2}$$
 C) $\frac{1}{2-P}$ D) P

15.If X follows Binomial
$$(n, p)$$
 then $n - X$ follows:A)Binomial (n, p) B)Binomial $(n, 1-p)$ C)Binomial $(2n, p)$ C)Binomial $(2n, p)$ D)Binomial $(2n, 1-p)$

B)

16. Let X be a non-negative random variable with distribution function F. Then E(X) is: A) $\int_0^\infty xF(x)dx$ B) $\int_0^\infty F(x)dx$

C)
$$\int_0^\infty x [1 - F(x)] dx$$
 D) $\int_0^\infty [1 - F(x)] dx$

17. Let *X* be a random variable. Then which of the following is not always a random variable?

A)
$$|X|$$
 B) X^2 C) $X^{\frac{1}{2}}$ D) $|X|^{\frac{1}{2}}$

18. If $X_1, X_2, ..., X_n$ are iid N (0, 1) random variables, the limiting distribution of $\sqrt{n} \frac{X_1 + X_2 + ... + X_n}{X_1^2 + X_2^2 + ... X_n^2}$ is:

- A) N (0, 1)
- B) C (1, 0)
- C) Student's t- distribution with 1 degree of freedom
- D) Degenerate distribution

19.	Let X be a continuous random variable which is symmetric about a. If $f(x)$ is the p.d.f of x, then								
	A) $f(x_{-}a) = f(x_{+}a)$ C) $f(x_{-}a) = f(a)$	B) D)	f(x-a) = f(a-x) f(x+a) = f(a-x)						
20.	Let X be a random variable with I	n.g.f <i>M_X</i>	$(t) = \left(1 - \frac{t}{\beta}\right)^{-\alpha}$. Then $E(X)$ is:						
	A) $\alpha\beta$ B) $\frac{\alpha}{\beta}$		C) $-\left(\frac{\alpha}{\beta}\right)$ D) $\frac{\beta}{\alpha}$						
21.	Let X and Y be two random varia A) $E[V(Y X)] = V[E(Y X)] + V$ B) $E[V(Y X)] = V(Y X)$ C) $E[V(Y X)] = V(Y) - V[E(Y X)]$ D) $E[V(Y X)] = V(Y)$	bles. Wł ⁄(<i>Y</i>) X)]	nich of the following is true?						
22.	Let $Xn \xrightarrow{P} X$. Then $g(Xn) \xrightarrow{P} g(Xn)$) if							
	A) g is one to oneC) g is convex	B) D)	g is onto g is continuous						
23.	Let X be a continuous random van Then the median of X is:	riable wi	th p.d.f $f(x) = ke^{-x/\theta}$; $x \ge 0$, $\theta > 0$.						
	A) 2θ B) e^{θ}		C) $2\log \theta$ D) $\theta \log 2$						
24.	If $F(x)$ is the distribution function then	of a ran	dom variable X with mean 0 and variance σ^2 ,						
	A) $F(x) \le \frac{\sigma^2}{\sigma^2 + x^2}, if \ x \le 0$	B)	$F(x) \ge \frac{\sigma^2}{\sigma^2 + x^2}, if \ x \ge 0$						
	C) $F(x) \ge \frac{x^2}{\sigma^2 + x^2}, if x \le 0$	D)	$F(x) \le \frac{x^2}{\sigma^2 + x^2}, if \ x \ge 0$						
25.	If $X \sim Poisson(\lambda)$ and the condition then Y follows	onal distr	ribution of $Y/X = x \sim Binomial(x,p)$,						
	A) Poisson $\left(\frac{\lambda}{P}\right)$	B)	$Binomial(x, p\lambda)$						
	C) Poisson (λp)	D)	Binomial $\left(x, \frac{\lambda}{p}\right)$						
26.	Let X and Y be two independent bi and $(n_{2,,,p})$, then the conditional d A) Poisson distribution C) Geometric distribution	nomial ra istributic B) D)	andom variables, having parameters (n_1, p) on of X given X+Y is Negative binomial distribution Hyper geometric distribution						
27.	If $X \sim U(0,1)$, then $-2log(1 - X)$ A) Chi-square with 2 d.f C) Exponential with mean $\frac{1}{2}$) <i>follows</i> B) D)	Exponential with mean 1 Logarithmic uniform distribution						

