

19231

120 MINUTES

		$\sim m$										
1.	\lim_{n} A)	$e^{x} \left(1 + \frac{x}{n}\right)^{m}$, where <i>m</i> B)	is a fin e^{-x}	ite nun	nber is e C)	qual to		D)	1		
	A)	е	Б)	е		C)	U		D)	1		
2.	Whic A)		_				ous on	a set is	also c	ontinuous on		
	B)	that set. If a funct is bounde			/ conti	nuous (on a bo	unded s	et, the	n the function		
	C)	The production	uct of an		niforn	nly con	tinuous	function	ons is u	iniformly		
	D)	The funct		$=x^2$, x	$e \in R$ is	s not un	niformly	y contin	nuous (on R.		
3.	$\int_0^\infty si$	nx dx =										
	A)	0	B)	1		C)	$\frac{\pi}{2}$		D)	does not exist		
4.	Whic	ch of the fol	lowing st	atemen	ts are	true?						
	1. 2. 3. 4.	The union The inters The union The inters	section of of any c	`any co ollectio	llection n of cl	n of ope	en sets i ts is a c	s an ope	en set. et.			
	A)	1 and 3 or	nly B)	1 and	l 4 only	(C)	2 and	3 only	D)	2 and 4 only		
5.		2. $S_1 \cap S_2$ is always a subspace of \Re^m .										
	A)	1 only	B)	2 onl	y	C)	1 and	l 3 only	D)	2 and 3 only		
6.	dime		-						-	es of V with mum dimension		
	A)	n_1	B)	n_2	C)	n	D)	$n_1 + n_2$	$n_2 - n$			
7.		me that the s	um of two	idempo	otent m	atrices i	is again	idempot	ent. Th	en product of		
	A)	a non-zero	idempote	ent matr	ix	B)	a zero	matrix				
	C)	an identity	matrix			D)	none	of these				
8.	If A : A) B) C)	and B are so Rank(AB Rank(AB Rank(AB	$(a) \ge Rank$ $(b) \le Rank$ (c) = Rank	$\frac{c(A) + I}{c(A) + I}$	Rank(E Rank(E	(3) - n (3) - n	ı					

9.	Let A ⁺ be the Moore-Penro statements are true:	se g-inverse of	a matrix A. Whi	ch of the following
	1. A^+ is unique	2. (A	$^{+})^{+} = A$ 3.	$(A^+)^T = (A^T)^+$
	A) 1 and 2 only C) 2 and 3 only	B) D)	1 and 3 only 1, 2 and 3	y
10.	 Which of the following state A) Similar matrices have B) If A and B are n × n of AB and BA are sance C) Characteristic polynomerous D) Product of character 	re identical char matrices then cl me omial of a matri	acteristic polynomeracteristic polynomeracteri	ynomial ose are same.
11.	The matrix A is a positive definite A : A) $ A > 0$ B) A^{-1} is positive definite A : C) All the eigen values A : D) All the above	te		
12.	Let $\{A_n\}$ be a nondecreasing	sequence of sets	then $\lim A_n$ is:	
	A) $\bigcup_{n=1}^{\infty} A_n$ B)	$\bigcap_{n=1}^{\infty} A_n \qquad \qquad \mathbf{C})$	Ø D)	Does not exist
13.	Let E_1 and E_2 be Lebesgue statement(s) is/are true? 1. $E_1 \cup E_2$ is Lebesgue 2. $E_1 \cap E_2$ is Lebesgue 1	measurable	then which of t	he following
	A) 1 only C) Both 1 and 2	B) D)	•	nor 2
14.	Let A , B and C be three e	events such that	P(A) = P(B) =	$P(C) = \frac{1}{4}, \ P(A \cap B) =$
	$P(B \cap C) = 0$ and $P(A \cap C)$	$=\frac{1}{8}$. Then prob	ability that at le	east one of the events
	A, B and C occurs is A) $\frac{1}{8}$ B)	$\frac{3}{8}$ C)	<u>5</u> 8	D) $\frac{7}{8}$
15.	Let A, B and C be three mutu $P(B) = \frac{3}{2}P(A)$ and $P(C) =$			vents such that
		$\frac{2}{8}$ C)		D) $\frac{4}{9}$
16.	The odds against an event A is			
	B are independent. Then the p A) $\frac{61}{77}$ B)	robability that ne $\frac{16}{77}$ C)	ther A nor B occu $\frac{21}{77}$	D) $\frac{25}{77}$

