

120 MINUTES 19204

										_
1.		h of the followical mechanics	_	ervations	s of ph	otoelect	ric effect co	uld not be	explained using	5
	I.	The proport radiation.	ionality	of the in	tensity	of phot	oelectric cu	rrent to the	e intensity of	
	II.	Existence of	f a thres	hold freq	uency	characte	eristic of the	metal		
	III. The variation of stopping potential of photoelectrons linearly with the frequen of the radiation								h the frequency	
	IV.		The absence of a time lag between the fall of radiation on the metal surface and he ejection of electrons							
	A)	I, II and III	onlv		B)	I. II a	and IV only			
	C)	II, III and IV	•		D)		and IV only			
2.	The p	pair of species	having	linear ge	ometry					
	A)	SO ₂ and CO			B)	_	and IF ₂			
	C)	NO_2^- and X_0	eF_2		D)	SnCl	and BeCl ₂			
3.		ompton effect, θ equal to	the Con	npton wa	veleng	th is the	e Δλ corresp	onding to	the scattering	
	A)	90°	B)	60°		C)	45°	D)	180°	
4.		ron gain entha								
	A)	Nitrogen	B)	Lithiu	m	C)	Neon	D)	Fluorine	
5.	Whic	h of the follow	ing stat	ement is	true?					
	A)	An aromatic	_			le than a	an analogous	s cyclic co	mpound	
	B)	An antiaron								
	C)								natic compound	
	D)		oital bea	ring ator			•		th an interrupte odd number of	d
6.	The term symbols possible for a p ⁴ configuration according to the Pauli's exclusion principle are ¹ D ₂ , ³ P ₂ , ³ P ₁ , ³ P ₀ and ¹ S ₀ . The correct order of their increasing energy is:									

 ${}^{3}P_{0} < {}^{3}P_{1} < {}^{3}P_{2} < {}^{1}D_{2} < {}^{1}S_{0} \qquad B) \qquad {}^{1}D_{2} < {}^{3}P_{0} < {}^{3}P_{1} < {}^{3}P_{2} < {}^{1}S_{0} \\ {}^{1}D_{2} < {}^{3}P_{2} < {}^{3}P_{1} < {}^{3}P_{0} < {}^{1}S_{0} \qquad D) \qquad {}^{3}P_{2} < {}^{3}P_{1} < {}^{3}P_{0} < {}^{1}D_{2} < {}^{1}S_{0}$

For NO, NO⁺ and NO⁻, the correct stability order is

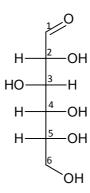
A)
$$NO^+ < NO < NO^-$$

B)
$$NO < NO^+ < NO^-$$

C)
$$NO^- < NO < NO^+$$

$$NO < NO^- < NO^+$$

8. The p-orbital character is maximum in the covalent bonds of


A)
$$H_2S$$

A)

7.

C)
$$NH_3$$

9. Using the following Fischer projection formula of D(+) glucose the R and S designations of the chiral centres can be assigned as

- A) 2R, 3S, 4R, 5R
- B) 2S, 3R, 4S, 5R
- C) 2R, 3R, 4S, 5S
- D) 2S, 3S, 4R, 5S
- 10. Which of the following observations is NOT true with regard to the structure of quinine?
 - A) Quinine contains an ethoxy group
 - B) Quinine contains a methoxy group
 - C) Quinine contains one ethylenic double bond
 - D) Quinine contains a secondary alcoholic group
- 11. The ground state term symbol for O_2 molecule is
 - A) $^{3}\sum_{n}^{-}$
- $^{3}\sum_{i}^{+}$
- C) $^{3}\sum_{o}^{+}$
- D) $^{3}\sum_{s}^{3}$
- 12. Match the items in List I with those in List II and chose the correct matching from the choices given below.

