19703 120 MINUTES

1.		I reverse transcriptase copies the A moves into the nucleus. This p Poxviridae Retroviridae		NA to DNA in cytoplasm and then the occurs in the case of Rhabdoviridae Reoviridae
2.		Pathogen enters—APC trigger Pathogen enters—macrophagengulf, process and present—lymphocytes—adaptive imm Pathogen enters—phagocytes	ers B ce ge and d APC in une resp	er infection. Find the correct sequence of ells via T helper cell—Antibodies entritic cells recognize the antigen — eteract with lymphocytes— activate eonse e activated—trigger cytotoxic T cells—Nk
	D)	cells kills infected cells Pathogen enters→mast cell d	egranul	ation→inflamation→immunity
3.	Mac A) B) C) D)	_	size in size in size du	3
4.	some		y a pair ce	high degree of thallus development. But of unicellular red algae from the
5.	Myx 1. 2. 3. 4.	Wall less myxamoebae, swar Spores with chitinous cell wa Spores with cellulose cell wa Fructifications with a thin wa may contain cellulose	m cells ill ill	3

A) 1, 2 & 4 B) 1, 3 & 4 C) 1 & 2 D) 1 & 4

6.	Matcl	n the fol	lowing										
		<u>List I</u>				List]	<u>List II</u>						
	a. Ago	aricus b	isporou	S		1. Pu	ff ball						
		anita pl		es.			ath cap						
	-	coperdoi	_			-		shroom					
	d. <i>Ple</i>	urotus s	sajor-ca	iju		4. Bu	itton mu	ıshroom	l				
	A)	a- 1	b-2	c-3	d-4	B)	a- 4		c-3	d-1			
	C)	a-4	b-2	c-1	d-3	D)	a -3	b-4	c-2	d-1			
7.		ellae, Ce halli of:	-	lia, Isid	ia and S	oredia	are cert	ain spec	ialized	structu	res associated		
	A)	Certai	in Alga	e		B)	Some	Fungi					
	C)	Liche	ns			D)	Certa	in Bryo	phytes				
8.	The s	nore dis	nersal r	nechan	ism of <i>F</i>	Zunaria	9						
0.	A)		o elater		15111 01 1	B)	elater	rs.					
	C)		omial to			D)		No special mechanism					
							-						
9.		s and roo	ots?	llowing	is a pte	ridoph	yte with	out the	differen	itiation	into true		
	A)	Azolla	ı			B)	Mar	selia					
	C)	Lepid	odendr	on		D)	Rhyn	ia					
10.	Whic	h of the	followi	ing stel	ar types	in Pter	idophyt	es has le	eaf trace	es?			
	A)	Protos		B)			e C)		ostele	D)	Both B and C		
11.	Whic	h one of	the fol	lowing	Gymno	sperms	is a pro	ofusely l	branchii	ng shru	b?		
	A)	Ginkg	o bilob	a		B)	Ephe	dra dist	achya				
	C)	Gnetu	m gnen	non		D)	Welu	vitschia	mirabili	is			
12.	The o	eneral n	ollinati	on med	hanism	in ovm	nosnerr	ns is [.]					
12.	A)	_	nophily			nophily	_		cophily	D)	Chiropteriphily		
	,		1 2	,		1 2			1 2	,	1 1 2		
13.	-	_			fruit typ		~``	_			~ .		
	A)	Acaci	а	B)	Capse	ella	C)	Diosc	corea	D)	Calotropis		
14.	Rule	of priori	ty of IC	CBN sta	ites that								
	A)	-	•		ole, prop		blished	name is	s the co	rrect on	e		
	B) Botanical nomenclature is inc												
	C) Scientific names of taxonomic groups are treated as Latin regardless of their												
	derivation												
	D)	_	-			taxono	mic gro	oups is d	letermin	ned by 1	means of		
nomenclatural types													