17.	The p	probability tha	at a 3-ca	ard hand drav	vn at rar	ndom and wit	thout rep	lacement from
	an or	dinary deck c	onsists	entirely black	k cards i	is		
	A)	$\frac{1}{1.7}$	B)	$\frac{2}{17}$	C)	3	D)	4
	11)	17	D)	17	C)	26	D)	17

- 18. Among three urns, the first urn contains 7 white and 10 black balls, the second contains 5 white and 12 black balls, and the third contains 17 white balls and no black ball. An urn is chosen and a ball is drawn from the selected urn. It is found that the ball is white. Then probability that the ball came from the second urn is
 - A) $\frac{5}{29}$ B) $\frac{7}{29}$ C) $\frac{17}{29}$ D) $\frac{25}{29}$
- 19. Which of the following is **not** a probability density function?

A)
$$f(x) = \left\{ \frac{1}{2} e^{-|x|}, -\infty < x < \infty \right\}$$

B)
$$f(x) = \begin{cases} \frac{1}{\sigma} e^{-(x-\theta)/\sigma}, & x > \theta, & \sigma > 0 \\ 0, & otherwise \end{cases}$$

C)
$$f(x) = \frac{1}{\pi(1+x^2)}, -\infty < x < \infty$$

D)
$$f(x) = \begin{cases} x(2-x), & 0 < x < 2 \\ 0, & otherwise \end{cases}$$

- 20. Consider the function $F(x) = \begin{cases} 0, & x < 0 \\ (x+1)/2, & 0 \le x < 1 \end{cases}$. Then F(x) is $1, \quad 1 \le x$
 - A) Distribution function of a discrete random variable
 - B) Distribution function of a continuous random variable
 - C) Distribution function of a mixed type random variable
 - D) Not a distribution function
- 21. Which measure is the most unreliable indicator of central tendency if the distribution is skewed?
 - A) Mean B) Median C) Mode D) Range
- 22. Let *X* be a random variable with distribution function $F(x) = \begin{cases} 0, & x \le 0 \\ 1 \frac{1}{e^{2x}}, & x > 0 \end{cases}$. Median of the distribution is