List I

List II

- 1. Thiamine
- a. Its deficiency causes scurvy in man
- 2. Riboflavine
- b. Its deficiency causes pellagra in man
- 3. Niacin
- c. Its deficiency causes beriberi in man
- 4. Ascorbic acid
- d. Water soluble, shows a green fluorescence
- A) 1-a, 2-b, 3-c, 4-d
- B) 1-b, 2-c, 3-d, 4-a
- C) 1-d, 2-a, 3-b, 4-c
- D) 1-c, 2-d, 3-b, 4-a
- 13. Which of the following are correct statements?
 - I. The bond order of CO molecule is 2 according to molecular orbital theory
 - II. In H_2^+ , the exchange integral contributes more to the stability of the species than the coulomb integral
 - III. The valence bond theory predicts equal contribution of covalent and ionic character in H₂ molecule.
 - A) I and II
- B) I and III
- C) II and III
- D) I, II and III

14.		ch of the following is a wro	-								
	A) B)	11 ()		ation in aqueous medium ing agent than chromium(II)							
	Ć)	Oxygen is superior to fluorine in stabilizing higher oxidation states of a transition metal									
	D)	Oxoanions are stable for	· vanadium	ı							
15.	Fill i	n the blanks and choose the	e correct ar	nswer from the choices given below.							
	I.			in the nucleotide strands							
	II. III.	•		s of twisted strands side and the bases are on the inside of the							
	111,	double helix	on the out	iside and the bases are on the inside of the							
	IV.	between base pai the DNA double helix to		ne of the forces holding the two strands of							
	A)	-	II-a double	e helix, III- sugar phosphate, IV-hydrogen							
	D)	bonding I the sugar phosphote lin	dr II a day	while helivy III the hydrogen handed IV/ the							
	B)	I-the sugar phosphate link, II-a double helix, III- the hydrogen bonded, IV- the Van der Waals' force									
	C)	I- the double helix, II- the sequence of bases, III- the sugar phosphate, IV-the									
	D)	gravitational force I- the double helix, II- the sugar phosphate link, III- the nucleotide, IV-									
	D)	hydrogen bonding	ie sugar pn	ospnate link, III- the nucleotide, IV-							
16.				contains the type of interaction present in							
		11	opriately ar	nd select the correct matching from the							
	CHOIC	ces given below. <u>List I</u>		List II							
		1. H ₃ O ⁺	a)	Hydrogen bonding							
		2. HCl	b)	ion-induced dipole							
		3. I ₃	c)	ion-dipole							
		4. $Ar(H_2O)_n$	d)	dipole-induced dipole							
			e)	dipole-dipole							
	A)	1-c, 2-e, 3-b, 4-d	B)	1-b, 2-a, 3-d, 4-e							
	C)	1-c, 2-a, 3-d, 4-e	D)	1-b, 2-a, 3-c, 4-d							
17.	Cl ₂ O	7 is the anhydride of									
	A)	Hypochlorous acid	B)	Chlorous acid							
	C)	Chloric acid	D)	Perchloric acid							
18.	Expe	rimental evidences show th	nat cellobio	ose unit is present in cellulose. This indicates that							
	A)			anose form and so they are linked by C_1 - C_5 linkages							
	B)			anose form and so they are linked by C ₁ -C ₄ linkages							
	C)	glucose units are joined	•								
	D)	glucose units are linked	by C ₁ -C ₆ II	ilikages.							
19.	If cer A)	intre of symmetry i is remoderated by D_{3h} B) C_{2h}		he D_{3d} point group, the new group formed would be $C)$ D_3 $D)$ C_{3V}							

14.