28.	8. If <i>X</i> and <i>Y</i> are two independent <i>Gamma</i> (α_1 , β) and <i>Gamma</i> (α_2 , β) distributions, th the distribution of $\frac{X}{1}$ is							
	A)	Beta $(\alpha_1 + \alpha_2, \beta)$	B)	<i>Beta</i> (α_1 , α_2)				
	C)	Beta $\left(\frac{a_1}{a_1+a_2},\beta\right)$	D)	<i>Beta</i> $(\alpha_1 + \alpha_2)$				
29.	If X for A) N C) I	llows Cauchy $(1, 0)$, then $1/X$ f N $(0, 1)$ nverse Cauchy $(1, 0)$	follows B) D)	Cauchy (1,0) Not exists				
30.	Let T f A) B) C) D)	follows t- distribution with n t - distribution with n^2 d.f t - distribution with 2n d. f F - distribution with (1,n) d. F - distribution with(1,2n) d.	d. f, the f f	<i>n T</i> ² follows				
31.	If X ~	$F(n_1, n_2)$, then $\left(1 + \frac{n_1}{n_2}X\right)^{-1}$ for	ollows					
	A) C)	$ F\left(n_1, \frac{n_1}{n_2}\right) $ <i>Beta</i> (n ₁ , n ₂)	B) D)	$Beta\left(\frac{n_2}{2}, \frac{n_1}{2}\right)$ None of the above				
32.	Let X~ A)	Binomial (n, p) , then $Cov(X)$ $np(1-p)$ B) $np^2(1-p)$	(, n_X) is _p)	s C) $-np(1-p)$ D) $np(1-p)^2$				
33.	If X ~ A) C)	Cauchy $(1, 0)$, then X^2 follow Gamma $(1,2)$ Cauchy $(1, 0)$	vs B) D)	Chi-Square with 2d.f $F(1, 1)$				
34.	Let $X_{(1)}$ U(0,1)	$X_{(2)}, \dots, X_{(n)}$ be the order statis distribution, then the distribution	tics of a tion of 2	a random sample of size <i>n</i> from $X_{(r)}$, $1 \le r \le n$ is				
	A) C)	Beta $(r, n-r+1)$ Beta (r, n)	B) D)	Beta $(r+1, n_{-}r)$ Beta $(r+1, n-r+1)$				
35.	Let (<i>X</i> , then th	<i>Y</i>) follows bivariate normal de regression of <i>Y</i> on <i>X</i> is:	istributi	on with vector of parameters $(\mu_1, \mu_2, \sigma_1, \sigma_2, \rho)$				
	A)	$_1 + \rho \frac{\sigma_2}{\sigma_1} (y - z)$	B)	$_{2}+\rho \frac{\sigma_{1}}{\sigma_{2}}(x{1})$				
	C)	$_{1}+\rho\frac{\sigma_{1}}{\sigma_{2}}(y{2})$	D)	$_{2}+\rho\frac{\sigma_{2}}{\sigma_{1}}(x{1})$				
36.	Test st correla	atistic for testing the hypothes tion coefficient follows:	sis H_0 : μ	$\rho = 0$, where ρ is the population				
	A)	t-distribution with <i>n</i> d.f	B)	t-distribution with $n-1$ d.f				
	Ó	t distribution with a 21f	Ń	t distribution with 2n d f				