15.	Hypanthodium is a special type of inflorescence seen in:										
	A)	Diant	hus	B)	Dors	stenia	C)	Poins	ettia	D)	Ficus
16.	a. Ny b. Br c Di	List I Emphasea cassicace pterocar celepiada	ceae eae paceae		1. po 2. trit 3. lan	List II 1. pollinia 2. trifid style 3. laminar stamen 4. siliqua					
	A) C)	a- 3 a-4	b-1 b-2	c-4 c-1	d-2 d-3	B) D)	a- 4 a-3	b-2 b-4	c-3 c-2	d-1 d-1	
17.	Head A)	l office o		GR is at B)	t: Mum	ıbai	C)	Kolka	ata	D)	Chennai
18.	_	go is obt urless gly seeds	ycoside		eral spo	ecies of	Indigoj C)	<i>fera</i> . In leave	-	nt the d	lye occurs as a
19.		, .									
20.	Match the following List I a. Heart wood b. Hard wood c Sapwood d. Soft wood A) a-3 b-1 c-4			1. Gy 2. Re 3. An 4. Ty d-2	List II 1. Gymnosperms 2. Recently formed wood 3. Angiosperms 4. Tyloses d-2 B) a-4 b-2 constants				d-1		
21.	•	a-4 y amphiv nalous se <i>Drace</i>	econdar		ening in		ributed		round t	d-1 tissue at D)	fter the Mirabilis
22.	Fum A) C)	Noda	e, Cucu l anator l anator	my	pe, Lath	ıyrus ty _l	pe and AB) D)	Root	-stem tr	ansitior	related to n try thickening

23.	Match the following												
		List 1	[<u>I</u>	List II							
	a. Ro	tary mic	crotome	;	1. dia	mond l	knife						
	b. Sle	edge mi	crotome	9	2. for	cutting	g frozen	sample	S				
		otome			3. ser	rial sect	ions of	paraffin	embed	ded mat	terials		
	-	tratome					ctions of	_					
	A)	a- 3	b-1	c-4	d-2	B)	a- 4	b-2	c-3	d-1			
	C)	a-3	b-4	c-2	d-1	D)	a-4	b-3	c-2	d-1			
24.	A tec	chnique	that use	es the pr	ocess o	f sublir	nation to	o chang	e a solv	ent in fi	rozen state		
	direc	tly to va	ipour st	ate									
	i.	Cryos	surgery	& cryo	metry								
	ii.	Freez	e dryin	g									
	iii.	Lyop	hilizatio	on									
	A)	i only	I	B)	ii onl	у	C)	ii & i	ii only	D)	i & iii only		
25.	Whice prote	ch is the eins?	correct	explana	ation fo	r the bi	nding of	f Cooma	assie Br	illiant E	Blue to		
	A)		_		_		nteractio ugh Van				eid groups and		
	B)	_	_		_	_	nteractio						
	C)		_		_						ılfonic acid		
	,	groups and through ionic interactions to positive protein amine groups											
	D)		of the	_			1	1		J	1		
26.	Ident	ify the r	non recu	ırrent ty	pe of a	pomixi	s from tl	he follo	wing				
	A)	Adve	ntive e	nbryon	y	B)	Diplo	spory					
	C)	Apos	pory			D)	Parth	enogen	esis				
27	Spor	opolleni	n is the	major o	compon	ent of							
	A)	Exine	e of pol	len graii	ns	B)	Intine	e of pol	len graiı	1S			
	C)	Polle	nkitt			D)	Proka	aryotic s	spores				
28.	Whic	ch of the	follow	ing is no	ot true a	about e	mbryo re	escue?					
	A)			assist in le plant		elopme	ent of pl	ant emb	oryos th	at migh	t not survive to		
	B)	-											
	C)	The most widely used embryo rescue procedure is embryo culture											
	D)												

29.		integral protein complex, Cytoc Photosystem II in plants is know		b6/f complex which connects Photosystem I
	A)	Core complex	B)	F0- F1 complex
	C)	Rieske center	D)	Quantasomes
30.	In wl	nich of the following subtype/s	of C4 ₁	photosynthesis the oxaloacetate formed is
	reduc	ced in the chloroplast to produc	e mala	te?
	A)	NADP- malic enzyme type	B)	NAD- malic enzyme type
	C)	PCK type	D)	Both A and B
31.	The o	cation channels called shaker cl	nannels	s (K+ channels) in <i>Arabidopsis</i> is an example for
	A)	Water channels	B)	Voltage- gated channels
	C)	Electrogenic pumps	D)	Electroneutral pumps
32.	Whic	ch of the following regarding ap	oplast	ic phloem loading is not correct?
	A)	Sucrose moves from a meso	phyll co	ell into the cell wall adjoining a companion cell
	B)	Companion cells are with wa	all ingr	owths
	C)	Sucrose is transported by a s	ucrose-	-proton symporter into the companion cell
	D)	From the companion cells su into the sieve tube.	icrose (diffuses through branched plasmodesmata
33.	Find	the correct statement with resp	ect to t	he nitrogenase enzyme in biological
	nitro	gen fixation		
	A)	Component I of the enzyme	is an F	Fe-protein(nitrogenase reductase)
	B)	Component II of the enzyme	is a M	Io-Fe protein (nitrogenase)
	C)		cortica	al cells of the host plant in symbiotic
	D)	nitrogen fixation	1 .	
	D)	component $I \rightarrow N_2 \rightarrow NH_3$	electroi	n flow is from Fd→ component II→
34.	GS-C	GOGAT pathway in plants is as	sociate	ed with
	A)	Transport of the amides- glu	ıtamine	e and asparagine from the roots
	B)	Symbiotic nitrogen fixation		
	C)	Fixation of ammonia		
	D)	Conversion of nitrates to nitr	rites	
35.	Glyc	olate from photorespiration is t	he prec	cursor for the formation of the amino acids
	A)	Glycine and serine	B)	Glutamine and arginine
	C)	Asparagine and glutamine	D)	Glycine and glutamine
36.	The e	enzyme associated with cyanide	e insens	sitive respiration:
	A)	Succnic dehydrogenase	B)	Malate dehydrogenase
	C)	Pyruvate dehydrogenase	D)	External NAD (P)H dehydrogenase