20.	A)	n is H ₂ SO ₅	B)	$H_2S_2O_6$	C)	$H_2S_2O_7$	D)	$H_2S_2O_8$
21.		metals are given to the matching from the List I and I and I are given to the matching from the List I and I are given to the matching from the List I are given to the matching from the List I are given to the matching from the List I are given to the matching from the List I are given to the matching from the List I are given to the matching from the List I are given to the matching from the List I are given to the List I are given t	om the c	hoices given a. Li b. Ga c. Py d. Ca		ist II. Match th	nem and	identify the
	A) C)	1-c, 2-a, 3-d, 1-b, 2-e, 3-c,		B) D)		2-a, 3-e, 4-b 2-b, 3-a, 4-c		
22.	Which A)	n of the follow Propylene	ing con B)	npounds can Isobutyle		lergo anionic p Acrylonitril		sation? Vinyl acetate
23.	Which I.	n of the follow C_{2V}	ing are II.	Abelian Gro D ₃	oups? III.	C_{3V}	IV.	C_3
	A)	I, II and III	B)	II, III and	l IV C)	I, II and IV	D)	I, III and IV
24.	Silica A)	tes with layer s (SiO ₃) _n ²ⁿ -	structur B)	e can be repr (Si ₄ O ₁₁) _n ⁶		$(Si_2O_5)_n^{2n}$	D)	$(Si_2O_7)^{6-}$
25.		verall order of ds nucleophilic RCOCl > (R (RCO) ₂ O > I RCONH ₂ > I RCOOR' > I	c substit CO) ₂ O RCOOR RCOCl	cution is > RCOOR'> A'> RCOCl> > (RCO) ₂ O	>RCONH ₂ >RCONH ₂ >RCOOR	,	and acy	d chlorides
26.		otide bond synt nts. The C-acti di-tert.butyl cyclohexyl c	vation i dicarbo	s usually do nate B)	ne by dicyc	ivation are carreloners of the carreloners of the carbon and isothiocyan	diimide	using specific
27.	The dA)	ifference in CI Co(II)	FSE bet B)	ween octahe Ni(II)	edral and te C)	etrahedral comp Mn(II)	plexes is D)	s maximum for: Fe(II)
28.	Predic	ct the products	of the r	reaction,				
	Methy	yl propanoate	(i)Li. (ii) F	AIH_4 H^+ , H_2O				
	A) B) C) D)	CH ₃ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₃ CH ₂ COO	OH +	CH ₃ CH ₂ CH CH ₃ OH	I ₂ COOH			

29.	The as A) B)	symmetry of the difference in difference of harmonic os	the space f selection	cing of tl	he vibra	ation le	vels of a	an anhar	monic	oscilla	
	C) D)	change in the	e shape								
30.	The mA)	umber of chel 2	ate rings B)	present 3	in [Fe($\frac{\text{dien}}{2}]^2$	²⁺ is 4		D)	6	
31.		ch of the following methods is NOT used to evaluate the degree of crystallinity of lymer? Differential Scanning Calorimetry (DSC) X-ray Diffraction (XRD) Nuclear Magnetic Resonance (NMR) Ultraviolet spectroscopy (UV spectroscopy)									
32.		n of the follow nolecule? All the three All the three Two of them Two of them	are para are perp	allel vibra pendicula allel vibr	ations. ar vibra	tions.	e is perp	endicul	ar vibra	ation.	odes of
33.	1. 2. 3. 4.	alae of certain ents are given as es given below List I [Co(NH ₃) ₆] ³ [Mn(H ₂ O) ₆] ³ [Cr(NH ₃) ₆] ³	in List II w. + 2+ +		List II a. 3.87 b. 1.73 c. 4.89 d. 5.92 e. Zero	nd ider 7 3 9 2	ntify the	correct			m the
		1-b, 2-c, 3-e 1-c, 2-e, 3-b					-d, 3-a, -d, 3-a,				
34.	In the	transition mo	ment int	egral, Ia	$ \chi \int_{-\infty}^{+\infty} \Psi_{i}^{*} $	$\hat{P}\Psi_{f}d$	$t\tau$, for t	Raman s	spectru	m the t	ransition
	mome	ent operator \hat{P}	is								
	A) B) C) D)	permanent d induced dipo change in di either perma	ole mom pole mo	ent ment dur			l dipole	momen	t		
35.	The sp A)	pecies which α η ⁴ -butadien	can combe B)	oine with η^5 -C ₅ l	the fra	gment (C)	Fe(CO) η²-eth	3 to form ylene	n a stał D)	ole com η ³ -a	