C) t-distribution with n - 2 d f D t-distribution with 2n d f

37.	Let X_1 and X_2 be two independent $N(0,1)$ random variables, then $\frac{(X_1 - X_2)^2}{2}$											
	A)	A) Gamma $\left(\frac{1}{2}, 1\right)$		B)	Chi – s	equare with 2 a	l.f					
	C)	Gamma $\left(\frac{1}{2}, 2\right)$)		D)	Chi – s	equare with 4 a	l.f				
38.	Mode	of the Chi-squa	are distr	ibution	with n o	d.f is:						
	A)	n – 2	B)	2n		C)	n	D)	$\frac{n}{2}$			
39.	Let X_1	Let X_1, X_2, \dots, X_n be a random sample from U				$U(0,\theta)$. The UMVUE of θ is:						
	A)	\overline{X}			B)	Max (.	$X_1, X_2,, X_n$					
	C)	<i>Min</i> $(X_1, X_2,$	$,X_n)$		D)	$\frac{n+1}{n}M$	$Tax(X_1, X_2,, X_n)$	(n)				
40.	Whic	ch of the follow	ring is a	consist	ent esti	mate for	$r \theta$ in $C(\theta, \theta)$:					
	A)	Sample Mean	L		B)	Sampl	e Variance					
	C)	Sample Media	an		D)	None	of these					
41.	Let X ₁ among a) b)	and X_2 be a range the following S^2 is UMVUE $Var(S^2)$ attain	is/are tr for σ^2 s the Cr	umple fro rue? ramer-R	om N(µ ao Low	e,σ ²). If	$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (A_{i})^{2}$	Х _і — Х)	² then v	which		
	A) C)	(a) alone Both (a) and (b)		B) D)	(b) alc Neithe	one er (a) nor (b)					
42.	Let X_1 sufficient	Let $X_1, X_2,, X_n$ be iid observations from $Gamma(\alpha, \beta)$. Which of the following sufficient statistics for (α, β) ?						owing is	а			
	A)	$(\sum X_{i,} \prod X_i)$			B)	(<i>X</i> , ∏	$X_i^{1/n}$)					
	C)	(\overline{X}, S^2)			D)	$(\sum X_{i},$	$\sum X_i^2$)					
43.	Based	on a random sa	ample o	f size <i>n</i>	from B	(1, <i>p</i>) N	ILE of $p(1-p)$	is				
	A)	\overline{X}^2	B)	$\overline{X}(1-x)$	\overline{X})	C)	$\sum_{i=1}^n X_i (1 - X_i)$)	D)	X		
44.	Which (a)	of the followin MLE is uniqu	ng stater le	ments is	s / are tr (b)	ue for MLE	MLE is not necessar	ily unbia	ased			
	A) C)	(a) alone Both (a) and ((b)		B) D)	(b) alc Neithe	one er (a) nor (b)					
45.	Let T A) C)	be a nunbiased S is sufficient S is complete	estimat for θ sufficie	or for θ ont for θ	then <i>E</i> (B) D)	(<i>T/S) is</i> S is m S is ur	the UMVUE j inimal sufficies biased for θ	for θ if nt for θ				

- 46. Neyman-Pearson lemma is used to find a most powerful test for testing
 - A) Simple hypothesis against composite alternative
 - B) Composite hypothesis against composite alternative
 - C) Composite hypothesis against simple alternative
 - D) Simple hypothesis against simple alternative
- 47. Rejecting a null hypothesis when it is true
 - A) Type I error B) Type II error C) No error D) Simple error
- 48. Which of the following is not belonging to exponential family but has an MLR property?
 - A) Cauchy $(0,\theta)$ B) Normal $(0,\sigma^2)$
 - C) Binomial $(0,\theta)$ D) Uniform $(0,\theta)$
- 49. Let λ be the likelihood ratio for testing the hypothesis $H_0: \theta \in \Theta_0$ against $H_1: \theta \in \Theta_1$. Then λ is a function of
 - A) Every consistent estimator for θ
 - B) Every sufficient statistic for θ
 - C) Every unbiased estimator for θ
 - D) None of these
- 50. The statistic H under the null hypothesis for Kruskal-Wallis test is approximately distributed
 - A) Chi-square distribution B) t-distribution
 - C) F-distribution D) Normal distribution
- 51. The distribution used in sign test is
 - A) Poisson distribution B) Uniform distribution
 - C) Binomial distribution D) Normal distribution
- 52. The Bayes estimate of a parameter θ under absolute error loss function is
 - A) Mean of the posterior distribution
 - B) Median of the posterior distribution
 - C) Mode of the posterior distribution
 - D) None of these
- 53. For the SPRT with strength (α , β) and boundary points A and B, A > B, which of the following is correct?

A) $A \ge \frac{1-\beta}{\alpha}$ and $B \le \frac{1-\beta}{\alpha}$ B $A \le \frac{\beta}{1-\alpha}$ and $B \ge \frac{\alpha}{1-\beta}$

C)
$$A \leq \frac{1-\beta}{\alpha} \text{ and } B \geq \frac{\beta}{1-\alpha}$$
 D) $A \geq \frac{1-\alpha}{\beta} \text{ and } B \leq \frac{\alpha}{1-\beta}$

54. Let
$$X \sim Np(\theta, \Sigma)$$
. Then $X' \Sigma^{-1} X$ follows

- A) $\chi^2(r)$
- B) Non-central $\chi^2_{(p)}$ with non-centrality parameter $\theta' \Sigma \theta$
- C) N $_{P}(\theta, \Sigma)$
- D) Non-central $\chi^{2}_{(p)}$ with non-centrality parameter $\theta' \Sigma^{-1} \theta$