A) 0 B)
$$\frac{\log 2}{2}$$
 C) $2\log \frac{1}{2}$ D) $\frac{e-1}{e}$

23.	 σ² If A free La 	 Thich of the following statements are true for the variance σ² of a random variable X σ² > 0 for all non-degenerate random variables If the distribution of X is concentrated near E(X) then σ² will be small. A small value of σ² means the probability is small that X will deviate much from its mean. Large value of σ² means the probability is large that X will be far from the mean. 1 and 2 only B) 1, 2 and 3 only 										
	A) C)	•	ıly		B) D)	1, 2 a	and 3 or 3 and 4	nly 4				
24.		Let X be integer valued random variable with probability generating function $P(s)$, $ s \le 1$. Then the second factorial moment of X is given by										
	A) C)	P'(1) P''(1) - [P'(1)]	$[1)]^2$		B) D)	P''(1) $P''(1)$)) – [<i>P</i> ′($[1)]^2 + 1$	P'(1)			
25.	Whic A) B) C) D)	 then X and Y must have the same distribution. If moment generating function of a random variable exist, then moments of all orders exist. If moments of all orders exist, then moment generating function exist in some open neighborhood of zero. 										
26.		X_n } be a seque										
		$\sum_{k=1}^{n} X_k, n \ge $ isfy weak law			sufficie	ent cor	ndition	for the	sequei	$\{X_n\}$		
	A)	$E\left\{\frac{S_n^2}{1+S_n^2}\right\} \to$	0, as 1	$n \to \infty$	B)	$E\left\{\frac{1}{1}\right\}$	$\left\{\frac{S_n^2}{+S_n^2}\right\} \to$	1, as	$n \to \infty$			
	C)	$E\left\{\frac{S_n^2}{n^2 + S_n^2}\right\} -$	→ 0, as	$n \to \infty$	D)	$E\left\{\frac{1}{n^2}\right\}$	$\left.\frac{S_n^2}{S_n^2+S_n^2}\right\} -$	→ 1, as	$n \to \infty$	0		
27.	cumu	$_{1}, X_{2}, \dots$ be iid r lative distribut , $\lim_{n\to\infty} P(\sum_{i=1}^{n} P(x_{i})$	ion fun	ction of a star								
	A)	$\Phi(x)$	B)	$1-2\Phi(x)$	C)	2Ф(<i>x</i>	·) – 1		D)	1		
28.	Binor	nial distributio	on is po	ositively skew	ed if th	e prob	ability	of succ	ess is			
	A)	less than $\frac{1}{2}$	B)	greater than	$\frac{1}{2}$	C)	equal	to $\frac{1}{2}$	D)	equal to 1		
29.	The n	nean of zero-tr	runcated	d Poisson(λ) v	ariable	is						
	A)	λ	B)	$\frac{\lambda}{e^{-\lambda}}$	C)	$\frac{\lambda}{1-e^{-\epsilon}}$	ā	D)	$\frac{1}{e^{-\lambda}}$			

30.	Which of the following distribution possesses lack of memory property?												
	A)	Poisson			B)	Binomial							
	C)	Hypergeome	tric		D)	Geometric							
31.	The m	nean and varian	nce of r	negative binon	nial dist	tribution are re	elated a	s:					
	A)	mean is greate	er than v	variance	B)	mean is less th	han vari	ance					
	C)	mean is equal	to varia	ance	D)	None of the al	bove						
32.	expone will sp	ential distributi	on with	mean of six mutes in the rest	inutes.	Then the probagiven that she l	bility th	estaurant has an nat the customer in there for more e^2					
		e		e ²									
33.	1. If dis	 Which of the following statements are true? 1. If X and Y are iid Cauchy(1, 0) random variables,. Then X + Y follows Cauchy(2, 0) distribution 2. If X and ¹/_X have the same distribution, then X is Cauchy(1, 0) random variable. 											
	2 1	X	1		π π			1 1					
		<i>X</i> be a uniform riable.	random	variable over ($-\frac{1}{2},\frac{1}{2}$	Then $Y = \tan X$	is a Cau	chy random					
	A)	1 and 2 only			B)	1 and 3 only							
	C)	2 and 3 only			D)	1, 2 and 3							
34.		has Pareto dis- exists only w		n with $\operatorname{pdf} f(z)$	$(x) = \begin{cases} \overline{(x)} \end{cases}$	$ \frac{\beta \alpha^{\beta}}{(x+\alpha)^{\beta+1}}, \ x > 0 $ 0, other	$, \alpha, \beta >$ erwise	O. Then					
	A)	$\alpha > 1$	B)	$\alpha < 1$	C)	$\beta > 1$	D)	$\beta < 1$					
35.	Let the random variable X has lognormal distribution with parameters μ and σ^2 . Then moment generating function of X is												
	A)	$\exp\left(\mu t + \frac{1}{2}t^2\right)$	$^{2}\sigma^{2}$		B)	$\left(\mu t + \frac{1}{2}t^2\sigma^2\right)$)						
	C)	$\log\left(\mu t + \frac{1}{2}t^2\right)$	σ^2		D)	does not exis	st						
36.		and Y be independent $Z = XY$ is	endent i	random variabl	es with	pdfs f_1 and f_2 ,	respect	ively. Then the					
	A)	$f_Z(z) = \int_{-\infty}^{\infty} f(z) dz$	$f_1(x)f_2($	(xz) x dx	B)	$f_Z(z) = \int_{-\infty}^{\infty} f(z) dz$	$f_1(x)f_2($	$(xz)\frac{1}{ x }dx$					
	C)	$f_Z(z) = \int_{-\infty}^{\infty} f(z) dz$	$f_1(x)f_2$	$\left(\frac{z}{x}\right) x dx$	D)	$f_Z(z) = \int_{-\infty}^{\infty} f(z) dz$	$f_1(x)f_2$	$\left(\frac{z}{x}\right)\frac{1}{ x }dx$					