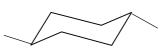
36.	At B	DD levels of 6	-9 ppm,	the water is c	considere	d as			
	A)	very good for	or drinki	ng B)	mod	erately clean			
	C)	very pollute	d	D)	some	ewhat polluted			
37.	The eA) B) C) D)	Very efficie Doppler effe Collision br	nt spin-s ect oadening	pin relaxatio	n	ery broad and	this is du	ne to	
38.			iencies i nd 2000	n Cr(CO) ₆ an cm ⁻¹ B)	nd [V(CC 2000	43 cm ⁻¹ . The poly are respect of cm ⁻¹ and 186 cm ⁻¹ and 226	tively 0 cm ⁻¹	values for	
39.	Some A) B) C)	route of adn disintegration drug solubil polymorphis	ninistration time, of ity and dism and a	on, transport dissolution ti lissolution ra	process, me, stora te, partic	fecting drug a membrane physic condition le size and effective invironment	ysiology		
40.	peaks magn	produced in etic field is	the Mo	ssbauer spec	trum of	[Fe(CN) ₅ NO] ²	² in pres	state. The num	
	A)	4	B)	5	C)	6	D)	7	
41.	Whic	h of the follov	ving met	als undergoe	s water e	xchange reacti	ons verv	slowly?	
11.	A)	Cr(III)	B)	Co(II)	C)	Ni(II)	D)	V(III)	
42.	Whice A) B) C) D)	Quantum do Quantum do Quantum do radiation ab	ots are se ots do no ots exhib sorption	miconductor t show quant	s that are um confi d gap tha	ood for quantu on the manon nement effects at determines r	neter scal	le wavelength of	
43.		lectronic abso cm ⁻¹ . CFSE				3+ exhibits a m	naximum	at	
	A)	20000 cm ⁻¹	B)	10000 cm		4000 cm ⁻¹	D)	8000 cm ⁻¹	
44.	Comp A) B) C) D)	mposite materials are usually classified on the basis of matrix material and material structure polymer material and metallic material chemical structure and chemical properties material nature and material type							

- 45. The appearance of a prominent peak at M/z = 91 in the mass spectrum of a compound indicates the presence of
 - A) C_6H_5NH group
- B) $C_6H_5CH_2$ group
- C) C_6H_3O group
- D) C_6H_4NH group

46. The reaction,

$$[(CO)_5 MnCH_3] + CO \rightarrow [(CO)_5 Mn-COCH_3]$$

is an example of


- A) nucleophilic addition
- B) electrophilic addition
- C) oxidative addition
- D) migratory insertion
- 47. Which is the major product of the following reaction?

C)
$$\langle \text{CH}_2\text{-CH}_2\text{-CH}_2\text{Br} \rangle$$

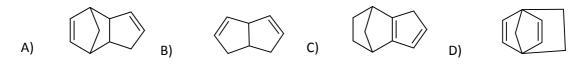
- 48. The unit cell dimensions $a \neq b \neq c, \alpha = \beta = \gamma = 90^{\circ}$ are those of
 - A) orthorhombic system
- B) tetragonal system
- C) monoclinic system
- D) trigonal system
- 49. Only terminal CO groups are present in
 - A) $Os_2(CO)_9$
- B) $Fe_3(CO)_{12}$
- C) $Ir_4(CO)_{12}$
- D) $Co_4(CO)_{12}$
- 50. The stable chain conformation of trans- 1, 4-dimethylcyclohexane can be represented as:

C)

D)