55.	If X ~ A) B) C) D)	$\begin{array}{l} X \sim Np \ (0, \Sigma) \ \text{then} \ X'BX \ \text{follows} \\ \end{pmatrix} \qquad \chi^2_{(p)} \ \text{if and only if } B\Sigma \ \text{is idempotent of rank } r \\ \end{pmatrix} \qquad \chi^2_{(r)} \ \text{if and only if } B \ \text{is idempotent of rank } r \\ \end{pmatrix} \qquad \chi^2_{(r)} \ \text{if and only if } B\Sigma \ \text{is idempotent of rank } r \\ \end{pmatrix} \qquad \chi^2_{(p)} \ \text{if and only if } B \ \text{is idempotent of rank } r \\ \end{pmatrix} \qquad \begin{array}{l} \chi^2_{(p)} \ \text{if and only if } B \ \text{is idempotent of rank } r \\ \end{pmatrix} \qquad \begin{array}{l} \chi^2_{(p)} \ \text{if and only if } B \ \text{is idempotent of rank } r \\ \end{array}$								
56.	The m A)	ultiple correlat 0 and ∞	ion coef B)	ficient l -1 and	ies betv 1	veen C)	0 and 1	D)	-1 and 0	
57.	Wisha A) C)	rt distribution i Normal Distri t-Distribution	s the m ibution	ultivaria	ite analo B) D)	og of F Dis Chi-S	tribution quare Distribu	ition		
58.	Distril A) C)	bution of Hotel F distribution Chi-square di	ling's T stributic	² statisti on	cs is B) D)	Whisl t dist	nart distributic ribution	on		
59.	If S is NS fol A)	the sample var lows: $\chi^{2}_{(p)}$	iance co B)	varianc <i>Wp</i> (N	e matrix $(-1, \Sigma)$	x of a s C)	ample of size $Wp(N, \Sigma)$	N from D)	$Np(0,\Sigma)$ then $\chi^2_{(N-p)}$	
60.	The st $\begin{bmatrix} 0\\1/2\\1/2\end{bmatrix}$	ationary distrib $\begin{array}{c} 2/3 & 1/3 \\ 0 & 1/2 \\ 1/2 & 0 \end{array}$	oution of	f the foll	lowing	transiti	on probability	matrix	is:	
	A)	$\left(\frac{1}{3},\frac{10}{27},\frac{8}{27}\right)$		B)	$\left(\frac{1}{3},\frac{2}{5},\frac{2}{5}\right)$	$\left(\frac{3}{5}\right)$				
	C)	$\left(\frac{1}{3},\frac{5}{9},\frac{4}{27}\right)$		D)	None	of the	above			
61.	Whic	ch of the follow	ving stat	ement is	s/are tru	ie for a	stochastic pro	cesses {	X(t)?	
	(a)	A strictly s stationary.	tationar	y proces	sses wit	h <i>Var</i> ($(X(t)) < \infty$ is a	lso cova	ariance	
	(b)	A covarian strictly stat	ce statio	onary pr	ocesses	with λ	<i>K</i> (<i>t</i>) follows no	ormal dis	stribution is	
	A) C)	(a) alone Both(a)and	d (b)		B) D)	(b) al Neith	one er (a) nor (b)			
62.	Let M funct chara A) C)	N be a non-negation $P_N(s)$. Let Z acteristic function $\varphi_X(P_N(t))$ $P_N(t)$	ative int $X_n, n = 1,$ on $\varphi_X(t)$	eger val 2, be). If <i>Y</i> =]	ued ran a seque $\sum_{i=1}^{N} X_i$ B) D)	dom va ence of then th $[\varphi_X(t)]$ $P_N(\varphi_X)$	ariable with priving a random van the characterist $\left[\right]^{N}$	robabilit riables o ic functi	ty generating each having ion of Y is	