37.	Cytorrhysis refers to:									
	A)	collapse of cell wall	l due to d	rying						
	B)	Breakage of water of	columns u	ınder te	nsion	within the xyle	:m			
	C)	Membrane and prot	ein destal	bilizatio	n					
	D)	Ion toxicity								
38.	The	photoreceptor protein v	which reg	gulates l	nigh fl	luence blue ligh	nt mediat	ted hypocotyl		
		stem elongation, antho-	•	-		omatal opening	g, chloro	plast		
	mov	ement and regulation o	of flowering	ng time	is:					
	A)	Phytochrome A		B)	-	ochrome B				
	C)	Cryptochrome		D)	Phot	totropin				
39.	Synthesis of the aromatic amino acids Phenyl alanine, Tyrosine and Tryptophan occurs through:									
	A)	Terpenoid pathway		B)	Malo	onic acid pathw	av			
	C)	Shikimate pathway		D)		renoid pathway	=			
40.	The	Acid Growth hypothes	is propos	ed by R	avle a	and Cleland (19	970) and	Hager		
		zel and Cross (1971) e		-	•	*	70) and	114801,		
	A)	Auxins B)	_	rrellins		Cytokinins	D)	Abscisic acid		
41.	The re	educing equivalents (N	ADPH) f	or the f	ixatio	n of ammonia i	n roots ε	are supplied by		
		ation of carbohydrates						11 3		
	A)	Glycolysis	36	B)	-	ic acid cycle				
	C)	Cyanide resistant re	espiration	/		lative pentose p	ohosphat	e pathway		
42.	The	Proton gradient in mito	ochondria	develo	ps acr	coss the				
	A)	Matrix		B)	-	r membrane				
	C)	Inter membrane spa	ce	D)	Oute	er membrane				
43.	Iden	tify the simplest and m	ost widel	y used :	metho	od to determine	the amo	unt of protein		
	or nu	icleic acid in a given so	olution:							
	A)	Spectrophotometry		B)	Gas	liquid chromate	ography			
	C)	Nuclear magnetic re	esonance	D)	Mass	s spectroscopy				
44.	Mato	ch the following phytol	hormones	in List	I with	h their physiolo	gical fur	nctions in List II		
	<u>Li</u>	ist I		List I	[
	a. <i>A</i>	· · · · · · · · · · · · · · · · · · ·			sing c	during water str	ess			
	b. C	teractic	n of a	apical dominand	ce					
	c. (Cytokinins	3. Root	initiatio	on					
	d. A	Abscisic acid	elonga	tion						
	A)	a-1, b-3, c-2, d-4		B)	a-1,t	o-3, c-4, d-2				
	C)	a-3, b-1, c-2, d-4		D)		o-4, c-2, d-1				