	A)	$P_N^{(n)}(x) = \frac{nx^3}{N}$	$\frac{n-1}{n}$, χ	= 1, 2,, <i>N</i>						
	B)	$P_N^{(n)}(x) = \frac{x^n}{N^n}$, x = 1	l, 2,, <i>N</i>						
	C)	$P_N^{(n)}(x) = \frac{x^n}{n}$	$\frac{-(x-1)^n}{N^n}$,	x = 1, 2, .	, N					
	D)	$P_N^{(n)}(x) = \frac{x^n}{n}$	$\frac{-(x-1)^{n-1}}{N^n}$	x = 1, 2,	, N					
38.	and the	ider a system he batteries op ommon distrib f the system ha	erate in oution f	series. Su unction $F($	ppose th	e length	of life	of the	batter	ies have
	A)	$n[1-F(x)]^n$	$f^{-1}f(x)$		B)	n[F(x)]	$]^{n-1}f$	(x)		
	C)	$n\{1 - [1 - F]\}$	$(x)]^{n-1}$	f(x)	D)	None o	of the a	bove		
39.	taken	$X_{1:3}$, $X_{2:3}$, $X_{3:3}$ the from a population $2(X_{2:3} - X_{1:3})$	on with	pdf f(x) =	$\lambda e^{-\lambda x}$, λ	$\alpha > 0$, λ	x > 0.	Define	$Y_1 = 3$	$X_{1:3}$,
	2. <i>Y</i> ₁	(X_1, X_2, X_3) and (X_1, X_2, X_3) and (X_1, X_2, X_3) are if (X_1, X_2, X_3) has	ndepend	ent.	ntically o	listribute	d.			
	A)	1 and 2 only	B)	1 and 3 on	ly C)	2 and	3 only	D)	1, 2 a	nd 3
40.		nean of a non-ce		i-square ran	dom varia	able with	degree	es of fre	edom n	and
	A)	n	B)	$n + \delta$	C)	$n+2\delta$	S	D)	2n +	δ
41.	 Which of the following statement is false for t distribution with n degrees of freedom? A) Mean of the distribution is zero for all n ≥ 1. B) Pdf of the distribution is symmetric about zero. C) Pdf of the distribution can be approximated by a standard normal density for large n. D) For small n, t-distribution assigns more probability to its tails compared with standard normal distribution. 									
42.	If X∼	Cauchy(1,0)	then X ²	~						
	A)	Cauchy (1, 0)		B) t(1))	C)	t(2)		D)	F(1,1)

Let $X_1, X_2, ..., X_n$ be a random sample taken from discrete uniform distribution with pmf $P_N(x) = \frac{1}{N}, \ x = 1, 2, ..., N, \ N \ge 1$. Then the pmf of the n^{th} order statistic is