Both B and C

51.		umbers of octa		nd tetrahedral	voids as	ssociated with	a face ce	entred cubic
	A)	6 and 4	B)	4 and 6	C)	6 and 8	D)	4 and 8
52.	Identif	fy the followin CH ₃ CH ₂	g reactio	on:	CH ₃			
	A) B) C) D)	Cope rearran Claisen rearra Wagner-Mee Fries rearran	angemei rwin rea					
53.		n gas undergoof the organic g		on four times 64	as fast a	as an organic ga	as. The r	molecular 48
54.	Identif I. II. III. IV.	Their comple Their metal-l	nation nu exes rare igand bo	umbers can be ly exhibit ison and is predom	greater nerism inantly o	than 8		
	A)	I, III and IV	B)	I and IV	C)	II and III	D)	I, II and IV
55.	The p A) B) C) D)	roduct obtaine 1-methoxy-1 1-hydroxy-1, 6-methoxy-1, 6-hydroxy-1,	, 4-cyclo 4-cyclo , 4-cyclo	hexadiene hexadiene hexadiene	jected to	Birch reduction	on is	
56.	The m A) B) C) D)	inversely pro	ortional portiona ortional	to both tempe al to both temp to temperatur	erature e and in	1		
57.	The pa	air of lanthanid Eu, Gd	les havii B)	ng the highest Dy, Yb	third ion	nization enthal _] Lu, Yb	py is: D)	Eu, Yb
58.	a 0.1N	1 urea solution	is 2.24	atmosphere at	273 K.	n is 8.96 atmos The degree of	-	
	alumir A)	nium sulphate 50%	in this correction B)	oncentration is 60%	s C)	75%	D)	80%

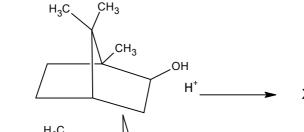

59.	Match the metal ions	given in	List I	with	the reagents	used for	their qua	ıntitative
	precipitation of them	given in	List II	and	identify the	correct n	natching f	rom the
	choices given below.							

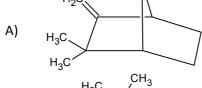
List I List II

- 1. Nickel (II) a. 8-Hydroxy quinoline
- b. Ammonium thiocyanate 2. Zinc (II)
- 3. Calcium (II) c. Ammonium molybdate
- d. Dimethyl glyoxime 4. Copper (I)
 - e. Ammonium oxalate
- 1-c, 2-d, 3-a, 4-b B) 1-d, 2-c, 3-b, 4-e A) C) 1-d, 2-a, 3-e, 4-b D) 1-e, 2-b, 3-c, 4-a
- 60. Diazepam and ketamine are classified respectively as
 - new psychoactive substance and cannabis A)
 - B) depressant and new psychoactive substance
 - cannabis and depressant C)
 - hallucinogen and opioid D)
- A particular reaction has $\Delta H=-100 \text{ kJ mol}^{-1}$ and $\Delta S=-100 \text{ J mol}^{-1} \text{ K}^{-1}$. Which of the 61. following statement is true for the reaction?
 - The reaction attains equilibrium at 1000K and is spontaneous below 1000K A)
 - B) The reaction attains equilibrium at 1000K and is spontaneous above 1000K.
 - C) The reaction is always spontaneous
 - The reaction is never spontaneous. D)
- 62. Which of the following compounds can be used as primary standards in volumetric analysis?

I. K₂Cr₂O₇ II. KMnO₄ III. NaOH IV. Na₂B₄O₇.10H₂O CuSO₄.5H₂O VI. Na₂S₂O₃.5H₂O

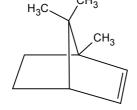
- A) I, IV and V B) I, II, V and VI
- II, III and VI II, V and VI C) D)
- 63. Differential thermal analysis is a technique in which
 - a change in the weight of a substance is recorded as a function of temperature A)
 - the temperature difference between a substance and a reference material is B) measured as a function of temperature
 - C) the difference in energy inputs into a substance and a reference material is measured as a function of temperature
 - changes in dimensions of a substance are measured as a function of D) temperature.
- 64. Cyclopentadiene, on standing at room temperature, slowly undergoes a Diels-Alder reaction with itself. The product of the reaction would be