45.	Find out the incorrect statement with respect to C ₃ type of carbon assimilation:										
	A)	The CO ₂ accep	otor is	a five carbon	aldo com	pound					
	B)	The first stable	e comp	ound is 3-PC	GA						
	C)	Photorespiration	on higl	h							
	D)	-	_		for the sy	nthesis of one 1	nolecul	e of glucose			
46.	Rice i	s an example for	r a sho	rt day plant.	Read the	following states	ments r	egarding			
	flowe	ring in rice and p	point o	out the correc	et ones:						
	I)	In rice the gene	es Hea	ding-date1a	ınd Headir	ng- date 3a cont	rol flov	vering			
	II)	Rice plant flov	vers w	hen the nigh	t exposure	e is 8- 10 hrs					
	III)	The inhibition	of flov	wering in ric	e is under	the control of p	hoto co	onversion			
		of phytochrom	ne fron	n Pr to Pfr or	exposure	to red light					
	IV)	= -			_	hoto converts t	he pign	nent back to			
	,	=	_	_	_	res the flowerin					
	A)	I and II only	B)	I, II and III	(C)	I, III and IV	D)	III and IV only			
47.	Yang	cycle is specific	ally as	sociated with	h the syntl	nesis of:					
	A)	Ethylene from	ACC								
	B)	ABA from xar	nthoxa	1							
	C)	Methionine fro	om S- a	adenosyl 5- 1	nethyl thi	oadenosine					
	D)	Gibberellins fr		=	=						
48.	The m	ost abundant tra	ansport	t protein in tl	ne plants i	s:					
	A)	SLAC1 anion	transp	orter associa	ted with g	uard cells,					
	B)										
	C)										
	D)	ZIP metal tran	sporte	rs which med	diate uptal	ke of Fe, Mn &	Zn ions	s into plants			
49.	A spe	cific function of	the es	sential eleme	ent Potassi	ium is:					
	A)	translocation o	of carbo	ohydrates							
	B)	oxygen evolut	ion du	ring photosy	nthesis						
	C)	second messen	nger ir	n metabolic r	egulation						
	D)	stomatal move	ments								
50.	Identi	ty the genes in A	Irabido	opsis thalian	a involved	d in mutation of	f floral (organs which			
	conve	rt petals into sep	oals an	d stamens in	to carpels:						
	A)	Apetala 1 and	Apetal	la 2 B)	Apet	ala 3 and Pistill	ata				
	C)	Apetala 3 and	Agam	ous D)	Plena	and Farinelli					
51.	The co	ommon measure	ement i	unit of water	potential	is:					
	A)	Pixel	B)	Pascal	C)	Pi	D)	mol			

52.	The shape of the H ₂ O molecule is based upon the concepts of hybridization										
	A)	Pyramidal			B)	Tetral	hedral				
	C)	Angular or	bent		D)	Linea	r				
53.		many hydrog GATCCTAAG			rmed by	the follo	owing DNA s	sequence'	?		
	A)	16	B)	18		C)	21	D)	32		
54.	The 1	najor precurso	or for the	biosyr	nthesis o	f glucos	e in gluconeo	genesis i	S		
	A)	Propionate			B)	gluco	genic amino	acids			
	C)	Pyruvate			D)	malat	e				
55.		ch amino acid achandran plo	-	t phi a	nd psi aı	ngles in	all four quadı	rants of tl	he		
	A)	alanine	B)	Gly	cine	C)	Lysine	D)	Aspartic acid		
56.	Ident	ify the Omega	a- 3 famil	lv of fa	itty acid	from the	e following				
	A)	Linoleic ac		,	B)		na –Linoleic	acid			
	C)	Arachidoni			Ď)		sahexaenoic a				
	C)	7 H de mao m	c acia		D)	D 000		acia			
57.		h the following	ıg								
		st I			List II						
		Saturated fatty		1	Stercul						
		Insaturated fa		2			decanoate ac	eid			
		Branched chair			Butyrio						
	d (Cyclic fatty ac	1d	4	Oleic a	.c1d					
	A)	a-2, b-3, c-4	4, d-1		B)	a-4, b	-3, c-2, d-1				
	C)	a-4, b-3, c-	1, d-2		D)	a-3, b	-4, c-2 d-1				
58.	What	t is the final p	roduct of	`nurine	e degrada	ation in 1	mammals?				
	A)	Guanine	B)	-	oxamine		uric acid	D)	None of these		
59.	/	nportant featu	,			, ()	uric ucia	D)	Trone of these		
	A)	Sunshine v			B)	Antib	iotic vitamin				
	C)	Antiaging f			D)		uritic factor				
60	.		1 . 1 .	. 1	1		11 1 .:		1 . 1		
60.		ptor proteins t							_		
						Illular responses are called					
	A)	Serpentine	•	5	B)	•					
	C)	Adhesion r	eceptors		D)	Recep	otor enzymes				