63.	If $\{X_i\}$ extin	<i>n</i> } is a branchin ction is 1 if	ss with	$E[X_n] = \mu$	μ^{n} then the probability of ultimate					
	A) C)	μ is finite $\mu > 1$			B) D)	$\mu \le 1$ None of	of these			
64.	In a l mean	Markov chain a recurrent time	recurre μ_i is	ent state	<i>i</i> is saic	l to be r	null recuri	rent if	and onl	y if the
	A)	Zero	B)	One		C)	Infinity		D)	Negative
65.	In tin A) C)	ne series analys Trend values Cyclic variation	sis simp ons	le avera	nge metl B) D)	hod is u Seasor All the	sed to cal nal indice above	lculate s	2	
66.	Lasp A) B) C) D)	eyre's index fo Current y Base year Average o None of t	rmula u ear of the w he abov	ses the reights or	weights over a m	of the umber o	of years			
67.	Let <i>Y</i> ₁ , and <i>E</i> [(a)(b)	Y_2 , Y_3 be three Y_3] = $\theta_2 - \theta_3$, th $\theta_1 + \theta_2 + \theta_3$ is $\theta_1 + 2\theta_3$ is estim	e uncorr en whic s estima nable.	related t th of the ble.	random e follow	variable ing is/ar	es with <i>E</i> re correct	$[Y_1] =$	$= \theta_1 + \theta_3,$	$E[Y_2] = \theta_1 + \theta_2$
	A) C)	Both (a) and ((a) alone	b)		B) D)	Neithe (b) alo	er(a) and ((b)		
68.	Which A)	of the followin $\theta_1 + 2\theta_2 - \theta_3$	ng paran B)	metric f $2\theta_1 - \theta$	unctions $\theta_2 + 2\theta_3$	s is a co C)	ontrast? $2\theta_1 - 3\theta_2$	$e^{+\theta_3}$	D)	$\theta_1 + \theta_2 - \theta_3$
69.	A bloc A) B) C) D)	ek design is said All elementar Number of blo Number of blo None of the a	d to be o y linear ocks is s ocks is s bove	connect contras same as greater	ed if sts are es number than nur	stimable r of trea nber of	e itments `treatmen	ts		
70.	Which of exp	of the followi eriments?	ng desig	gns doe	es not ap	oply all	the three	basic	princip	les of design
	A)	KDD D)	CKD		C)	LSD	1)	GLSD	
71.	Error (A)	degrees of freed 8	lom for B)	a Grae 24	co Latin	c)	design of 4	fsize	5 is D)	12
72.	Error o	legrees of freed	lom cor	respond	ling to a	12^3 factor	orial expe	erimen	nt treplic	ated in r
	A)	8r-1	B)	8(r-1)		C)	7(r-1)		D)	7r-1
73.	For a 3	3 ³ factorial expe	eriment,	, if two	effects a	are total	ly confou	inded	with the	blocks,
	then th A)	3 3	auces to B)) 9		C)	6		D)	18

- 74. Let v be the number of treatments for a BIBD with b blocks each with k plots and repeats λ times in pair, then
 - A) $\lambda(r_{-}1) = b(k_{-}1)$ B) $\lambda(v_{-}1) = r(k_{-}1)$

C) $\lambda(b_{-}1) = r(k_{-}1)$ D) $b(v_{-}1) = \lambda(k_{-}1)$

75. In stratified random sampling, for a fixed sample size, the proportional allocation will minimize the variance of the unbiased estimator of the population mean if

- A) the strata sizes are equal B) the strata variances are equal
- C) the strata means are equal D) the strata means are unequal
- 76. The systematic sampling is superior to SRS when intraclass correlation become A) Positive B) Negative C) 0 D) systematic sampling is always better than SRS
- 77. Consider the following statements on ratio and regression estimates of population mean \overline{Y}
 - (a) The ratio estimator of \overline{Y} is biased.
 - (b) The regression estimate is generally more efficient than the ratio estimator.

A)	Both (a) and (b)	B)	Neither (a) nor (b)
C)	(a) alone	D)	(b) alone

78. The efficiency of SRSWOR with respect to SRSWR is

A)
$$\frac{N-n}{N-1}$$
 B) $\frac{n-1}{N-1}$ C) $\frac{N-1}{n-1}$ D) $\frac{N-1}{N-n}$

- 79. Which of the following relationship of sample size with sampling and non-sampling error is correct?
 - A) Both errors increase with sample size
 - B) Both errors decrease with sample size
 - C) Sampling error increases and non-sampling error decreases with sample size
 - D) Sampling error decreases and non-sampling error increases with sample size
- 80. Let C_x and C_y be coefficient of variations for the auxiliary variable and study variable and ρ is the correlation coefficient. Then ratio estimation is more efficient than sample mean when

A)
$$\rho \frac{c_y}{c_x} > \frac{1}{2}$$
 B) $\rho \frac{c_x}{c_y} < \frac{1}{2}$ C) $\rho \frac{c_y}{c_x} < \frac{1}{2}$ D) $\rho \frac{c_x}{c_y} > \frac{1}{2}$