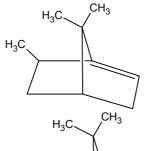

65.	chlorin equilib equilib	ne. One mole orium. The eq	of PCl ₅ quilibriu of the	is heated to m constant	a partic	ular temperati mixture is ½	ure and a	trichloride and allowed to attain phere when the rtial pressure of
	A)	$\frac{1}{3}$ atm.	B)	$\frac{2}{3}$ atm.	C)	⅓ atm.	D)	1 atm.
66.	The fa A) B) C) D)	lse statement for Oxygen is ren Oxygen is ren Dropping men I _d is proportio Residual curre	noved reury ele	ectrode is the oncentration of	working of electro	electrode pactive species	S	
67.	Comple A) B) C) D)	lexes formed by gel permeation gas chromaton gel filtration of ion exchange	n chron graphy chromat	natography ography	oivaloylı	methane (dpm	H) can b	e separated by
68.	Which I. II. III. IV.	state. According to order at high 1 In the H ₂ -Br ₂	the Line pressure reaction	kimation, it is demann mechaes.	assumed anism, a eaction i	unimoleculars hindered by	gaseous	rs at the steady reaction is first luct formed.
69.	-	I, II and III entiometric titra		-	an be loo	cated by plotti	ng	,
	A) B)	volume of titr first derivative					ith refere	ence electrode
	C)	second deriva				_		
	D)	all the above						
70.	I. p-c	igratory aptitud hlorophenyl acol rearrangen	II. F	Phenyl	III. j	o-tolyl	IV.	p-anisyl
	A) C)	I < III < III < I	IV < I	B) D)		[I] < [I] < [I]		
71.		rrhenius freque on $(k_B \text{ is the } B \text{ on } (k_B \text{ or } k_B \text$			d to the	entropy of act	ivation a	as per the
	A)	$A = \frac{hT}{k_B} e^{\Delta S^*/R}$	B)	$A = \frac{h}{k_B T} e^{\Delta S^* / R}$	C)	$A = \frac{k_B T}{h} e^{\Delta S^* / R}$	D)	$A = \frac{k_B T}{h} e^{-\Delta S^*/R}$


- 72. Both geometrical and optical isomerism are exhibited by
 - A) $[Rh(NH_3)_3Cl_3]$
- B) $[Rh(en)_2Cl_2]^+$
- C) $\left[\text{Co(NH}_3)_4\text{Cl}_2\right]^+$
- D) $[Co(en)_3]^{3+}$

C)

- 73. Which of following methods the can be used to study the kinetics of fast reactions?
 - I. Flash photolysis
- II. Flow techniques
- III. Relaxation methods
- IV. Isolation method


- A) I, II and III
- B) I, II and IV
- I, III and IV
- D) II,III and IV
- 74. The ionic strength of a 0.1M aluminium sulphate solution is
 - A) 0.5
- B) 1.0
- C) 1.5
- D) 2.0
- 75. In an experiment the densities of lithium metal are found to be 0.54, 0.55, 0.52 and 0.51 g cm⁻³. The mean deviation and standard deviation are respectively
 - A) 0.015, 0.115 B)
- 0.015, 0.018 C)
- 0.15, 0.018
- D) 0.51, 0.218
- 76. Give the structure of the product, X of the following reaction and name the rearrangement involved.


Wagner-Meerwin rearrangement

В)

Cope rearrangement

C)

Favorskii rearrangement

D)

di-pi methane rearrangement

 CH_3

77. If the same quantity of electricity is passed through solutions of NaCl, MgCl₂ and AlCl₃, the number of moles of the compounds decomposed will be in the ratio 1: 2: 3 B) 3: 2: 1 2: 3: 6 6: 3: 2 A) C78. Which of the following tertiary alcohols cannot be prepared from the reaction of an ester with excess of Grignard reagent? (CH₃)₂COH B) A) (CH₃)₃COH D) CH₃ÇOH C) 79. Liquid junction potential depends on transport number of the ions I. II. mean ionic activities of the solutions III. EMF of the cell without transference IV. temperature of measurement A) I, II and III B) I, II and IV C) I, III and IV D) II, III and IV The balanced equation for the total reaction at the anode of the methane-oxygen fuel cell 80. with KOH as the electrolyte is $CH_A + 4OH^- \rightarrow C + 4H_2O + 4e^-$ A) $CH_4 + 8OH^- \rightarrow CO_2 + 6H_2O + 8e^-$ B) $CH_A + 6OH^- \rightarrow CO + 5H_2O + 6e^-$ C) D) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ 81. Identify the following statements as true (T) or false (F) and choose the correct answer from the choices given below. Cholesterol consists of a nucleus which is composed of four rings with two I. methyl groups- one at C-10 and the other at C-13 and a side chain. II. Cholesterol shows the presence of two double bonds and one keto-group III. Cholesterol is a tetra cyclic compound with a secondary alcoholic group Cholesterol shows the presence of one double bond and a primary alcoholic group IV. A) I-T, II-T, III-F, IV-T I-T, II-F, III-T, IV-F B) I-F,II-T, III-F, IV-T D) I-F, II-F, III-T, IV-F C) 82. Adsorption of a gas on a solid surface is associated with I. a decrease of free energy II. a decrease of entropy III. a decrease of enthalpy

