

19704

120 MINUTES

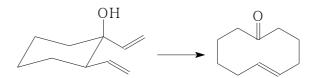
1.	A)	metal present in the compound Molybdenum	B)	"anti copper Ruthenium Gold		o treat Wi	ilson's disease	is:
	C)	Bismuth	D)	Gold				
2.	Quadr	rupole bonding is present in						
	A)	$Fe_2(CO)_9$	B)	$\text{Re}_2\text{Cl}_8^{2-}$				
	C)	$Mn_2(CO)_{10}$	D)	Re ₂ Cl ₄ (PM	$Ie_2Ph)_4$			
3.	Which	n one of the following complex	x does r	not obey the	18–elect	ron rule?		
	A)	$Mn(CO)_3 (\eta^5 - C_5H_5)$	B)	ΓNi ₂ (n ⁵ -Cp)2(CO) ₂]		
	C)	$(\eta^5 - C_5 H_5) \text{Re} (\eta^6 - C_5 H_5)$	D)	$[Ni_2(\eta^5-Cp)]$ $[Mn(CO)_4(Q)]$	$\operatorname{Cl}_2]^{2-}$			
4.	In deo	exyhemoglobin, the state of iro	on is:					
	A)	Fe(III) is in low spin state ar		agnetic				
	B)	Fe(II) is in low spin state an						
	C)	Fe(II) is in high spin state, p						
	D)	Fe(III) is in high spin state, p						
5.	The el	lectroanalytical technique in w	hich cu	rrent is mon	itored w	hile poter	ntial is	
		ed in forward and backward d				· r		
	A)	Coulometry	B)	Cyclic volt	tammetr	y		
	C)	Polarography	D)	Amperome				
6.	Van d	eemter equation for column et	fficienc	y of chromat	ographic	e columns	depends on:	
	A)	Eddy diffusion	B) .	Longitudin			1	
	C)	Mass transfer	D)	All the abo	ve			
7.	Which	n of the following species belo	ngs to A	Arachnobora	ine?			
	A)	$B_7H_7^{2-}$ B_1 $B_6H_6^{2}$	-	$C)$ B_6		D)	$C_2B_7H_{13}$	
8.	Total:	number of stargeige mor neggi	ala far a	ammlay yyith		l formavla	Ma hada will k	
5.	10tai	number of stereoisomer possil 7 B) 10	ole for C	C) 12	i genera	D)	15	Je.
	A)	<i>i</i> b) 10		C) 12		D)	13	
9.	Identi	fy the systems which are aron	natic in	nature.				
		\bigoplus						
							_	
					('		>	
	_	11	·	>		13.7		
	Ι	II	III			IV		
	A)	I, II, III B) I, III,	IV	C) I, II	I, IV	D)	II. III. IV	

10.	Debye A) B) C) D)	e-Smoluchows Very high ac Diffusion co Branched ch Unimolecula	etivation ntrolled a ain react	energy i reaction ions	reaction		a reaction in	solution	is characteriz	ed by:
11.		calomel electrontration of:	ode, the	electrod	e reacti	on is re	eversible with	respect 1	to the	
	A)	Hg_2^{2+}	B)	Cl -		C)	Hg_2Cl_2	D)	Hg	
12.	Which A)	h of the follow Lanosterol	ing is no B)	t a preco		r the bi C)	osynthesis of Squalene	f testoster D)	rone? Estradiol	
13.	Benito A) C)	oite is represer Pyrosilicate Sheet silicate		aTi(SiC	0 ₃) ₃ which B) D)	Cyclic	under the ca e silicate silicate	tegory of	·	
14.	Inorga A)	anic benzene is H ₃ B ₃ O ₃	s prepare B)	d by rea B ₃ N ₃ H	_	iborane C)	with ammor BN	nia and th D)	e formula is B ₃ N ₃ O ₃	
15.	The a A) C)	ctive form of V Phytyl group Adenosyl gro)	B_{12} conta	ains Co B) D)	Cyani	tached to: de group rin ring			
16.	Lumin A) C)	nal is a drug pr Psychedelic Hypnotics		used as:	B) D)	Analg Anaes	esics othetics			
17.	The p		ollowing NaBH ₄ ,)CrO ₃		n is:					
	A) C)	Methyl hexa Methyl hexa			B) D)	Methy Hexar	l hexanol			
18.	Which	h of the follow Cl ₂ O ₇	ing oxide B)	e is leas SiO ₂	t basic?	C)	Al_2O_3	D)	P_2O_5	
19.	Which A) C)	h of the follow Ethyl acetate Ethyl-3-metl	e		annot un B) D)	Isobut	Claisen cond ylacetate 2-methylpro		?	
20.		eactions studie ht line graph is Intensity of I Fluorescent Fluorescent	s: ight abso yield Vs yield Vs	orbed Vs Concen Concen	s Intens tration o	ity of li of Reac of Quei	ight emitted etant ncher		s yielding a	