62. 63. 64.	i.valir ii. Ala iii.Glu iv. leu A)	ne, leucine, iso anine, Proline utamine, Aspa ucine, isoleuci iii, & iv proteins desting ence mitochondr reticulum-> Smooth ence Secretory von Rough ende	which cooleucine, Glycino, argine, cine, methodologic doplasmiesicle	x increases ontain Essential a , methionine, lys	Sine Glycing bhenyl C) hrough	e alanine i & iii the secretory poulum → Rough					
63. 64.	Identii.valirii. Alaiii.Gluiv. leu A) The p Seque A) B)	ify the group verification, isolation, isolation, isolation iii, & iv broteins destinated iii, & iv broteins destinated iii iii, & iv broteins destinated iii iii iii iii iii iii iii iii iii i	which cooleucine , Glycine argine, ci ine, meth B) ed to be ia → Sm Golgi c loplasmi esicle →	ontain Essential a, methionine, lyste, serine ysteine, serine, onionine, lysine, particular and the secreted move to the endoplasm isternae -> Secreted	Sine Glycing bhenyl C) hrough	e alanine i & iii the secretory poulum → Rough	pathway	y in the			
63. 64.	i.valirii. Alaiii.Gluiv. leu A) The p Seque A) B)	ne, leucine, iso anine, Proline utamine, Aspa ucine, isoleuci iii, & iv proteins desting ence mitochondr reticulum-> Smooth ence Secretory von Rough ende	oleucine , Glycine argine, c ine, meth B) ed to be ia → Sm Golgi c doplasmi esicle →	, methionine, lyste, serine ysteine, serine, onionine, lysine, prince ii & iii secreted move to the mooth endoplasm isternae → Secreted	Sine Glycing bhenyl C) hrough	e alanine i & iii the secretory poulum → Rough	pathway	y in the			
64.	A) The p Seque A) B)	iii, & iv proteins desting ence mitochondr reticulum Smooth ence Secretory von Rough ende	B) ed to be ia → Sm Golgi c loplasmi esicle →	ii & iii secreted move tooth endoplasmisternae → Secre	C) hrough	i & iii the secretory proceeds the secretory proceed the secretory proceeds the secretory proceed the secretory proceeds the secretory	pathway	y in the			
64.	The p Seque A) B)	oroteins destingence mitochondr reticulum Smooth end Secretory von Rough endo	ed to be ia → Sm Golgi c loplasmi esicle →	secreted move to nooth endoplasm isternae → Secre	hrough	n the secretory j	pathway	y in the			
64.	Seque A) B)	mitochondr reticulum > Smooth end Secretory von Rough endo	ia → Sm Golgi c loplasmi esicle →	ooth endoplasm isternae → Secr	ic retic	culum →Rough					
	B)	reticulum→ Smooth end Secretory v Rough endo	Golgi c loplasmi esicle →	isternae → Secr		_	endopl	agmio			
		Secretory von Rough endo	esicle →	c reticulum → G		coloic / Coll St	-	asinic			
	C)			Cell surface	olgi tra	ansport vesicle	→ Golg	gi cisternae →			
		Secretory vesicle → Cell surface									
	D)	_	-	reticulum → Go Cell surface	olgi Ci	sternae→ Golg	i transp	ort vesicle →			
65.	•			d as mounting natur		•	lide pre	parations.			
65.	i. ii. iii.		sam is so	n oleoresin extra bluble in xylene sin				alsamea			
65.	iv.	Canada bals	sam has	a refractive inde	x of 1.	54					
65.	A)	i & iv	B)	ii & iii	C)	i & iii	D)	i & ii			
	Whica	h of the follow Root cap ce	U 1	nt cells undergo Xylem vessel		ammed cell dea Guard cell	th to be D)	come functional? Sieve tube			
66.	Whic		wing pro	vides morpholog	gical e	vidence of gene	etic reco	mbination during			
	A)	Synapsis		B)	Chai	smata					
	C)	Terminaliza	ation	D)	Biva	lent formation					

A)

67.

Both Km and Vmax increase

According to the pressure flow hypothesis proposed by Ernst Munch

photosynthate movement from source to sink is driven by A) Transpiration pull B) An osmotically generated pressure gradient C) pH gradient D) ATP- dependent pressure flow pump 68. Choose the correct sequence of DNA replication A) Recognition of origin of initiation point→Unwindling double helix \rightarrow RNA priming \rightarrow Synthesis of leading and lagging strand Unwindling double helix→ Recognition of origin of initiation point→ RNA B) priming—Synthesis of leading and lagging strand RNA priming