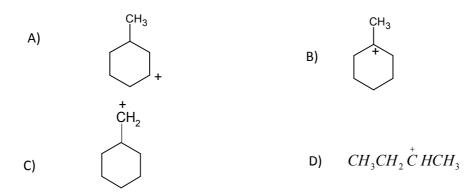
C)

II and III

D)

I, II and III

I and III


B)

Which of these are correct?

I and II

A)

- 83. The metal ions involved in blood clotting and transmission of nerve signals are respectively
 - A) sodium and potassium
- B) calcium and potassium
- C) manganese and sodium
- D) calcium and zinc
- 84. Statement I: MnO₄ is coloured but the heavier analogue ReO₄ is colourless. Statement II: Energy required for charge transfer from oxygen to manganese is greater than that required for oxygen to rhenium
 - A) Statements I and II are correct and II is the correct explanation of I
 - B) Statements I and II are correct and II is not the correct explanation of I
 - C) Statement I is true and statement II is not true
 - D) Both the statements are false
- 85. Statement I: LiF and CsI are insoluble in water
 - Statement II: Lattice enthalpy of LiF is very high while the hydration enthalpy of CsI is very low.
 - A) Statements I and II are correct and II is the correct explanation of I
 - B) Statements I and II are correct and II is not the correct explanation of I
 - C) Statement I is true and statement II is not true
 - D) Both the statements are false
- 86. Which of the following carbocations would you expect to rearrange?

- 87. The degree of hydration ----- down the group from Lithium ion to Cesium ion.
 - A) Increases

- B) Decreases
- C) Remains the same
- D) None of the above
- 88. The size of iso-electronic species decreases with increase in their
 - A) Coordination number
- B) Molecular weight
- C) Atomic weight
- D) Atomic number
- 89. The correct statement about ionisation energy (IE) is
 - A) IE decreases down the group in the periodic table.
 - B) Non metallic character of an element decreases as the IE increases
 - C) IE decreases on moving from left to right in the periodic table
 - D) Second IE of Calcium is larger than the second IE of potassium.

90.	The m A)	ost abundant n He	oble gas B)	s in atm Ne	osphere	is C)	Ar	D)	Kr
91	Which A)	of the following [Fe (CN) ₆] ³⁻	ng is a l B)	nigh spi [Co(H	n d ⁶ cor [₂ O) ₆] ³⁺	nplex?	$[CoF_6]^{2-}$	D)	All the above
92.	Which A) C)	of the following Cytochrome C Myoglobin	-	non-hen	ne prote B) D)	Hemer	rythrin of the above		
93.	Identif A) B) C) D)	OsO ₄ is a reg	nonly ki often us ioselect	sed for a	anti-hyd gent.	roxylat	ion of alkenes. dered side of tl		nic bond.
94.	Identifa a) b) c) d)	fy the correct st Cis- decalin is Trans -decalin Trans -decalin Cis -decalin is	s more s n is mor n isome	stable the e stable rs under	than ci	s- decal ng-flip			
	A)	a & c	B)	b & d		C)	a & d	D)	b & c
95.	The nu A)	umber of nodes	present B)	t in the	НОМО	of 1, 3, C)	5-hexatriene i	n its gro D)	ound state is
96.	Numb	er of π electron	as and the Δ	ne mode	1	ed in the	e following per	ricyclic	reaction is
	A) C)	6 and disrotat 6 and conrota	-		B) D)		disrotatory conrotatory		
97.	Gilma A) C)	n reagent is Lithium di-iso Lithium diorg	propyl		B) D)		mosuccinimide of these	e	
98.	Which A)	of the following Furan	ng has t B)	he max Pyrrol		esonanc C)	e energy? Thiophene	D)	Furfural
99.	RMS (A) B) C) D)	velocity of gas Equal to avera Always less the Always greate None of these	age velo han ave er than t	ocity rage vel	locity	ocity			