21.	At a temperature of 310K, two moles of an ideal gas is expanded irreversibly and isothermally until its volume is doubled and absorbed 3.41 KJ of heat from the surrounding. The total entropy change (ΔS_{total}) will be										
	A)	-11 J/K	B)	0.52 J/K	C)	11.52 J/K	D)	-0.52 J/K			
22.	Which I) II) III) IV)	Fermions are Any number Maxwellons Bosons posse	indisting of bosonare disti	nguishable ns can occup nguishable		energy level					
	A) C)	I, II, III II, III, IV		B) D)		V atements are	true				
23.	The sp	ex						octahedral aqua			
	A)	Cu ²⁺	B)	Ti ³⁺	C)	Mn^{2+}	D)	Fe ²⁺			
24.	The co A) B) C) D)	[Cr(CO) ₆] < [Cr(CO) ₆] < [Cr(CO) ₆] > [Cr(CO) ₆] >	[V(CC [V(CC	$[Ti(C)]_{6}^{-} < [Ti(C)]_{6}^{-} > [Ti(C)]_{6}^{-} < [Ti(C)]_{6$	CO) ₆] ⁺ CO) ₆] ⁺ CO) ₆] ⁺	Cr(CO) ₆], [V	(CO) ₆] ⁻ ,	[Ti(CO) ₆] ⁺ is,			
25.	Total (A)	number of hyp 35	erfine si B)	ignals in ESI 11	R spectrum C)	n of p-xylene 7	radical is D)	s: 5			
26.	7.2(5F)	MR spectrum H,s) and 3.5 (2) the base peak i	H,s). It a	also showed	a fragmen	t ion of m/z 4	5 in the	y, showed δ mass spectrum.			
27.	Theore A)	etical number of	of funda B)	mental vibra 28	ntional bar C)	nds for benzer 30	ne is	12			
28.	The at	osorption maxi	mum in	the UV spec	etrum of th	ne following i	nolecule	is:			
	A)	273	В)	268	C)	234	D)	263			
29.	The so A) C)	ource of electro Klystron valv Tungsten fila	/e	B)	Heliu	troscopy is: m discharge l st filament	amp				
30.	Charac	cterization of t	ransient	free radicals	s can be d	one by the spe	ectroscop	oic technique			
	A)	NMR	B)	CIDNP	C)	ORD	D)	DEPT			

31.		g the following le with: Triclinic Hexagonal	, only tl	he primi	itive arr B) D)	Rhom	ent of lattice po bohedral e above	oints in t	he unit cell is
32.	The re	eagent suitable f	for the f	ollowin	g conve	ersion is	3:		
		CH	O				CH₂OH		
	A)	DCC	B)	H ₂ /Pd		C)	DIBAL	D)	LDA
33.		rial conversion acture of Nylor	-		one to ca	aprolac	tam, which is e	employe	d in the
	A) C)	Aldol condens Cope rearrang	sation		B) D)		nann rearrange rearrangement	ment	
34.	Which A) C)	of the followin Fufural Formaldehyde		oound ca	annot un B) D)	Benza	Cannizzaro rea ldehyde ldehyde	action?	
35.	The no A)	ormality of a so 0.1 N	lution p B)	orepared 0.08 N	-	ting 25 C)	0 ml of 0.4N H 0.01 N	I ₂ SO ₄ w D)	ith 1L of water is: 0.05 N
36.		mine the potential				ing of o	cadmium electi	rode in a	solution of
	A)	+0.403	B)	-0.403		C)	+0.462	D)	-0.462
37.	The tin A) C)	me required for Retention time Adjusted reter	e		the mob B) D)	-	migration rate	-	column is called:
38.	The gr A)	round state term $^{3}D_{0}$	n symbo B)	ol for Mi	n ²⁺ ion	in octał C)	nedral field is: ² S _{5/2}	D)	$^{6}\mathrm{S}_{5/2}$
39.		late the probabi the ground stat 1.0	•	_				nal box b	0.75
40.	The tra A) C)	ansition which ${}^{3}T_{1g}(F) \rightarrow {}^{3}T_{2g}$ ${}^{3}T_{1g}(F) \rightarrow {}^{3}T_{1g}$	<u>y</u>	ound in t	the abso B) D)	$^{3}T_{1g}(F$	spectrum of [V $) \rightarrow {}^{3}A_{2g}$ $) \rightarrow {}^{2}E_{2g}$	V(H ₂ O) ₆]	³⁺ is:

[2+2] cycloaddition [4+2+2] cycloaddition


Dimerization of cyclopentadiene is an example of:

A) [4+2] cycloaddition B) [2+2]

C) [2+3] cycloaddition D) [4+2+1]

41.

42.

The above reaction involve:

- A) Electrocyclic reaction
- B) [3,3] Sigmatropic rearrangement
- C) [2+2] cycloaddition
- D) [1,5] Sigmatropic rearrangement

43. Prominent decay pathway of excited state shown during fluorescence in Jablonski diagram is:

- A) $S_1 \rightarrow S_0$
- B) $T_2 \rightarrow T_1$
- C) $T_1 \rightarrow S_0$
- D) $S_1 \rightarrow T_0$

44. Eutrophication which kills animal life in water bodies is primarily due to:

- A) Polychlorinated biphenyls
- B) DDT
- C) Sodium arsinite
- D) Phosphate fertilizers

45. Polydispersity index of a polymer is best described by (Given: M- Molar mass, X-Degree of polymerization):

- A) M_n/M_w
- B) M_w/X_w
- C) M_w/M_n
- D) X_n/X_w

46. The correct statement regarding F-centre in a crystal lattice is:

- A) Anionic vacancy occupied by electron
- B) Ionizing radiation produces F-centres
- C) F- centres are studied by EPR
- D) All the above

At what temperature the most probable speed of O_2 molecules have the same value of root mean square speed of O_2 molecules at 300 K?

- A) 600 K
- B) 450 K
- C) 273 K
- D) 310 K

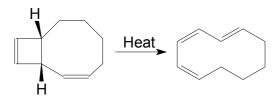
48. In the synthesis of trans-[PtCl₂(NO₂)(NH₃)]⁻ from [PtCl₄]²⁻, the trans directing ability is in the order:

- A) $Cl^- < NH_3 < NO_2^-$
- B) $NH_3 < NO_2 < C1$
- C) $NH_3 > Cl^- > NO_2^-$
- D) $NH_3 < Cl^2 < NO_2$

49. The nitride of sulphur which forms planar seven membered ring is:

- A) Trithiazyltrifluoride
- B) Tetrathiazyl tetrafluoride
- C) Thiotrithiazyl cation
- D) Tetrasulphurtetranitride