Unwindling double helix

Recognition of origin of initiation C) point→ synthesis of leading and lagging strand Unwindling double helix→RNA priming→ Recognition of origin D) 69. The bending movement of cilia and flagella are associated with microtubules and kinesins A) B) are produced when dynein motors pull adjacent microtubule doublets past each other C) involves dynein action on microfilaments D) involves myosin action on intermediate filaments 70. Which among the following is not an example of transmembrane transport between different subcellular compartments? Transport from stroma into thylakoid space A) B) Transport from the cytoplasm into the lumen of the endoplasmic reticulum Transport from endoplasmic reticulum into the Golgi complex C) D) Transport from mitochondrial inter membrane space into the mitochondrial matrix 71 Balbiani rings occur in Lamp brush chromosomes A) B) Polytene chromosomes C) B chromosomes D) Autosomes 72. Which of the following experiments was not involved in identifying DNA as the genetic material? A) Luria-Delbruck experiment Experiment of Avery, Macleod and McCarthy B) C) Griffith's experiment Hershey-Chase experiment D) 73. Find out the characteristic specific to a composite transposon: It can cause sequence changes within a genome by the movement to a new site A)

D) It has inverted terminal repeats

74. What is true about telomerase enzyme?

B)

C)

Its transposition may have direct effects on gene expression

It carries markers such as drug resistance in the central region

- A) Telomeres are synthesized by telomerase enzyme
- B) Telomerase is a ribonucleoprotein enzyme
- C) In the absence of telomerase telomeres shorten during each cell division
- D) All the above
- 75. Which of the following is true about RNA polymerases in eukaryotes?
 - A) RNA polymerase I produces rRNA, RNA polymerase II produces hnRNA and RNA polymerase III produces tRNA and other small RNAs
 - B) RNA polymerase I produces rRNA, RNA polymerase II produces and processes mRNA and RNA polymerase III produces tRNA
 - C) RNA polymerase I produces rRNA, RNA polymerase II produces hnRNA and RNA polymerase III produces only tRNA.
 - D) RNA polymerase I produces mRNA, RNA polymerase II produces tRNA and RNA polymerase III produces rRNA
- 76. Which of the following is not a DNA binding protein motif?
 - A) Copper finger motif
- B) Helix-turn-helix
- C) Helix-loop-helix
- D) Leucine zippers
- 77. Which of the following is not a process in the processing of hnRNA?
 - A) Addition of methylated cap at the 5' end
 - B) RNA splicing
 - C) Polyadenylation of 3' end
 - D) Hammerhead formation
- 78. Identify the correct general features of genetic code:
 - A) The code is triplet, degenerate, nonoverlapping, commaless, ambiguous and universal
 - B) The code is triplet, degenerate, nonoverlapping, commaless, non-ambiguous and universal
 - C) The code is triplet, non-degenerate, non-overlapping, commaless, ambiguous and universal
 - D) The code is triplet, degenerate, overlapping, commaless, non-ambiguous and universal
- 79. The lac operon has three structural genes z, y and a. Which of the following is not true about them?
 - A) Gene lac Z codes for the enzyme β Galactosidase
 - B) Gene lac Y codes for the enzyme β Galactose permease
 - C) Gene lac A codes for the enzyme β Galactose transacetylase
 - D) Gene lac Z codes for the enzyme α Galactosidase
- 80. In RNA silencing

- A) dsRNA inhibits expression of a gene
 B) hnRNA inhibits expression of a gene
 C) snRNA inhibits expression of a gene
 D) ssRNA inhibits expression of a gene
 Polydactyly in humans is produced by a dominant of the produced by a dominant of the
- 81. Polydactyly in humans is produced by a dominant gene P. Consider the following statements and find which is **not** true.
 - A) Some heterozygous Pp individuals are not polydactylous
 - B) In the same person polydactyly is expressed differently in hands and feet
 - C) Polydactyly has 100% penetrance
 - D) Polydactyly has variable expressivity
- 82. Besides monohybrid crosses and dihybrid crosses Mendel performed test crosses also. A test cross is the:
 - A) mating of an incompletely known genotype to a genotype which is homozygous recessive at all the loci under consideration
 - B) mating of an incompletely known genotype to a genotype which should be completely homozygous recessive.
 - C) mating of an incompletely known genotype to a genotype which is completely homozygous dominant
 - D) mating of an incompletely known genotype to any one of the parents
- 83. Map distance between genes a and b is 20 while distance between a and c is 8 map units. Genes c and b are 12 map units apart. Then which of the following statement is true?
 - A) Total length of the genetic map is 20 map units
 - B) Total length of the genetic map is 28 map units
 - C) The gene sequence is acb
 - D) A and C are true
- 84. Gene pool is:
 - A) The hypothetical pool of all the alleles of all the loci in the gametes produced by a Mendelian population from which the next generation will arise
 - B) Pool of all the alleles of all the loci in all the individuals of a species
 - C) Pool of all the alleles of all the loci in a Mendelian population which are completely transmitted to the next generation
 - D) Pool of all the alleles of all the loci in all the individuals of a species which are transmitted to the next generation