100.		r crystallises in			attice w	rith a unit cell le	ength of	f 361 pm. What
	A)	108 pm	B)	127 pm	C)	216 pm	D)	254 pm
101.	Which	of the following	ng gases	is most easily	liquefic	ed?		
	A)	Hydrogen	B)	Nitrogen	C)	Oxygen	D)	Chlorine
102.	Which A) B) C)	The half life p	s equal ant of a eriod of	to molecularit reaction decre f a first order re	y of the ases wi		of the ir	nitial
	D)	concentration The units of se			ant is m	ol dm ⁻³ s ⁻¹ .		
103.	-	ic conductance						cm. The
	A)	419	B)	4.19	C)	0.419	D)	0.00419
104.	Two e A) C)	lements of the p Hydrogen and Lithium and S	Heliun		Uraniı	ESCA chemical am and thorium and Krypton		They are
105.		ake ClF ₃ mole active, then its A singlet A doublet and	s ¹⁹ F N	MR spectrum v B)	would b Two s	e		Cl is not
106.	The to A)	tal number of v 18	ibration B)	al degrees of f 20	reedom C)	available for to	oluene n D)	nolecule is
107.		anganese, I= 5/ ed for high spir				• •	fine EPI	R lines
	-	4 and 24		` /	-		D)	5 and 30
108.	The pr	oton decoupled	1 ³ C NN	MR spectrum o	f cyano	benzene will ha	aver	number of
	A)	3	B)	4	C)	5	D)	6
109.		ct that the fluor ength (Stokes sl High Inter Sys Franck–Condo Low extinction Kasha's rule	hift) is a stem Cro on princ	consequence ossing rates (E iple	of whic l Sayed	h phenomenon' rule)		radiation
110.	Which A)	of the following C-C bond	ng bonda B)	s would be hav C=C bond	ring the C)	highest stretchi C≡C bond	ing freq D)	uency? C-Br bond

111.		natogram is a graph obtained l		= -
	A) C)	Quantity Density	B) D)	Concentration Specific gravity
	C)	Density	D)	Specific gravity
112.		is the plate number, 'W _b ' is the ard deviations and 't _R ' is the arm $N = 16 t_R^2/W_b$	djusted 1	at the base of the peak which is equal to 4 retention time $N = 4 t_R^2/W_b$
	C)	$N = \left(4t_R/W_b\right)^2$	D)	$N = 4 \left(t_{\rm R}/W_{\rm b} \right)^2$
113.		nt dansylchloride in the sample Thermal conductivity detect Fluorescence detectors	e.	in protein hydrolyzates after introducing the
114.	In pol A) C)	arographic cell containing KC Anode Both the electrodes	l, when B) D)	potential is applied, oxygen is reduced at Cathode Electrolyte
115.	Which A) C)	h of the thermal procedures is DTA DSC	non-des B) D)	structive in nature? TGA None of the above
116.	Amox A) C)	Streptomycin Penicillin	mily. B) D)	Chloramphenicol Tetracycline
117.	,	s not a green house gas.	B) D)	Carbon dioxide Water vapour
118.	Which	h of the following tranquilizers Seconal B) Veror		erivative of barbituric acid? C) Luminal D) All the above
119.	A) C)	is a raw material used in the m Bisphenol-A Both A and B	nanufact B) D)	cure of most common polycarbonates Carbonyl chloride None of these
120.	A) C)	is a component of dettol. Salbutamol Bithional	B) D)	Chloroethanol Terpineol