45.	Let $X_1, X_2,, X_n$ be a random sample from a continuous population with distribution function $F(.)$. Define	
	$\widehat{F}_n(x) = \frac{\text{Number of } X_i ' s \le x}{n}, x \in R$	
	Гћеп	
	A) $\hat{F}_n(x)$ is unbiased but not consistent for $F(x)$	
	B) $\hat{F}_n(x)$ is consistent but not unbiased for $F(x)$	
	$\widehat{F}_n(x)$ is unbiased and consistent for $F(x)$	
	$\widehat{F}_n(x) \text{ is neither unbiased nor consistent for } F(x)$	
46.	Let T_1 be an unbiased estimator of the parameter θ of a family of distribution $\{F_{\theta}, \theta \in \Theta\}$ and T be a sufficient statistic for $\{F_{\theta}, \theta \in \Theta\}$. Also let $T_2 \in E_{\theta}(T_1 T)$. Then	
	A) T_2 is unbiased estimator with $V(T_1) \ge V(T_2)$	
	B) T_2 is not unbiased estimator but $V(T_1) \ge V(T_2)$	
	T_2 is unbiased estimator with $V(T_1) \le V(T_2)$	
	T_2 is the UMVUE	
47.	Let $X_1, X_2,, X_n$ be a random sample from the Poisson distribution with mean θ . Then the Cramer-Rao lower bound of unbiased estimator of $e^{-\theta}$ is	
	A) $e^{-\theta}$ B) $\frac{e^{-2\theta}}{n}$ C) $\frac{\theta e^{-2\theta}}{n}$ D) $\frac{e^{-\theta} (1-e^{-\theta})}{n}$	<u>-</u>
48.	The MLE of θ based on a random sample X_1, X_2, \dots, X_n taken from the PDF	
	$f(x) = \theta x^{-2} I_{(\theta,\infty)}(x), \ \theta > 0$,	
	where $I_A(.)$ is the indicator function defined on the set A is	
	A) $\frac{\sum_{i=1}^{n} X_i}{n}$ B) $\left(\frac{\prod_{i=1}^{n} X_i^2}{n}\right)^{1/n}$ C) $\min_i X_i$ D) $\max_i X_i$	
49.	State whether the following statements are true (T) or false (F) Maximum likelihood estimate is always unique. Maximum likelihood estimate is unbiased if it is unique. Maximum likelihood estimate itself is a sufficient statistic. Asymptotic distribution of maximum likelihood estimate is always norm	nal
	A) 2 & 3 true, 1 & 4 false B) 1 & 2 True, 3 & 4 false C) All the statements are true D) All the statements are false	
	7	

Let (X,Y) be bivariate random vector. Then the estimate $\phi(X)$ of Y based on X,

C)

B) $\sigma_1^2(1-\rho)$ C) $\sigma_1^2(1-\rho^2)$ D) $\sigma_1^2(\rho^2-1)$

E(X|Y)

E(Y|X)

D)

which minimizes the MSE $E(Y - \phi(X))^2$ is

B)

E(Y)

Let $(X,Y) \sim bivariate\ normal(\mu_1,\mu_2,\sigma_1,\ \sigma_2,\rho$). Then V(X|Y)=

E(X)

 σ_1^2

A)

A)

43.

44.

Let $X_1, X_2,, X_n$ be a random sample taken from population with pdf $f(x) = \begin{cases} \theta x^{\theta-1}, & 0 < x < 1, \theta > 0 \\ 0, & otherwise \end{cases}$									
$ \sum_{i=1}^{n}$,	,						
If $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$ then the moment estimator of θ is									
A) \bar{X}	B)	$\frac{\bar{X}-1}{\bar{X}}$	C)	$\frac{\bar{X}}{1-\bar{X}}$	D)	$\frac{\bar{X}}{X-1}$			

The null hypothesis is rejected if the sample contains 2 or 3 red balls; otherwise it is accepted. Then the power of the test is

A) $\frac{1}{2}$ B) $\frac{2}{3}$ C) $\frac{3}{4}$ D) $\frac{5}{8}$

A) $\frac{1}{2}$ B) $\frac{2}{3}$ C) $\frac{3}{4}$ D) $\frac{3}{8}$ 52. Which of the following distribution does not have monotone likelihood ratio

property?

A) Uniform over $[0, \theta]$ B) Poisson

C) Binomial D) Cauchy $(1, \theta)$

53. The critical region of the UMP test for testing $H_0: \theta \ge \theta_0$ against $H_0: \theta < \theta_0$, based on random sample X_1, X_2, \dots, X_n taken from the pdf $f(x) = \frac{1}{(\theta - 1)!} x^{\theta - 1} e^{-x}, x > 0$, $\theta > 0$ has the form

A)
$$\sum_{i=1}^{n} X_i > k$$
 B) $\sum_{i=1}^{n} X_i < k$ C) $\prod_{i=1}^{n} X_i > k$ D) $\prod_{i=1}^{n} X_i < k$