85.	A rai	ndom matin	g population	n of 1000 i	individuals h	as 960 inc	dividuals of c	lominant	t
	phen	phenotype with respect to a diallelic Mendelian locus with complete dominance. What							
	is the	e frequency	of the reces	sive allele	of the locus	in the pop	oulation?		
	A)	0.8	B)	0.4	C)	0.2	D)	0.02	

86. Live attenuated vaccines contain:

	A)	A weakened form of t	he germ	that ca	auses a	disease				
	B)	The killed version of	the germ	that ca	auses a	a disease				
	C)	Specific pieces of the	germ —	like it	s prote	ein, sugar, or ca	apsid			
	D)	A toxin made by the g	germ that	t cause	s a dis	ease.				
87.	The m	ode of energy flow in t	he eco s	ystem i	s					
	A)	Unidirectional		B)	Multi	directional				
	C)	Bidirectional		D)	Circu	lar				
88.	The co	orrect sequence of Sewa	age treat	ment p	rocess	is:				
	A)	Chlorination→aeratio	n→relea	ase into	natur	al waters				
	B)	Particulate settling→a	aeration-	→break	down	of organic				
		matter→chlorination-	→reverse	e osmo	sis→re	elease into natu	ıral wate	er		
	C)	Break down of organi	c matter	-→aera	tion→	release into na	tural wa	ters		
	D)	Chlorination→ break down of organic matter→ aeration→ Particulate								
		settling→ release into	natural	waters						
89.	Identi	fy the ozone-depleting	substanc	es (OD	Ss) fro	om the followi	ng:			
	A)	PAN		B)	SO_2					
	C)	Chlorofluro carbon		D)	None	of these				
90.	Specie	es that occur in differen	t geogra	phical	region	s separated by	barriers	are called		
	A)	Allopatric B)	Sympat	ric	C)	Peripatric	D)	Sibling		
91.	Autho	r of <i>Ecology, Commun</i>	ity and I	Lifestyl	e:					
	A)	Aldo Leopold		B)	Rache	el Carson				
	C)	James Lovelock		D)	Arne	Naess				
92.		of the following methong water?	ods is mo	ost effi	cient i	n converting p	olluted v	water into		
	A)	Bioremediation		B)	Reve	rse osmosis				
	C)	Osmosis		D)	Chlo	rination				
93.	Identit	fy the bio indicator of S	SO ₂ pollu	tion fro	om the	following:				
	A)	Orchids	-	B)	Wate	er hyacinth				
	C)	Lichen		D)	Aloe	vera				
94.	What	is meant by alpha diver	sity?							
	A)	The diversity within a	-			•				
	B)	A comparison of dive	-		cosyst	ems				
	C)	Geographic-scale spec		ersity						
	D)	Global species divers:	ity							
95.	Which	of the following radio	active is	otope c	an cau	ise bone cance	r?			
	A)	Cobalt-60		B)	Radi	um-226				
	C)	Thorium-232		D)	Stror	ntium-90				

- 96. Which of the following is **not** true about CITES (the Convention on International Trade in Endangered Species of Wild Fauna and Flora)?
 - A) CITES is an international agreement between governments
 - B) CITES was drafted as a result of a resolution adopted in 1963 at a meeting of members of IUCN
 - C) On 1 July 1975 CITES entered in force
 - D) CITES has been among the conservation agreements with the lowest membership
- 97. Which is key characteristic of organic farming?
 - A) Protecting the long term fertility of soils by maintaining organic matter levels
 - B) Nitrogen self-sufficiency through the use of biological nitrogen fixation
 - C) Weed, disease and pest control relying primarily on crop rotation and natural predators
 - D) All the above
- 98. Biogas is:
 - A) Pure methane
 - B) Methane and carbon dioxide
 - C) A mixture of gases containing mainly methane and carbon dioxide
 - D) None of the above
- 99. Which of the following is **not** a plant commonly found in the tropical evergreen forests of Malabar?
 - A) Dipterocarpus indicus
- B) Hopea parviflora
- C) Vateria indica
- D) Rhododendron nilgiricum
- 100. Which of the following cannot be considered as a palaeoendemic?
 - A) Ginkgo biloba (restricted to China and Japan)
 - B) Sequoia sempervirens (confined to coastal valleys of California, U.S.A.)
 - C) *Metasequoia* (Confined to Single valley in China)
 - D) Bombax malabarica (Bombacaceae)
- 101. According to the Big-bang theory present universe originated about ----.
 - A) 13.7 billion years ago
- B) 4.5 billion years ago
- C) 4.6 billion years ago
- D) 13.7 trillion years ago
- 102. A book written by Alfred Russel Wallace:
 - A) The Descent of Man, and Selection in Relation to Sex
 - B) The Malay Archipelago
 - C) The Expression of the Emotions in Man and Animals
 - D) On the Origin of Species
- 103. Which of the following uses the mutation rate of biomolecules to deduce the time in prehistory when two or more life forms diverged?
 - A) Neutral theory of molecular evolution
 - B) Molecular clock hypothesis
 - C) Concerted evolution
 - D) C-value paradox