50. Which of the following species exhibit charge transfer spectrum?


- A) Prussian Blue B)
- $KMnO_4$
- C) $[CuCl_4]^{2-}$
- D) All the above

51. Which of the following does not contribute significantly to global warming?

- A) CH₄
- N_2O
- C) CCl₃F
- D) SO_2

52.	Which A) B) C) D)	They are one electron transfer reagents. Shuttles between Fe(II) and Fe(III) states Fe atoms are in corrin ring Involves outer-sphere electron transfer											
53.	The po	oint group of st D_{5h}	aggered B)	l ferroce D _{5d}	ene is:	C)	$\mathrm{D}_{\infty\mathrm{d}}$	D)	C_{5h}				
54.	Highly A) B) C) D)	y dense and ster Titanium tetra Titanium isop Aluminiumiso Tebbe reagen	achlorid propoxic ppropox	le and to	riethylal -butyl a	uminiui lcohol	-	nthesized	by employing:				
55.	In the 1746 (A) C)	infrared spectrem ⁻¹ and 1750 of Overtones Difference ba	cm ⁻¹ . It	ycloper is best e	ntanone explaine B) D)	d by: Combi	ion due to ca ination bands resonance		roup is found at				
56.	resona	late the chemicance at 120 Hz ophotometer is 1ppm	downfie	eld fron	n TMS .								
57.		n of the following entation in mass 2-hexanone 3-pentanone				Pentan		rangeme	nt during				
58.	Elimir A)	nation-addition Carbene	mechar B)	nism inv Nitren	_	aryl hal C)	ides with liqu Carbanion	uid ammo D)	onia involves Benzyne				
59.	Identi	fy the product of	of the fo	ollowing	g reaction	on:							
		CH	I ₃ <u>ко</u>	C(CH ₃)) ₃								
	A)	CH	I_2 B		CH₃ `OH	C)	CH ₃	D)	CH ₃				

60. The following reaction is identified as:

- Conrotatory electrocyclic reaction A)
- Disrotatory electrocyclic reaction B)
- C) [1,3] sigmatropic rearrangement
- [1,5] sigmatropic rearrangement D)

<i>L</i> 1	Which	aftha	fallar	· · · · ·	ia mat	a aamaartad	ranation?
61.	W IIICII	or me	101101	willg	IS HOU	a concerted	reaction?

- Cope rearrangement A)
- Claisen condensation B)
- Diels Alder reaction C)
- D) Alder Ene reaction

62. <i>A</i>	Among the	following, w	hich pair of	elements	possess nearl	ly same at	tomic radii?
--------------	-----------	--------------	--------------	----------	---------------	------------	--------------

- Zr. Hf A)
- Zr. Ta B)
- C) Ti. Zr
- Zr. Ce D)

63. The correct order of spin only magnetic moments (in B.M) is given in:

- A)
- B)
- $[Fe(CN)_6]^{4-} > [MnCl_4]^{2-} > [CoCl_4]^2$ $[MnCl_4]^{2-} > [CoCl_4]^{2-} > [Fe(CN)_6]^4$ $[Fe(CN)_6]^{4-} > [CoCl_4]^{2-} > [MnCl_4]^2$ $[CoCl_4]^{2-} > [MnCl_4]^2$ C)
- D)

64. The structure of DNA contain

- Peptide linkage I)
- II) Phosphodiester linkage
- III) Stabilising energy from the vertical π - π stacking
- Right handed duplex IV)
- II, III, IV A)
- B) I, II, III
- C) I, III, IV
- I, II, IV D)

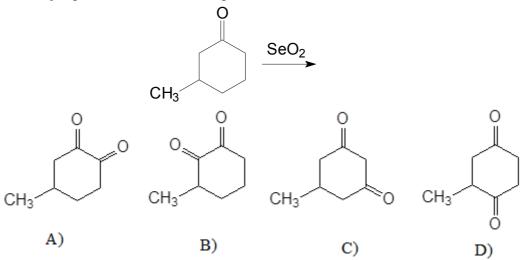
Which of the following is a bicyclic monoterpenoid? 65.

- Geraniol A)
- B) Limonene
- C) α-Pinene
- D) Farnesol

Number of milligrams of KOH required to neutralize one gram of fat is denoted as: 66.

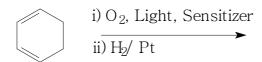
- Saponification number A)
- Acid number B)
- C) Reichert-Meissel number
- D) None of the above

Certain Protein on treatment with glyoxalic acid and conc. sulphuric acid exhibited violet 67. ring. This indicates:

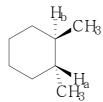

- Presence of peptide linkage A)
- Presence of amino acid with benzene ring B)
- Presence of tyrosine C)
- D) Presence of tryptophan