54. Which test is the nonparametric analogue of the analysis of variance *F* test for the two way classification?

A) Kruskal-Wallis test B) Friedman test

C) Shapiro-Wilk test D) Freund-Ansari test

55. The decision in a sequential probability ratio test depends on

A) P(type I error)

B) P(type II error)

C) P(type I error) and P(type II error)

D) None of the above probabilities

56. Let A denote the region of acceptance of an α -level UMP test of H_0 : $\theta = \theta_0$ against H_0 : $\theta \neq \theta_0$. For each observation,

 $\mathbf{x} = (x_1, x_2, ..., x_n)$, let $S(\mathbf{x})$ is the set $S(\mathbf{x}) = \{\theta : \mathbf{x} \in A\}$. Then

A) S(x) is UMA confidence interval with confidence level $1 - \alpha$.

B) S(x) is confidence interval with confidence level $1 - \alpha$ but not UMA

C) S(x) is confidence interval with a different confidence level

D) S(x) is not a confidence interval

	c. Uniformd. Normal	ity of success over $[0,\theta]$, $\theta > 0$ is distribution with wariance		3. Beta di4. Pareto			
	A) a-2, b-C) a-4, b-		B) D)	a-4, b-2, c- a-2, b-4, c-	3, d-1 3, d-1		
58.	that the popul true about the A) The 99 B) The 99 C) The 90	s testing about a position mean given the population mean? 5% confidence inte 10% confidence inte 10% confidence inte 10% confidence inte 10% above are true	ne null hypothesis rval includes μ_0 rval includes μ_0	-			
59.		the population contains the number of B) 35	all possible sampl	es will be	ected at ra	andom witho	out
60.	given charac using simple	oopulation of <i>N</i> uteristic is <i>P</i> . A rarandom samplimate of <i>P</i> is equa	ndom sample of ng without repla	size n is tak	en from	the popula	ation
	A) $\frac{(N-n)}{n}$	$\frac{P(1-P)}{N}$	B)	$\frac{(N-n)P(1-n)}{n(N-1)}$	<u>P)</u>		
	C) $\frac{N^2(N-1)}{n(n-1)}$	$\frac{n)P(1-P)}{(N-1)}$	D)	$\frac{P(1-P)}{N}$			
61.	is interested in made by the o	of the customer sen determining wheteompany over the partypes of LED tele	her the customers past 12 months are	who have pu e satisfied wit	rchased a th their p	LED televiroducts. If t	ision there
	B) stratifi C) cluster	random sample ed random sample sample natic sample					

Choose the conjugate priors for the distributions in List I from List II and select

List II

1. Normal distribution

2. Gamma distribution

the correct answer using the codes given below.

Binomial distribution with unknown

Poisson distribution with unknown mean

List I

57.

a.

b.

62.	Which of the following statement(s) is/are1. Horvitz-Thomson estimator is the bese estimators of the population mean.2. Horvitz-Thomson estimator is the UN	t estima	tor in the class of linear un	nbiased
	A) 1 only C) Both 1 and 2	B) D)	2 only Neither 1 nor 2	
63.	The ratio estimator of population mean			•
	 A) The variable under study and the B) The variable under study and the C) The variable under study and the D) None of the above 	auxilia	ry variable have a negati	ve correlation
64.	 Which of the following statement is/are All treatment contrasts of a connected The rank of the C-matrix of a connect is v - 1. Latin square designs are connected. 	l design	are estimable.	treatments
	A) 1 and 2 only C) 2 and 3 only	B) D)	1 and 3 only 1, 2 and 3	
65.	Assuming no bias, the total variation in a variation) plus differences due to treatmelarge compared to unexplained variation,	nents (kı	nown variation). If know	n variation is
	 A) There is no evidence for a difference B) There is evidence for a difference C) There is significant evidence for a D) The treatments are not comparable 	in respondifferen	nse due to treatments.	tments
66.	In $p \times p$ Latin square design, the degree equal to			-
	A) $p(p-1)$ B) $(p-1)^2$	C)	(p-2)(p-1) I	p(p-2)
67.	 Which of the following statements is/an Number of treatment is equal to the notation. Number of replications of each treatment. The number of treatments common in blocks in which each pair of treatment. 	umber of ent is eq any two	blocks. ual to the block size. blocks is equal to the nur	nber of
	A) 1 only C) 1 and 3 only		1 and 2 only 1, 2 and 3	
68.	Suppose a 2 ⁶ design confounded in 8 bloc Then the number of effects that are confor A) 3 B) 4			ffects is equal to