104.											
	A)	The first-generation m	ethods ena	bled seque	encing of clonal Di	NA populations					
	B)	The second-generation reactions	n massively	increased	throughput by par	rallelizing many					
	C)	The third-generation ramolecules	nethods all	ow direct s	sequencing of sing	le DNA					
	D)	All the above									
105.	Haplo	oid produced from a dipl	oid species	(2n=2x)							
	A)	Mono haploid	B)	Dihap	oloid						
	C)	Trihaploid	D)		oled haploid						
106.		nost abundant genetic di			-)					
	A)	RFLP B)	RAPD	C)	AFLP D) SNP					
107.		GM crop Golden Rice wa	•	-	-						
		carotene. The foreign gen									
	A)	the daffodil <i>Narcissus</i>	pseudonar	<i>cissus</i> and	the bacterium Erv	vinia uredovora					
	B)	carrot Daucus carota carrot Daucus carota	and the bac	tarium En	winia uradovora						
	C) D)	the bacterium <i>Erwinia</i>			winia areaovora						
	D)	the successanian Er willia	ui cao voi a								
108.		t the correct statement re	-			ran Plot:					
	A)	The sequence of the p	-			1 1: 4: 1					
	B)	It is not possible to co sheet conformation	nclude whe	tner a pep	tide adopts entirely	y nelix or entirely					
	C)	Peptides that are unstr disallowed regions	uctured wil	l have all	the backbone dihe	dral angles in th					
	D)	The occurrence of a be	eta-turn cor	nformation	in a peptide can b	e deducted.					
109.	In pru	uning care should be take	en to avoid								
	A)	Cutting at internodes	B)	Cuttir	ng in dry season						
	C)	Cutting in flowering s	eason D)	All th	e above						
110.	What	is a terrarium?									
	A)	A miniature garden gr	_	ss vessels,	bottles and dishes						
	B)	A garden in the terrace									
	C)	A method of terrace co	ultivation								
	D)	All the above									
111.		is not a practice in Bons									
	A)	Tap root pruning	B)	Wirin	~						
	C)	Frequent fertilizing	D)	Aging	,						
112.		rding to Vavilov's Cente	ers of Origi	n concept	Rice, Chick pea ar	nd Coconut					
	origir A)	nated in the: Asia Minor Centre	B)	Hindu	ıstan Centre						
	C)	Central American Cen	/		American Centre						
	\sim		D)	South							

113.	A) B) C) D)	The breeder must define the ideotype to be developed: Yield is not the basis of selection It may involve introgression of desirable genes from unimproved gene pool All the above							
114.	If disease resistance in a crop is pathotype-specific and controlled by major genes it is called:								
	A)	Vertical resistance			B)	Horizontal resistance			
	C)	Tolerance			D)	None of the above			
115.	Which of the following is a disease caused by an alga?								
	A)	<u>-</u>				Red rust of tea			
	C)	Coffee rust			B) D)	Yello	Yellow vein mosaic of ladies finger		
116.	Phytosanitary certificate is associated with:								
	A)	Seed certification			B)	Glass house cultivation			
	C)	Plant quarantine			D)	Animal quarantine			
117.	The mean, median and mode are same in:								
	A)	Right skewed distribution			B)	Left skewed distribution			
	C)	Normal distribution			D)	None of the above			
118.	The electron optics involves:								
	A)	Glass lenses			B)	Quartz lenses			
	C)	Diamond lenses			D)	Magnetic lenses			
119.	Which of the following cell cycle checkpoints is mainly associated with DNA damage and chromosome duplication?								
		-			.C2	C	Phase G0	D)	Phase M
	A)	Phase G1	B)	Phase	: G 2	C)	Phase Gu	D)	Phase IVI
120.	Genome annotation is:								
	A)	The process of identifying the locations of <i>genes</i> and all of the coding regions							
	D)	in a genome and determining their function.							
	B)	An explanation of the context of the specific genome sequencing							
	C)	An aspect of structural genomics							
	D)	An aspect of pharmacogenomics							