68. The molecule having ability to show microwave spectrum is:

- A) CH_4
- B) Acetylene
- C) CO
- D) CO_2


69.	Total (A)	number of sphe	erical no B)	des poss 1	sible for	r 4d orb C)	oital is 2	D)	3
70.	The m	nost stable conf	ormer a	mong th	e follov	ving.			
	НО~		Q OI	H	Н	10		ОН	IV
	A)	I	B)	II		C)	III	D)	IV
71.	The st A) B) C) D)	Trans isomer Cis isomer ha Trans isomer Cis decalin sh	is more s three is incap	stable th gauche-b able of r	han cis. outane i ring inv	interacti	ions		
72.	The A	bsolute configu NH ₂ N CH ₃	H ₂	of the fo	llowing	moleci	ule.		
	A) C)	(1R, 2S)- Cor (S)- Configur		ion	B) D)	` /	onfiguration t be determine	ed	
73.		fy the electro k to flow along a Streaming po Electrophores	stationa tential			face. Sedim	ne electric field entation poten o osmosis		ted when liquid is
74.	The av A) C)	verage molecul Flocculation Tyndall effec	value	of a coll	loid car B) D)	Osmot	ermined by: ic pressure me ian movement		ent
75.	The su A)	abstance which Al ₂ (SO ₄) ₃	is more B)	e effectiv Na ₃ PO		agulatir C)	ng Arsenic (III CaCl ₂) sulphio D)	de sol is: NaCl
76.	Which A)	n of the following SiO ₂	ng mole B)	cule sho	ows line	ear geon C)	netry? NO2 ⁺	D)	SnCl ₂
77.	1000K equilib	n dioxide is kep X. On addition of brium is 0.8 atm	of graph n, the va	ite some	e CO ₂ co Cp is:				and temperature pressure at

78. The major product in the following reaction is:



- 79. The dehydrating agent used for the formation of ester from corresponding acid and alcohol is:
 - A) DCC
- B) LDA
- C) DIBAL
- D) H_2SO_4

- 80. The metal atom present in Gilman's reagent is:
 - A) Zn
- B) Mg
- C) Cu
- D) Ti
- 81. The product formed in following photochemical reaction is

- A) Cyclohexane-1,4-diol
- B) Cyclohexan-1-ol
- C) Cyclohexanone
- D) Cyclohexane
- 82. When a diatomic gas is expanded at 100 atm at T>500 K, heating is observed. It is because:
 - A) Joule- Thomson coefficient is positive
 - B) Joule- Thomson coefficient above critical temperature is negative
 - C) Adiabatic expansion fails
 - D) Inversion temperature is below 500K
- 83. In the compound

the hydrogen atoms marked Ha and Hb are:

A) Homotopic

- B) Enantiotopic
- C) Diastereotopic
- D) Anomer

84.	The rA)	most suitable 1 O ₃	reagent u	sed for t DDQ		,2-dihro C)	oxylation of a MCPBA	lkenes is D)	OsO ₄
85.	The l	nybridization	involved	in the co	omplex	ion [Ni	(CN) ₄] ²⁻ is:		
	A)	dsp^2	B)	sp^3d^2		C)	sp^3	D)	sp ³ d
86.		n acetaldehydd ed. This reacti Aldol cond Claisen-Scl	ion is iden ensation	ntified a	-	Perkii	nsic medium, on reaction conden		ldehyde is
87.		les with no su i, it forms a pr one hydrog one carbon one carbon one nitroge	oduct wi en atom i atom less atom mo	th: more tha s than ar ore than a	an amide mide amide		reated with a	solution	of bromine and
88.	Aspir A) C)	o-hydroxyb p-dihydroxy	enzoic a	cid	f: B) D)	-	droxybenzoic nophenol	acid	
89.		compound 3-n eld X. Total nu Zero						esence of D)	organic peroxide Four
90.	The i	onization isor	ner possi	ble for t	he comp	oound [$Cr(H_2O)_4Cl(C)$	CN)]Cl:	
	A)	$[CrCl_2(CN)]$	$(H_2O)_3]$ H	H_2O	B)	[Cr(H	(₂ O) ₄ Cl(NC)](Cl	
	C)	[Cr(H ₂ O) ₄ C	Cl ₂]CN		D)	[Cr(H	(₂ O) ₄ Cl(CN)](Cl	
91.	The o	condensation p Dacron	oolymers II)	among Perloi		owing a III)	re: Kevlar	IV)	Butyl rubber
	A)	I, II, IV	B)	I, II, I	II	C)	II, III ,IV	D)	I, III, IV
92.	Which A)	h of the follow Azo group Nitro group	_	ot a chro	omopho B) D)	Amin	o group enic group		
93.	Indic titrati A) C)	ator used for o on is Pfitzer- Mo Patton and	ffat reag	ent	um in p B) D)	Michl	e of other meta er's ketone endroff's reag		mplexometric
94.	 Which of the following is not true about quini A) Contains two tertiary N atoms B) Contains a primary alcoholic group C) Contains a methoxyl group D) Contains a olefinic group 								