- 69. The Gauss-Markov theorem will not hold if
 - the error term has the same variance given any values of the independent variables A)
 - B) the error term has an expected value of zero given any values of the independent variables
 - the independent variables have exact linear relationships among them C)
 - the regression model relies on the method of random sampling for collection of data D)
- If Y is distributed as $N_p(\mu, \Sigma)$, then $(Y \mu)'\Sigma^{-1}(Y \mu)$ has the distribution 70.
 - χ^2 distribution with (p-1) degrees of freedom χ^2 distribution with p degrees of freedom
 - B)
 - Wishart distribution with p degrees of freedom C)
 - D) $N_n(\mathbf{0}, \mathbf{\Sigma})$
- Let $X = (X_1, X_2, X_3)'$ be distributed as $N_3(\mu, \Sigma)$ with $\Sigma = \begin{pmatrix} 4 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. Which of the 71. following statement is/are true?
 - X_1 and X_2 are independent. 1.
- 2. (X_1, X_2) and X_3 are independent.

A) 1 only B) 2 only

Both 1 and 2 C)

- Neither 1 nor 2 D)
- Let X_1, X_2, \ldots, X_n be random sample from $N_p(\mu, \Sigma)$ with $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$, and Σ is known. 72. Then the test statistic to test H_0 : $\mu = \mu_0$ against H_1 : $\mu \neq \mu_0$ is
 - A)
 - $(\overline{X} \mu_0)' \Sigma^{-1} (\overline{X} \mu_0)$ B) $(n-1)(\overline{X} \mu_0)' \Sigma^{-1} (\overline{X} \mu_0)$
 - C)
- $n(\overline{X} \mu_0)' \Sigma^{-1}(\overline{X} \mu_0)$ D) $\frac{1}{n}(\overline{X} \mu_0)' \Sigma^{-1}(\overline{X} \mu_0)$
- 73. The multiple correlation coefficients
 - can vary within the range from -1 to +1A)
 - can vary within the range from 0 to+1 B)
 - C) can be any nonnegative value
 - D) cannot be zero
 - 74. The state space of a stochastic process is
 - always discrete A)

- always continuous B)
- C) may be continuous or discrete
- D) neither discrete nor continuous
- 75. Consider a Markov chain with transition probability matrix

$$P = \begin{pmatrix} 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \end{pmatrix}.$$

Then

- A) The Markov chain is irreducible
- B) All states are periodic with period 2
- C) All the states are persistent
- All the above D)

76.	If $\{X($	t)} is a Poisso	n proc	tess then $P\{X($	2) = 1	X(4) =	= 4} is	} is							
	A)	$\frac{3}{4}$	B)	$\frac{1}{4}$	C)	$\frac{1}{2}$	D)	0							
77.	steady A) B) C)	state probabili	ties < μ > μ	ival rate λ, dep	arture ra	ate μ an	d infini	te queue	e capacit	ty, the					
78.	Cyclic	al variation in time series has a period of oscillation of													
	A)	Less than one		1	B)		than one								
	C)	Both A and B	-		D)		of the a	-							
79.	Method of simple averages for a time series data is used to measure														
	A)	Seasonal varia			B)	Trend									
	C)	Cyclical varia	tion		D)	Irregu	lar varia	ation							
80.	Which	of the following	ng inde	x number is ger	nerally e	expected	d to hav	e an upv	ward bia	ıs?					
	A)	Paasche's ind	lex nun	nber	B)	Fisher	's index	k numbe	rs						
	C)	Laspeyre's inc	dex nur	nber	D)	All the	above								