95.	The statement which is not correct about carbon nanotube is: A) Single walled and multi walled variants exixts B) Hexagonal lattice of carbon forming hollow cylinder										
	B)										
	C)	sp ³ hybridizat			onger ir	nteraction	on				
	D)	Generally the	y are cr	ııraı							
96.	The fir	est ionisation en	nergy o	f Li, Be,	, B, C,N	I and O	follows the or	rder:			
	A)	O > N > C > 1	B > Be	>Li	B)	N > C	$0 > C > B > B\epsilon$	e > Li			
	C)	N > O > C > 1	Be >B >	> Li			I > C > Be > B	3 > Li			
97.		<i>yx</i> number of d									
	A)	2102	B)	2002		C)	2012	D)	2112		
00	A	- C1 D1 1 A	1_: _	1 641	1	1	-4-1 C111 -1	.1. :4 - 1 - :	41	-4-4-9	
98.			g, wnic	n of the		-	-	rbitais i	n their ground	state?	
	A) C)	Cd only Cd and Pd on	157		B) D)		d Ag only d and Ag				
	C)	Cu anu Fu on	ıy		D)	Cu, F	u anu Ag				
99.	Magne	etic moment o	f Cr M	In ⁺ and	Fe ²⁺ ar	e x v	z respectivel	v The	values follow	the	
,,,		ing order (Ato									
		8 (,,				·P / /		
	A)	x > y = z	B)	y > x =	= z	C)	z > x = y	D)	z < x = y		
100	XX71 · 1	C41 C 11 :		C 1		٣	.: C1 : 1	. 21	. 1		
100.						_	rations of high	spin 3a	metal ions in a	an	
	octane	dral field unde	igo Jan	n- i enei	Distort	liOii!					
	A)	d^3 , d^9	B)	$d^5 d^9$		C)	$d^4 d^9$	D)	$d^6 d^9$		
	/	,	-,	., , .,		-)	.,	- /	,		
101.	Consid	der the following	ng comp	olexes:							
	1)	$[Pt(NH_3)_6]Cl_4$	ļ		2)	[Cr(N	$[H_3)_6]Cl_3$				
	3)	$[Co(NH_3)_4Cl_2]$	[Cl a	ınd	4)	K ₂ [Pt					
	These	compounds are	e dissol	ved in th	ne same	solven	t to make a 10	⁻³ M sol	ution. The		
	condu	ctance values o	of the co	mpound	ds follo	w the o	rder				
	A)	1 > 4 > 3 > 2			B)	1 \ 2	> 4 > 3				
	A) C)	1 > 4 > 3 > 2 1 > 3 > 4 > 2			D)		> 3 > 4				
	C)	1 > 3 > 4 > 2			D)	1 - 2	~ J ~ T				
102.	Amon	g s,p,d,f orbital	ls which	of the	followi	ng is ris	eht?				
102.	A)						als are ungera	de			
	B)	s orbitals are	_		_		_				
	C)		_				als are ungera	de			
	D)		_		-		als are ungera				
	,	-	Č				C				
103.	Ι.	The ionisation									
	II.	The electron i	is remov	ved fron	n the an	tibondi	ng orbital for	the form	nation of NO ⁺		
	A)	I is right but I	I is not	the corr	ect exp	lanatio	n for it				
	B)	I is right and									
	C) I is not right but II is right										
	D)	Both I and II									

104.	A) C)	D_{3h} and C_{3v} res D_{3h} and D_3 res	spective	ely	B) D)	D_{3h} ar	are nd D _{3d} respecti nd C _{3h} respectiv	-		
105.	The c	haracters under I	E,C ₂ , σ	$_{\rm v}$ and $\sigma_{\rm v}$	' for an	irreduc	eible represent	ation fo	-	
	are 1,	-1, -1 and 1 respo	ectively B)	y. The N A ₁	Mullike	n symb C)	ol for the repre A_2	esentation D)	on is: B ₁	
106.	Which A) B) C) D)	h order is correct C-H > C-Cl> (C-H > C-C > (C-Br > C-Cl> (C-Br > C-Cl> (C-C > (C-O > (C-O >	C-O > C C-Cl> C C-C > (C-Br C-Br C-H	equency	y of C-H, C-O	, C-Br,	C-C and C-0	C1?
107.	The n	nolecular ion pea s:	ıks in tl	he mass	spectro	um of e	thyl bromide v	vill be o	observed at 1	n/z
	A)	107 and 108	B)	108 an	d 110	C)	110 and 111	D)	108 and 1	.09
108.	The n A) C)	umber of lines in 1 and 2 respect 1 for both		ossbaue	er spect B) D)	2 for t			e(CN)₅NO] a	ire
109.	The li A) B) C) D)	inkage present in amide, ether ar ester, ether and ester, amide an amide, ester an	nd ester d amide nd ether	r linkage e linkage r linkage	e respe e respe e respe	ctively ctively ctively	T are			
110.	Amor A)	ng SO ₂ , NO and I NO only	NO ₂ the	e prima NO ₂ oi		utants is C)	S/are SO ₂ only	D)	NO and S	SO_2
111.	The nA)	niller indices of a (231)	a plane B)	that cut (321)	s throu	gh the a	axes at 2a, 3b a (236)	and c ar D)	re: (326)	
112.	Which i) ii) iii) iv)	The process w The process w The process w The process w	ill be sp ill be sp ill be sp	pontane pontane pontane	ous if \(\alpha\) ous if \(\alpha\) ous if \(\alpha\)	$\Delta H < 0 \text{ a} \\ \Delta H < 0 \text{ a} \\ \Delta H > 0 \text{ a} $	and $\Delta S > 0$ at 1 and $\Delta S < 0$ at 1			
	A) C)	i and iv are con i and ii are con			B) D)		iii are correct d iv are correc	t		
113.		ate constant of a 10 kJ mol ⁻¹ . The						e activat	tion energy	is
	A) C)	1.2 x 10 ⁴ mol ⁻¹ 2.0 x 10 ⁴ mol ⁻¹			B) D)		10 ⁴ mol ⁻¹ Ls ⁻¹ 10 ⁴ mol ⁻¹ Ls ⁻¹			

114.	Which i) ii) iii) iv)	Smaller the gold number smaller is the protective power Smaller the gold number greater is the protective power Lyophobic sols are protective sols Lyophilic sols are protective sols									
	A) C)	i and iii are co			B) D)		v are correct				
115.	For ad A) B) C) D)	Increase of ter Both increase	emperatur mperature of temper	e and a and drature	lecrease and pre	of pres	ssure increases sure increases acreases adsorp acreases adsorp	adsorpt otion			
116.		ge the following ion potentials a Cu^{2+} (aq) + 2e $2H_2O(l)$ + 2e Na^+ (aq) + e - $Cl_2(g)$ + 2e \rightarrow	t 25^{0} C: $e \rightarrow Cu$ $\rightarrow H_{2}(g)$ $\rightarrow Na(s)$			ns in the	e increasing or	der of s	tandard		
	A) C)	iii < ii < iv < i < i < i < i < i < i <			B) D)		< i < iv < iii < ii				
117.	Anode A)	used in Leclan Zinc		s: Mercui	ry	C)	Steel	D)	Carbon		
118.	Sanger A) C)	r's reagent is: 1-Fluro-2,4-di 1-Fluro-2,4-di			B) D)		o-2,3-dinitrobe o-2,3-dicyanob				
119.	Amon	g the following Biotin		not a √ Vitami		ne? C)	Vitamin B3	D)	Vitamin E		
120.	A race A) C)	mic base can b meso tartaric a dl-tartaric acid	acid	d by:	B) D)		oic acid ndelic acid				